design of rf and microwave filters

Upload: dalia-m-a

Post on 02-Jun-2018

240 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/10/2019 Design of Rf and Microwave Filters

    1/26

    RF and Microwave Filters

  • 8/10/2019 Design of Rf and Microwave Filters

    2/26

    Microwave & Millimeter-wave Lab. 2

    1. Overview

    1.1 Types of FiltersA. Lowpass Filters B. Highpass Filters

    C. Bandpass Filters D. Bandstop Filters

    attenuation

    passband transition

    bandstopband

    freq

    attenuation

    passbandtransition

    bandstopband

    freq

    cutoffc; cutoff

    atten

    pass-

    band

    transition

    band

    stop-

    band

    freq

    atten

    pass-

    band

    transition

    band

    stop-

    band

    freqf1

    stop-

    band

    transition

    band

    f2

    pass-

    band

    transition

    band

    f1

    f2

  • 8/10/2019 Design of Rf and Microwave Filters

    3/26

    Microwave & Millimeter-wave Lab. 3

    2. Filter Characterization(1)

    Two-port Network ;

    H()Input Output

    Fig. 1 Two-port Network

    )()()( jeHH

  • 8/10/2019 Design of Rf and Microwave Filters

    4/26

    Microwave & Millimeter-wave Lab. 4

    2. Filter Characterization(2)

    Fig. 2 Characteristics of

    ideal bandpass filter

    1

    Freq.

    lH()l

    ()

    Characteristics of ideal bandpass filters ;

    21

    21

    ,0

    1)(

    fffffor

    fffforH dand )(

    not realizableapproximation required

  • 8/10/2019 Design of Rf and Microwave Filters

    5/26

    Microwave & Millimeter-wave Lab. 5

    2. Filter Characterization(3)

    Practical specifications ;

    1) Passband

    ; lower cutoff frequency - upper cutoff frequency

    2) Insertion loss :; must be as small as possible

    3) Return Loss :

    ; degree of impedance matching4) Ripple

    ; variation of insertion loss within the passband

    2f

    )()(log20 dBH

    1f

    )(log20 dB

  • 8/10/2019 Design of Rf and Microwave Filters

    6/26

    Microwave & Millimeter-wave Lab. 6

    2. Filter Characterization(4)

    5) Group delay

    ; time to required to pass the filter

    6) Skirt frequency characteristics

    ; depends on the system specifications

    7) Power handling capability

    d

    dd

    )(

  • 8/10/2019 Design of Rf and Microwave Filters

    7/26

    Microwave & Millimeter-wave Lab. 7

    3. Approximate Design Methods

    1) based on Amplitude characteristics

    A. Image parameter method

    B. Insertion loss method

    a) J-K inverters

    b) Unit element - Kuroda identity

    2) based on Linear Phase characteristics

  • 8/10/2019 Design of Rf and Microwave Filters

    8/26

  • 8/10/2019 Design of Rf and Microwave Filters

    9/26

    Microwave & Millimeter-wave Lab. 9

    3.1 Filter Design(2)

    Approximation methods :

    1) Maximally Flat (Butterworth) response

    2) Chebyshev response

    3) Elliptic Function response

  • 8/10/2019 Design of Rf and Microwave Filters

    10/26

  • 8/10/2019 Design of Rf and Microwave Filters

    11/26

    Microwave & Millimeter-wave Lab. 11

    3.2 Approximation Methods(2)

    B. Chebyshev response: equal ripple response in the passband

    : Chebyshev Polynomial of order

    0

    221

    NLR TkP

    NT N

    )()(2)(34)(,12,)(

    21

    3

    3

    2

    21

    xTxxTxTxxxTxTxxT

    nnn

  • 8/10/2019 Design of Rf and Microwave Filters

    12/26

    Microwave & Millimeter-wave Lab. 12

    3.2 Approximation Methods(3)

    10 c

    PLR

    Chebyshev Response, N=4-1

    1+k2

    s

    s

    p

    Elliptic function response N=5

    attenuation

    Fig. 5 Chebyshev and Elliptic Function response

    ; ripple (0.01 dB, 0.1 dB, etc.); order of filter

    degree of freedom=2 (ripple and order)

    2

    kN

  • 8/10/2019 Design of Rf and Microwave Filters

    13/26

    Microwave & Millimeter-wave Lab. 13

    3.2 Approximation Methods(4)

    C. Elliptic Function responseequal ripple passband in both passband andstopband

    : stopband minimum attenuation

    : transmission zero at stopband

    degree of freedom=3 (order N, ripple,transmission zero at stopband )

    s

    s

    s

  • 8/10/2019 Design of Rf and Microwave Filters

    14/26

    Microwave & Millimeter-wave Lab. 14

    4. Lowpass Prototype Filter

    ; normalized to 1

    ...

    ...

    R gN

    g0=1g1

    g2

    g3

    g5

    g4

    g6a

    a'

    ...

    ...

