design of microprocessor-based systemsprabal/teaching/eecs... · i2c 6 dual, 256-tap, volatile,...

29
EECS 373 Design of Microprocessor-Based Systems Thomas Schmid University of Michigan Lecture 12: Wireless Communication October 14, 2010 1

Upload: others

Post on 17-Aug-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

EECS 373Design of Microprocessor-Based Systems

Thomas SchmidUniversity of Michigan

Lecture 12: Wireless CommunicationOctober 14, 2010

1

Page 2: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

Minute Quiz...

2

Page 3: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

Announcements

• How do we deal with virtual timers that are close together?– Keep time running while executing current handler– When handler returns, check for time and the next virtual timer– If it is time, execute the next handler. Else, set the HW timer

4

Page 4: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

Inter-Integrated Circuit - I2C

• What is the simplest way to connect many serial devices with just 2 wires?

• Addressing of chips• Message acknowledgment• Single master - multiple slave• Multiple master - multiple slave

• Two bi-directional open-drain lines SDA, SCL– Pull-up resistors to Vcc

• 7-bit address space with 16 addresses reserved

5

Page 5: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

I2C

6

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

MA

X5

38

7

______________________________________________________________________________________ 11

Message Format for WritingWrite to the devices by transmitting the device’s slave address with NOP/W (eighth bit) set to zero, followed by at least 2 bytes of information. The first byte of informa-tion is the command byte. The second byte is the data byte. The data byte goes into the internal register of the device as selected by the command byte (Figure 7 and Table 2).

Command ByteUse the command byte to select the destination of the wiper data. See Table 2.

Command DescriptionsREG A: The data byte writes to register A and the wiper of potentiometer A moves to the appropriate position. D[7:0] indicates the position of the wiper. D[7:0] = 00h

moves the wiper to the position closest to LA. D[7:0] = FFh moves the wiper to the position closest to HA. D[7:0] is 80h following power-on.

Table 1. Slave Addresses

Figure 6. Slave Address

Figure 7. Command and Single Data Byte Received

LSBMSBSTART

SDA

SCL

0 1 0 1 A2 A1 A0 ACKNOP/W

ADDRESS INPUTSSLAVE ADDRESS

A2 A1 A0GND GND GND 0101000GND GND VDD 0101001GND VDD GND 0101010GND VDD VDD 0101011VDD GND GND 0101100VDD GND VDD 0101101VDD VDD GND 0101110VDD VDD VDD 0101111

S 0 A A A P

ACKNOWLEDGE

NOP/W

HOW CONTROL BYTE AND DATABYTE MAP INTO DEVICE REGISTERS

ACKNOWLEDGE

R7 R6 R5 R4 R3 R2 R1 R0 D7 D6 D5 D4 D3 D2 D1 D0

SLAVE ADDRESS COMMAND BYTE 1 DATA BYTE

R/W

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

MA

X5

38

7

______________________________________________________________________________________ 11

Message Format for WritingWrite to the devices by transmitting the device’s slave address with NOP/W (eighth bit) set to zero, followed by at least 2 bytes of information. The first byte of informa-tion is the command byte. The second byte is the data byte. The data byte goes into the internal register of the device as selected by the command byte (Figure 7 and Table 2).

Command ByteUse the command byte to select the destination of the wiper data. See Table 2.

Command DescriptionsREG A: The data byte writes to register A and the wiper of potentiometer A moves to the appropriate position. D[7:0] indicates the position of the wiper. D[7:0] = 00h

moves the wiper to the position closest to LA. D[7:0] = FFh moves the wiper to the position closest to HA. D[7:0] is 80h following power-on.

Table 1. Slave Addresses

Figure 6. Slave Address

Figure 7. Command and Single Data Byte Received

LSBMSBSTART

SDA

SCL

0 1 0 1 A2 A1 A0 ACKNOP/W

ADDRESS INPUTSSLAVE ADDRESS

A2 A1 A0GND GND GND 0101000GND GND VDD 0101001GND VDD GND 0101010GND VDD VDD 0101011VDD GND GND 0101100VDD GND VDD 0101101VDD VDD GND 0101110VDD VDD VDD 0101111

S 0 A A A P

ACKNOWLEDGE

NOP/W

HOW CONTROL BYTE AND DATABYTE MAP INTO DEVICE REGISTERS

ACKNOWLEDGE

R7 R6 R5 R4 R3 R2 R1 R0 D7 D6 D5 D4 D3 D2 D1 D0

SLAVE ADDRESS COMMAND BYTE 1 DATA BYTE

A3

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

MA

X5

38

7

______________________________________________________________________________________ 11

Message Format for WritingWrite to the devices by transmitting the device’s slave address with NOP/W (eighth bit) set to zero, followed by at least 2 bytes of information. The first byte of informa-tion is the command byte. The second byte is the data byte. The data byte goes into the internal register of the device as selected by the command byte (Figure 7 and Table 2).

Command ByteUse the command byte to select the destination of the wiper data. See Table 2.

Command DescriptionsREG A: The data byte writes to register A and the wiper of potentiometer A moves to the appropriate position. D[7:0] indicates the position of the wiper. D[7:0] = 00h

moves the wiper to the position closest to LA. D[7:0] = FFh moves the wiper to the position closest to HA. D[7:0] is 80h following power-on.

Table 1. Slave Addresses

Figure 6. Slave Address

Figure 7. Command and Single Data Byte Received

LSBMSBSTART

SDA

SCL

0 1 0 1 A2 A1 A0 ACKNOP/W

ADDRESS INPUTSSLAVE ADDRESS

A2 A1 A0GND GND GND 0101000GND GND VDD 0101001GND VDD GND 0101010GND VDD VDD 0101011VDD GND GND 0101100VDD GND VDD 0101101VDD VDD GND 0101110VDD VDD VDD 0101111

S 0 A A A P

ACKNOWLEDGE

NOP/W

HOW CONTROL BYTE AND DATABYTE MAP INTO DEVICE REGISTERS

ACKNOWLEDGE

R7 R6 R5 R4 R3 R2 R1 R0 D7 D6 D5 D4 D3 D2 D1 D0

SLAVE ADDRESS COMMAND BYTE 1 DATA BYTE

A4

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

MA

X5

38

7

______________________________________________________________________________________ 11

Message Format for WritingWrite to the devices by transmitting the device’s slave address with NOP/W (eighth bit) set to zero, followed by at least 2 bytes of information. The first byte of informa-tion is the command byte. The second byte is the data byte. The data byte goes into the internal register of the device as selected by the command byte (Figure 7 and Table 2).

Command ByteUse the command byte to select the destination of the wiper data. See Table 2.

Command DescriptionsREG A: The data byte writes to register A and the wiper of potentiometer A moves to the appropriate position. D[7:0] indicates the position of the wiper. D[7:0] = 00h

moves the wiper to the position closest to LA. D[7:0] = FFh moves the wiper to the position closest to HA. D[7:0] is 80h following power-on.

Table 1. Slave Addresses

Figure 6. Slave Address

Figure 7. Command and Single Data Byte Received

LSBMSBSTART

SDA

SCL

0 1 0 1 A2 A1 A0 ACKNOP/W

ADDRESS INPUTSSLAVE ADDRESS

A2 A1 A0GND GND GND 0101000GND GND VDD 0101001GND VDD GND 0101010GND VDD VDD 0101011VDD GND GND 0101100VDD GND VDD 0101101VDD VDD GND 0101110VDD VDD VDD 0101111

S 0 A A A P

ACKNOWLEDGE

NOP/W

HOW CONTROL BYTE AND DATABYTE MAP INTO DEVICE REGISTERS

ACKNOWLEDGE

R7 R6 R5 R4 R3 R2 R1 R0 D7 D6 D5 D4 D3 D2 D1 D0

SLAVE ADDRESS COMMAND BYTE 1 DATA BYTE

A5

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

MA

X5

38

7

______________________________________________________________________________________ 11

Message Format for WritingWrite to the devices by transmitting the device’s slave address with NOP/W (eighth bit) set to zero, followed by at least 2 bytes of information. The first byte of informa-tion is the command byte. The second byte is the data byte. The data byte goes into the internal register of the device as selected by the command byte (Figure 7 and Table 2).

Command ByteUse the command byte to select the destination of the wiper data. See Table 2.

Command DescriptionsREG A: The data byte writes to register A and the wiper of potentiometer A moves to the appropriate position. D[7:0] indicates the position of the wiper. D[7:0] = 00h

moves the wiper to the position closest to LA. D[7:0] = FFh moves the wiper to the position closest to HA. D[7:0] is 80h following power-on.

Table 1. Slave Addresses

Figure 6. Slave Address

Figure 7. Command and Single Data Byte Received

LSBMSBSTART

SDA

SCL

0 1 0 1 A2 A1 A0 ACKNOP/W

ADDRESS INPUTSSLAVE ADDRESS

A2 A1 A0GND GND GND 0101000GND GND VDD 0101001GND VDD GND 0101010GND VDD VDD 0101011VDD GND GND 0101100VDD GND VDD 0101101VDD VDD GND 0101110VDD VDD VDD 0101111

S 0 A A A P

ACKNOWLEDGE

NOP/W

HOW CONTROL BYTE AND DATABYTE MAP INTO DEVICE REGISTERS

ACKNOWLEDGE

R7 R6 R5 R4 R3 R2 R1 R0 D7 D6 D5 D4 D3 D2 D1 D0

SLAVE ADDRESS COMMAND BYTE 1 DATA BYTE

A6 A2 A1 A0 ACK

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

MA

X5

38

7

______________________________________________________________________________________ 11

Message Format for WritingWrite to the devices by transmitting the device’s slave address with NOP/W (eighth bit) set to zero, followed by at least 2 bytes of information. The first byte of informa-tion is the command byte. The second byte is the data byte. The data byte goes into the internal register of the device as selected by the command byte (Figure 7 and Table 2).

Command ByteUse the command byte to select the destination of the wiper data. See Table 2.