    R

    gN

    g0=1

    g1

    g2

    g3

    g5

    g4g6

    a

    a'

    g7

    Fig. 5 Lowpass prototype

    sradgRL /1,1 c0

  • 8/10/2019 Design of Rf and Microwave Filters

    15/26

    Microwave & Millimeter-wave Lab. 15

    4. Lowpass Prototype Filter(2)

    Maximally Flat response ;

    Equal Ripple response ;

    11 02 gRP LN

    LR

    ),(,2,1,,2

    12sin2 FHNi

    N

    igi

    even1212

    odd1)(1

    220

    22

    Nkkk

    NgRTkP

    LNLR

    11

    11ln,

    2sinh,

    2

    12sin,

    4

    2

    2

    2

    11

    1

    k

    k

    Nb

    N

    ia

    gb

    aag ii

    ii

    ii

    i

  • 8/10/2019 Design of Rf and Microwave Filters

    16/26

    Microwave & Millimeter-wave Lab. 16

    4. Lowpass Prototype Filter(3)

    Type

    Element NoButterworth

    0.1 dB ripple

    Chebyshev

    0.5 dB ripple

    Chebyshev

    1 0.6180 1.1468 1.7058

    2 1.6180 1.3712 1.2296

    3 2.0000 1.9750 2.5408

    4 1.6180 1.3712 1.2296

    5 0.6180 1.1468 1.7058

    Table1. Element values for Butterworth and chebyshev filters

  • 8/10/2019 Design of Rf and Microwave Filters

    17/26

    Microwave & Millimeter-wave Lab. 17

    5. Impedance and freq. mapping

    5.1 Impedance Scaling

    Impedance level 50

    ; same reflection coefficient maintained

    series branch(impedance) elements ;

    shunt branch(admittance) elements ;

    501 LL RR

    iiii gggjgj 5050

    50/50/ rrrr gggjgj

  • 8/10/2019 Design of Rf and Microwave Filters

    18/26

    Microwave & Millimeter-wave Lab. 18

    5. Impedance and freq. mapping(2)

    5.2 Frequency Expansion

    cutoff frequency 1 lowpass cutoff frequency

    mapping function ;

    series and shunt branch elements ;

    c

    iciici gggjgj

    cf )(

  • 8/10/2019 Design of Rf and Microwave Filters

    19/26

    Microwave & Millimeter-wave Lab. 19

    5. Impedance and freq. mapping(3)

    PLR

    '1-1

    PLR

    c-

    c

    PLR

    c-c

    PLR

    1

    -02

    01 2

    (a) Lowpass Prototype response

    (d) Lowpass to Bandpass Transformation

    (b) Frequency expansion

    (c) Lowpass to Highpass transformation

    Fig. 6 Various mapping relations derived from lowpass prototype network

  • 8/10/2019 Design of Rf and Microwave Filters

    20/26

    Microwave & Millimeter-wave Lab. 20

    5.3 Lowpass to Highpass transformation

    (lowpass cutoff freq. 1 highpass cutoff freq. )

    mapping function ;

    series branch(impedance) elements ;

    shunt branch(admittance) elements ;

    ...

    ...

    R

    gN' RL=1

    g1'g

    3'g

    5'

    g4' g

    2'

    c

    /)( cf

    )/(1)/( iciici gggjgj

    )/(1)/( rcrrcr gggjgj

    Fig. 7 Highpass filter derived from lowpass prototype

    5. Impedance and freq. mapping(4)

  • 8/10/2019 Design of Rf and Microwave Filters

    21/26

    Microwave & Millimeter-wave Lab. 21

    5.4 Lowpass to bandpass transformation

    (low cutoff freq. , high cutoff freq. )

    mapping function ;

    1

    2

    0

    012

    0)(f

    12210

    21

    0

    and,1'

    0'

    5. Impedance and freq. mapping(5)

  • 8/10/2019 Design of Rf and Microwave Filters

    22/26

    Microwave & Millimeter-wave Lab. 22

    series branch element : impedance

    shunt branch element : admittance

    s

    s

    ii

    iiCj

    Ljj

    ggjgjggj

    1;

    2

    00

    0

    0

    1

    p

    p

    rr

    rrrLj

    Cjj

    ggjgjggj

    1

    ;200

    0

    0

    ...

    ...

    R

    CN

    RL=1

    C1

    L1

    L3

    L5

    C4

    L4

    C5

    C2

    C3

    L2LN

    Fig. 8 Bandpass filter derived from the lowpass prototype

    5. Impedance and freq. mapping(6)

  • 8/10/2019 Design of Rf and Microwave Filters

    23/26

    Microwave & Millimeter-wave Lab. 23

    Example :Design a bandpass filter having a 0.5dBequal-ripple response, with N=3. The f0is 1GHz,bandwidth is 10%, and the input and outputimpedance 50.

    step 1 : from the element values of lowpass prtotype(0.5dB ripple Chebyshev)

    step 2 : apply impedance scaling

    0000.1,5963.1,0967.1,5963.1 4321 gggg

    HZgL

    FZgCHZgL

    815.79

    ,022.0/,815.79505963.1

    031

    022011

    5. Impedance and freq. mapping(7)

  • 8/10/2019 Design of Rf and Microwave Filters

    24/26

  • 8/10/2019 Design of Rf and Microwave Filters

    25/26

    Microwave & Millimeter-wave Lab. 25

    5.5 Lowpass to bandstop transformation

    (low cutoff freq. , high cutoff freq. )

    mapping function ;

    inverse of bandpass mapping function

    1

    2

    1

    0

    00

    12)(

    f

    12210

    21

    0

    and

    ,1'

    0'

    5. Impedance and freq. mapping(9)

  • 8/10/2019 Design of Rf and Microwave Filters

    26/26

    Microwave & Millimeter-wave Lab. 26

    series branch element : admittance

    shunt branch element : impedance

    s

    s

    ii

    iiLj

    Cjj

    ggjgjggj

    1;

    2

    0

    -1

    0

    00

    1

    p

    p

    rr

    rrrCj

    Ljj

    ggjgjggj

    1;

    20

    -1

    0

    00

    Fig. 9 Bandstop network derived from the lowpass prototype

    ...

    ...

    R

    CNR

    L=1

    C1

    L1L3L5 C4

    L4

    C5

    C2

    C3

    L2

    LN

    5. Impedance and freq. mapping(10)