Command DescriptionsREG A: The data byte writes to register A and the wiper of potentiometer A moves to the appropriate position. D[7:0] indicates the position of the wiper. D[7:0] = 00h

moves the wiper to the position closest to LA. D[7:0] = FFh moves the wiper to the position closest to HA. D[7:0] is 80h following power-on.

Table 1. Slave Addresses

Figure 6. Slave Address

Figure 7. Command and Single Data Byte Received

LSBMSBSTART

SDA

SCL

0 1 0 1 A2 A1 A0 ACKNOP/W

ADDRESS INPUTSSLAVE ADDRESS

A2 A1 A0GND GND GND 0101000GND GND VDD 0101001GND VDD GND 0101010GND VDD VDD 0101011VDD GND GND 0101100VDD GND VDD 0101101VDD VDD GND 0101110VDD VDD VDD 0101111

S 0 A A A P

ACKNOWLEDGE

NOP/W

HOW CONTROL BYTE AND DATABYTE MAP INTO DEVICE REGISTERS

ACKNOWLEDGE

R7 R6 R5 R4 R3 R2 R1 R0 D7 D6 D5 D4 D3 D2 D1 D0

SLAVE ADDRESS COMMAND BYTE 1 DATA BYTE

R/W

Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer

MA

X5

38

7

10 _____________________________________________________________________________________

Figure 3. START and STOP Conditions

Figure 4. Bit Transfer

Figure 5. Acknowledge

Bit TransferOne data bit is transferred during each clock pulse. The data on the SDA line must remain stable while SCL is high. See Figure 4.

AcknowledgeThe acknowledge bit is a clocked 9th bit that the recipi-ent uses to handshake receipt of each byte of data. See Figure 5. Each byte transferred requires a total of nine bits. The master controller generates the 9th clock pulse, and the recipient pulls down SDA during the acknowl-edge clock pulse, so the SDA line remains stable low during the high period of the clock pulse.

Slave AddressThe MAX5387 includes a 7-bit slave address (Figure 6). The 8th bit following the 7th bit of the slave address is the NOP/W bit. Set the NOP/W bit low for a write command and high for a no-operation command. The device does not support readback.

The device provides three address inputs (A0, A1, and A2), allowing up to eight devices to share a common bus (Table 1). The first 4 bits (MSBs) of the factory-set slave addresses are always 0101. A2, A1, and A0 set the next 3 bits of the slave address. Connect each address input to VDD or GND. Each device must have a unique address to share a common bus.

P

STOPCONDITION

S

START CONDITION

SDA

SCL

SDA

SCLDATA STABLE,DATA VALID

CHANGE OFDATA ALLOWED

9821

STARTCONDITION

SCL

SDA

CLOCK PULSE FORACKNOWLEDGMENT

NOT ACKNOWLEDGE

ACKNOWLEDGE

StopCondition

Page 6: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

How can we cut the cord?

7

Page 7: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

Modulation is Key to Wireless Communication

• Transmit information over an analog pass-band channel• AM/FM Modulation

8

• Alphabet of M=2N alternative symbols, each of size N• If we have fs S/s, the data rate is N·fs bits/s• Fundamental Digital Modulation

• Phase-Shift Keying (PSK)• Frequency-Shift Keying (FSK)• Amplitude-Shift Keying (ASK)• Quadrature Amplitude Modulation (QAM)

Page 8: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

Phase Shift Keying

• Binary PSK (BPSK) M=2• Quadrature PSK (QPSK) M=4• 8PSK (M=8), 16PSK (M=16)• Differential PSK (DPSK) Differential QPSK (DQPSK)• Offset QPSK (OQPSK)

9

O-QPSK Constellation

BPSK Constellation

Figures from wikipedia.org

Page 9: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

Quadrature Amplitude Modulation

• Adds amplitude modulation to phase shift keying

10

16-QAM Constelation

Page 10: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

11

U.S. D

EPARTMENT OF COMMERCENATIO

NA

L TELECO

MMUNICATIONS & INFORMATION

ADM

INIST

RATIO

N

MOBIL

E (A

ERON

AUTIC

AL TE

LEME

TERI

NG)

S)

5.68

5.73

5.90

5.95

6.2

6.52

5

6.68

56.

765

7.0

7.1

7.3

7.35

8.1

8.19

5

8.81

58.

965

9.04

0

9.4

9.5

9.9

9.99

510

.003

10.0

0510

.110

.15

11.1

7511

.275

11.4

11.6

11.6

5

12.0

512

.10

12.2

3

13.2

13.2

613

.36

13.4

113

.57

13.6

13.8

13.8

714

.014

.25

14.3

5

14.9

9015

.005

15.0

1015

.10

15.6

15.8

16.3

6

17.4

117

.48

17.5

5

17.9

17.9

718

.03

18.0

6818

.168

18.7

818

.919

.02

19.6

819

.80

19.9

9019

.995

20.0

0520

.010

21.0

21.4

521

.85

21.9

2422

.0

22.8

5523

.023

.223

.35

24.8

924

.99

25.0

0525

.01

25.0

725

.21

25.3

325

.55

25.6

726

.126

.175

26.4

826

.95

26.9

627

.23

27.4

127

.54

28.0

29.7

29.8

29.8

929

.91

30.0

UNITED

STATES

THE RADIO SPECTRUM

NON-GOVERNMENT EXCLUSIVE

GOVERNMENT/ NON-GOVERNMENT SHAREDGOVERNMENT EXCLUSIVE

RADIO SERVICES COLOR LEGEND

ACTIVITY CODE

NOT ALLOCATED RADIONAVIGATION FIXED

MARITIME MOBILEFIXED

MARITIME MOBILE

FIXED

MARITIME MOBILE

Radiolocation RADIONAVIGATION

FIXED

MARITIMEMOBILE

Radiolocation

FIXED

MARITIMEMOBILE FIXED

MARITIMEMOBILE

AERONAUTICALRADIONAVIGATION

AERO

NAUT

ICAL

RADIO

NAVIG

ATIO

NAe

ronau

tical

Mobil

eMa

ritime

Radio

navig

ation

(Rad

io Be

acon

s)MA

RITIM

ERA

DIONA

VIGAT

ION

(RAD

IO BE

ACON

S)Ae

ronau

tical

Radio

navig

ation

(Rad

io Be

acon

s)

3 9 14 19.9

5

20.0

5

30 30 59 61 70 90 110

130

160

190

200

275

285

300

3 kHz 300 kHz

300 kHz 3 MHz

3 MHz 30 MHz

30 MHz 300 MHz

3 GHz

300 GHz

300 MHz

3 GHz

30 GHz

AeronauticalRadionavigation(Radio Beacons)

MARITIMERADIONAVIGATION(RADIO BEACONS)

Aeron

autic

alMo

bile

Mariti

meRa

diona

vigati

on(R

adio

Beac

ons)

AERO

NAUT

ICAL

RADIO

NAVIG

ATIO

N(R

ADIO

BEAC

ONS)

AERONAUTICALRADIONAVIGATION(RADIO BEACONS)

AeronauticalMobile

Aeron

autica

l Mob

ileRA

DIONA

VIGAT

ION

AER

ONAU

TICAL

RADI

ONAV

IGAT

ION

MARI

TIME

MOBI

LE AeronauticalRadionavigation

MOB

ILE (D

ISTR

ESS

AND

CALL

ING)

MARI

TIME

MOBI

LE

MARI

TIME

MOBI

LE(S

HIPS

ONL

Y)

MOBI

LE

AERO

NAUT

ICAL

RADI

ONAV

IGAT

ION

(RAD

IO B

EACO

NS)

AERO

NAUT

ICAL

RADIO

NAVIG

ATIO

N(R

ADIO

BEA

CONS

)

BROADCASTING(AM RADIO)

MARI

TIME M

OBILE

(TEL

EPHO

NY)

MARI

TIME M

OBILE

(TEL

EPHO

NY)

MOB

ILE (D

ISTRE

SS AN

D CAL

LING)

MARITIMEMOBILE

LAND MOBILE

MOBILE

FIXED STAN

DARD

FREQ

. AND

TIME

SIGN

AL (2

500k

Hz)

STAN

DARD

FREQ

. AND

TIME

SIGN

ALSp

ace R

esea

rch MARITIMEMOBILE

LAND MOBILE

MOBILE

FIXED

AERO

NAUT

ICAL

MOBIL

E (R)

STAN

DARD

FREQ

.

AERO

NAUT

ICAL

MOB

ILE (R

)

AERO

NAUT

ICAL

MOBIL

E (OR

)

AERO

NAUT

ICAL

MOBIL

E (R)

FIXED

MOBILE**

Radio-location

FIXED

MOBI

LE*

AMATEUR

FIXED

FIXED

FIXED

FIXED

FIXEDMARITIME

MOBILE

MOBI

LE*

MOBI

LE*

MOBI

LEST

ANDA

RD FR

EQ. A

ND TI

ME SI

GNAL

(500

0 KHZ

)

AERO

NAUT

ICAL

MOB

ILE (R

)

AERO

NAUT

ICAL

MOB

ILE (O

R)

STAN

DARD

FREQ

.Sp

ace R

esea

rch

MOBILE**

AERO

NAUT

ICAL

MOB

ILE (R

)

AERO

NAUT

ICAL

MOB

ILE (O

R) FIXE

DMO

BILE

*

BROA

DCAS

TING

MARI

TIME

MOBI

LE

AERO

NAUT

ICAL

MOB

ILE (R

)AE

RONA

UTIC

AL M

OBILE

(OR) FIX

EDMo

bile

AMAT

EUR

SATE

LLITE

AMAT

EUR

AMAT

EUR

FIXED

Mobile

MARIT

IME M

OBILE

MARITIMEMOBILE

AERO

NAUT

ICAL

MOB

ILE (R

)AE

RONA

UTIC

AL M

OBILE

(OR)

FIXE

D

BROA

DCAS

TING

FIXED

STAN

DARD

FREQ

. AND

TIME

SIGN

AL (1

0,000

kHz)

STAN

DARD

FREQ

.Sp

ace R

esea

rchAE

RONA

UTIC

AL M

OBILE

(R)

AMAT

EUR

FIXED

Mobile* AERO

NAUT

ICAL

MOB

ILE (R

)AE

RONA

UTIC

AL M

OBILE

(OR)

FIXED

FIXED

BROA

DCAS

TING

MARI

TIME

MOBI

LE

AERO

NAUT

ICAL M

OBILE

(R)

AERO

NAUT

ICAL M

OBILE

(OR)

RADIO

ASTR

ONOM

YMo

bile*

AMAT

EUR

BROA

DCAS

TING

AMAT

EUR

AMAT

EUR S

ATEL

LITE

Mobil

e*FIX

ED

BROA

DCAS

TING

STAN

DARD

FREQ

. AND

TIME

SIGN

AL (1

5,000

kHz)

STAN

DARD

FREQ

.Sp

ace R

esea

rch

FIXED

AERO

NAUT

ICAL

MOB

ILE (O

R)

MARI

TIME

MOBI

LE

AERO

NAUT

ICAL

MOB

ILE (O

R)AE

RONA

UTIC

AL M

OBILE

(R)

FIXED

FIXED

BROA

DCAS

TING

STAN

DARD

FREQ

.Sp

ace R

esea

rch

FIXED

MARI

TIME

MOBI

LE

Mobil

eFIX

ED

AMAT

EUR

AMAT

EUR

SATE

LLITE

BROA

DCAS

TING

FIXED

AERO

NAUT

ICAL

MOB

ILE (R

)

MARI

TIME

MOBI

LE

FIXED

FIXED

FIXED

Mob

ile*

MOB

ILE**

FIXED

STAN

DARD

FREQ

. AND

TIME

SIGN

AL (2

5,000

kHz)

STAN

DARD

FREQ

.Sp

ace R

esea

rch LA

ND M

OBILE

MARI

TIME

MOBI

LE LA

ND M

OBILE

MOB

ILE**

RAD

IO A

STRO

NOMY

BROA

DCAS

TING

MARI

TIME

MOBI

LE LA

ND M

OBILE

FIXED

MOB

ILE**

FIXED

MOB

ILE**

MOB

ILE

FIXED

FIXED

FIXED

FIXED

FIXED

LAND

MOBIL

E

MOB

ILE**

AMAT

EUR

AMAT

EUR

SATE

LLITE

MOB

ILE

LAND

MOB

ILE

MOBI

LE

MOBI

LE

FIXED

FIXED

MOBI

LE

MOBI

LE

FIXED

FIXED

LAND

MOBI

LE

LAND

MOBI

LE

LAND

MOBI

LE

LAND

MOB

ILERa

dio A

stron

omy

RADIO

AST

RONO

MYLA

ND M

OBILE

FIXED

FIXED

MOBI

LEMOBIL

E

MOBILE

LAND

MOB

ILE

FIXED

LAND

MOBI

LE

FIXED

FIXED

MOBI

LE

MOBIL

E

LANDMOBILE AMATEUR

BROADCASTING(TV CHANNELS 2-4)

FIXED

MOBI

LE

FIXED

MOBI

LE

FIXED

MOBI

LEFIX

EDMO

BILE

AERO

NAUT

ICAL

RAD

IONA

VIGA

TION

BROADCASTING(TV CHANNELS 5-6)

BROADCASTING(FM RADIO)

AERONAUTICALRADIONAVIGATION

AERO

NAUT

ICAL

MOBI

LE (R

)AE

RONA

UTIC

AL M

OBILE

AERO

NAUT

ICAL

MOB

ILE

AERO

NAUT

ICAL

MOBI

LE (R

)

AERO

NAUT

ICAL

MOBI

LE (R

)AE

RONA

UTIC

AL M

OBILE

(R)

MOBI

LEFI

XED

AMAT

EUR

BROADCASTING(TV CHANNELS 7-13)

MOBILE

FIXED

MOBILE

FIXED

MOBILE SATELLITE

FIXED

MOBILESATELLITE

MOBILE

FIXED

MOBILESATELLITE

MOBILE

FIXED

MOBI

LEAE

RONA

UTIC

AL R

ADIO

NAVIG

ATIO

N

STD.

FREQ

. & TI

ME SI

GNAL

SAT.

(400.1

MHz

)ME

T. SAT.

(S-E)

SPAC

E RES

.(S-

E)Ea

rth Ex

pl.Sa

tellite

(E-S

)

MOBI

LE S

ATEL

LITE

(E-S

)FIX

EDMO

BILE

RADI

OAS

TRON

OMY

RADI

OLOC

ATIO

NAm

ateur

LAND

MOB

ILE

MeteorologicalSatellite (S-E)

LAND

MOB

ILEBR

OADC

ASTIN

G(TV

CHAN

NELS

14 - 2

0)

BROADCASTING(TV CHANNELS 21-36)

TV BROADCASTINGRADI

O AS

TRON

OMY

RADI

OLOC

ATIO

N

FIXED

Amate

ur

AERONAUTICALRADIONAVIGATION

MOBI

LE**

FIXED

AERO

NAUT

ICAL

RADIO

NAVIG

ATION

Radio

locati

on

Radio

locati

onMA

RITIM

ERA

DION

AVIG

ATIO

N

MARI

TIME

RADI

ONAV

IGAT

ION

Radio

locati

on

Radiolocation

Radiolocation

RADIO-LOCATION RADIO-

LOCATION

Amateur

AERO

NAUT

ICAL

RADIO

NAVIG

ATION

(Grou

nd)

RADIO

-LO

CATIO

NRa

dio-

locatio

n

AERO

. RAD

IO-NA

V.(Gro

und)

FIXED

SAT.

(S-E)

RADIO

-LO

CATIO

NRa

dio-

locatio

n

FIXED

FIXEDSATELLITE

(S-E)

FIXED

AERO

NAUT

ICAL

RAD

IONA

VIGAT

ION MO

BILE

FIXED

MOBIL

E

RADI

O AS

TRON

OMY

Space

Resea

rch (P

assive

)AE

RONA

UTIC

AL R

ADIO

NAVIG

ATIO

N

RADI

O-LO

CATIO

NRa

dio-

locati

onRA

DION

AVIG

ATIO

NRa

dioloc

ation

RADI

OLOC

ATIO

NRa

dioloc

ation

Radio

locati

on

Radio

locati

onRA

DIOL

OCAT

ION

RADI

O-LO

CATIO

N

MARI

TIME

RADI

ONAV

IGAT

ION

MARI

TIME

RADIO

NAVIG

ATIO

NME

TEOR

OLOG

ICAL

AIDS

Amate

urAm

ateur

FIXED

FIXED

SATE

LLITE

(E-S)

MOBIL

E

FIXED

SATE

LLITE

(E-S)

FIXED

SATE

LLITE

(E-S)

MOBI

LE

FIXED FIX

ED

FIXED

FIXED

MOBIL

E

FIXED

SPAC

E RES

EARC

H (E-

S)FIX

EDFix

edMO

BILE

SATE

LLITE

(S-E)

FIXED

SATE

LLITE

(S-E)

FIXED

SATE

LLITE

(S-E)

FIXED

SATE

LLITE

(S-E)

FIXED

SATE

LLITE

(S-E)

FIXED

SATE

LLITE

(E-S)

FIXED

SATE

LLITE

(E-S)

FIXED

SATE

LLITE

(E-S)

FIXED

SATE

LLITE

(E-S)

FIXED

FIXED

FIXED

FIXED

FIXED

FIXED

FIXED

MET.

SATE

LLITE

(S-E)

Mobile

Satell

ite (S-

E)Mo

bileSa

tellite

(S-E)

Mobile

Satell

ite (E-

S)(no

airbo

rne)

Mobile

Satell

ite(E-

S)(no

airborn

e)

Mobile

Satell

ite (S-

E)

Mobile

Satell

ite (E-

S)

MOBIL

ESA

TELL

ITE (E

-S)EA

RTH E

XPL.

SATE

LLITE

(S-E)

EART

H EXP

L.SA

T. (S-E

)

EART

H EXP

L.SA

TELLI

TE (S

-E)

MET.

SATE

LLITE

(E-S)

FIXED

FIXED

SPAC

E RES

EARC

H (S-E

)(de

ep sp

ace on

ly)SP

ACE R

ESEA

RCH (

S-E)

AERO

NAUT

ICAL

RADI

ONAV

IGAT

ION

RADI

OLOC

ATIO

NRa

dioloc

ation

Radio

locati

on

Radio

locati

on

Radio

locati

on

MARI

TIME

RADI

ONAV

IGAT

ION Me

teorol

ogica

lAid

sRA

DIONA

VIGAT

ION

RADI

OLOC

ATIO

NRa

dioloc

ation

RADI

O-LO

CATIO

NRa

dioloc

ation

Radio

locati

onAm

ateur

Amate

urAm

ateur

Satel

liteRA

DIOL

OCAT

ION

FIXED

FIXED

FIXED

FIXE

DFIXEDSATELLITE

(S-E)

FIXEDSATELLITE

(S-E)

Mobile **

SPAC

E RES

EARC

H(Pa

ssive)

EART

H EX

PL.

SAT.

(Passi

ve)RA

DIOAS

TRON

OMY

SPAC

ERE

SEAR

CH (P

assive

)EA

RTH

EXPL

.SA

TELL

ITE (P

assive

)RA

DIO

ASTR

ONOM

Y

BROA

DCAS

TING

SATE

LLITE

AERO

NAUT

ICAL R

ADION

AV.

Space

Rese

arch (

E-S)

SpaceResearch

Land

Mob

ileSa

tellite

(E-S)

Radio

-loc

ation

RADIO

-LO

CATIO

N

RADIO

NAVIG

ATION FI

XED

SATE

LLIT

E (E

-S)

Land

Mob

ileSa

tellite

(E-S

)

Land

Mob

ileSa

tellite

(E-S)

Fixed

Mobil

eFIX

ED SA

T. (E

-S)

Fixed

Mobil

eFIX

ED

Mobil

eFIX

ED

MOBIL

ESp

ace R

esearc

hSp

ace R

esearc

h

Space

Rese

arch

SPAC

E RES

EARC

H(Pa

ssive

)RA

DIO A

STRO

NOMY

EART

H EXP

L. SA

T.(Pa

ssive

)

Radio

locatio

nRA

DIOL

OCAT

ION

Radio

locati

on

FX S

AT (E

-S)

FIXED

SAT

ELLIT

E (E

-S)FI

XED

FIXED

FIXE

DMO

BILE

EART

H EXP

L.SA

T. (Pa

ssive)

MOBI

LE

Earth

Expl.

Satell

ite (Ac

tive)

Stand

ardFre

quen

cy an

dTim

e Sign

alSa

tellite

(E-S)

Earth

Explo

ration

Satell

ite(S-

S)MO

BILE

FIXED

MOBI

LEFI

XED

Earth

Explo

ration

Satell

ite (S-

S)

FIXE

DMO

BILE

FIXE

DSA

T (E

-S)

FIXED

SATE

LLITE

(E-S)

MOBIL

E SAT

ELLIT

E (E-S

)

FIXED

SATE

LLITE

(E-S

)

MOBIL

ESA

TELL

ITE(E

-S)

Stand

ardFre

quen

cy an

dTim

e Sign

alSa

tellite

(S-E)

Stand

. Freq

uency

and T

ime Si

gnal

Satell

ite (S-

E)FIX

EDMO

BILE

RADI

OAS

TRON

OMY

SPAC

ERE

SEAR

CH(P

assiv

e)EA

RTH

EXPL

ORAT

ION

SAT.

(Passi

ve)

RADI

ONAV

IGAT

ION

RADI

ONAV

IGAT

ION

INTE

R-SA

TELL

ITE

RADI

ONAV

IGAT

ION

RADI

OLOC

ATIO

NRa

dioloc

ation

SPAC

E RE

..(P

assiv

e)EA

RTH E

XPL.

SAT.

(Passi

ve)FI

XED

MOBI

LE

FIXE

DMO

BILE

FIXE

DMO

BILE

Mobil

eFi

xedFIX

EDSA

TELL

ITE (S

-E)

BROA

D-CA

STIN

GBC

STSA

T.

FIXED

MOBIL

E

FXSA

T(E-

S)MO

BILE

FIXE

D

EART

HEX

PLOR

ATIO

NSA

TELL

ITEFI

XED

SATE

LLITE

(E-S)

MOBIL

ESA

TELLI

TE (E

-S)

MOBI

LEFI

XED

SPAC

ERE

SEAR

CH(P

assiv

e)

EART

HEX

PLOR

ATION

SATE

LLITE

(Passi

ve)

EART

HEX

PLOR

ATIO

NSA

T. (Pa

ssive

)SP

ACE

RESE

ARCH

(Pas

sive)

INTER

-SA

TELL

ITERA

DIO-

LOCA

TION

SPAC

ERE

SEAR

CHFI

XED

MOBILE

F IXED

MOBILESATELLITE

(E-S)

MOBIL

ESA

TELL

ITERA

DIONA

VIGAT

IONRA

DIO-

NAVIG

ATION

SATE

LLITE

EART

HEX

PLOR

ATION

SATE

LLITE F IXED

SATELLITE(E-S)

MOBIL

EFIX

EDFIX

EDSA

TELL

ITE (E

-S)

AMAT

EUR

AMAT

EUR

SATE

LLITE

AMAT

EUR

AMAT

EUR

SATE

LLITE

Amate

urSa

tellite

Amate

urRA

DIO-

LOCA

TION

MOBIL

EFIX

EDMO

BILE

SATE

LLITE

(S-E

)

FIXED

SATE

LLITE

(S-E

)

MOBIL

EFIX

EDBR

OAD-

CAST

ING

SATE

LLITE

BROA

D-CA

STIN

G

SPACERESEARCH

(Passive)

RADIOASTRONOMY

EARTHEXPLORATION

SATELLITE(Passive)

MOBILE

FIXE

D

MOBIL

EFIX

EDRA

DIO-

LOCA

TION

FIXED

SATE

LLITE

(E-S

)

MOBILESATELLITE

RADIO-NAVIGATIONSATELLITE

RADIO-NAVIGATION

Radio-location

EART

H EX

PL.

SATE

LLITE

(Pas

sive)

SPAC

E RES

EARC

H(P

assiv

e)

FIXE

DFI

XED

SATE

LLIT

E(S

-E)

SPACERESEARCH

(Passive)

RADIOASTRONOMY

EARTHEXPLORATION

SATELLITE(Passive)

FIXED

MOBILE

MOBI

LEINT

ER-

SATE

LLITE

RADIO-LOCATION

INTER-SATELLITE

Radio-location

MOBILE

MOBILESATELLITE

RADIO-NAVIGATION

RADIO-NAVIGATIONSATELLITE

AMAT

EUR

AMAT

EUR

SATE

LLITE

Amate

urAm

ateur

Satel

liteRA

DIO-

LOCA

TION

MOBIL

EFIX

EDFIX

EDSA

TELL

ITE (S

-E)

MOBIL

EFIX

EDFIX

EDSA

TELL

ITE(S

-E)

EART

HEX

PLOR

ATIO

NSA

TELL

ITE (P

assiv

e)SP

ACE R

ES.

(Pas

sive)

SPAC

E RES

.(P

assiv

e)

RADI

OAS

TRON

OMY

FIXEDSATELLITE

(S-E)

FIXED

MOBIL

EFIX

ED

MOBIL

EFIX

ED

MOBIL

EFIX

ED

MOBIL

EFIX

ED

MOBIL

EFIX

ED

SPAC

E RES

EARC

H(P

assiv

e)RA

DIO

ASTR

ONOM

YEA

RTH

EXPL

ORAT

ION

SATE

LLITE

(Pas

sive)

EART

HEX

PLOR

ATION

SAT. (

Passi

ve)

SPAC

ERE

SEAR

CH(Pa

ssive)

INTER

-SA

TELL

ITE

INTE

R-SA

TELL

ITE

INTE

R-SA

TELL

ITE

INTE

R-SA

TELL

ITE

MOBILE

MOBILE

MOBIL

EMOBILESATELLITE

RADIO-NAVIGATION

RADIO-NAVIGATIONSATELLITE

FIXEDSATELLITE

(E-S)

FIXED

FIXED

EART

HEX

PLOR

ATION

SAT.

(Passi

ve)

SPAC

E RES

.(Pa

ssive)

SPACERESEARCH

(Passive)

RADIOASTRONOMY

EARTHEXPLORATION

SATELLITE(Passive)

MOBIL

EFIX

ED

MOBIL

EFIX

ED

MOBIL

EFIX

ED

FIXED

SATE

LLITE

(S-E

)FIX

EDSA

TELL

ITE(S-

E) FIXED

SATE

LLITE

(S-E

)

EART

H EXP

L.SA

T. (Pa

ssive)

SPAC

E RES

.(Pa

ssive)

Radio

-loc

ation

Radio

-loc

ation

RADI

O-LO

CATIO

NAM

ATEU

RAM

ATEU

R SA

TELL

ITE

Amate

urAm

ateur

Satel

lite

EART

H EXP

LORA

TION

SATE

LLITE

(Pas

sive)

SPAC

E RE

S. (P

assiv

e)

MOBILE

MOBILESATELLITE

RADIO-NAVIGATION

RADIO-NAVIGATIONSATELLITE

MOBILE

MOBILE

FIXED

RADIO-ASTRONOMY

FIXEDSATELLITE

(E-S)

FIXED

3.0

3.02

5

3.15

5

3.23

0

3.4

3.5

4.0

4.06

3

4.43

8

4.65

4.7

4.75

4.85

4.99

55.

003

5.00

55.

060

5.45

MARITIMEMOBILE

AMAT

EUR

AMAT

EUR

SATE

LLITE

FIXED

Mobil

eMA

RITIM

E MOB

ILE

STAN

DARD

FREQ

UENC

Y & TI

ME SI

GNAL

(20,0

00 K

HZ)

Spac

e Res

earch

AERO

NAUT

ICAL

MOB

ILE (O

R)

AMAT

EUR

SATE

LLITE

AMAT

EUR

MET. S

AT. (S

-E)MO

B. SA

T. (S-E

)SP

ACE R

ES. (S

-E)SP

ACE O

PN. (S

-E)ME

T. SAT

. (S-E)

Mob.

Sat. (

S-E)

SPAC

E RES

. (S-E)

SPAC

E OPN

. (S-E)

MET. S

AT. (S

-E)MO

B. SA

T. (S-E

)SP

ACE R

ES. (S

-E)SP

ACE O

PN. (S

-E)ME

T. SAT

. (S-E)

Mob.

Sat. (

S-E)

SPAC

E RES

. (S-E)

SPAC

E OPN

. (S-E)

MOBILE

FIXED

FIXED

Land

Mob

ileFIX

EDMO

BILE

LAND

MOB

ILE

LAND

MOB

ILE

MAR

ITIME

MOB

ILE M

ARITI

ME M

OBILE

MAR

ITIME

MOB

ILE MAR

ITIME

MOB

ILE

LAND

MOB

ILE

FIXED

MOBI

LEMO

BILE S

ATELL

ITE (E

-S)

Radio

locati

onRa

dioloc

ation

LAND

MOB

ILEAM

ATEU

R

MOB

ILE SA

TELL

ITE (E

-S) RA

DIONA

VIGAT

ION SA

TELL

ITE

MET.

AIDS

(Radio

sonde

) M

ETEO

ROLO

GICA

L AIDS

(RAD

IOSO

NDE)

SPAC

E RE

SEAR

CH (S

-S)FIX

EDMO

BILE

LAND

MOB

ILEFIX

EDLA

ND M

OBILE

FIXED

FIXED

RADI

O AS

TRON

OMY

RADI

O AS

TRON

OMY

METE

OROL

OGIC

ALAI

DS (R

ADIO

SOND

E)

METE

OROL

OGIC

ALAI

DS (R

adios

onde

)ME

TEOR

OLOG

ICAL

SATE

LLITE

(s-E

)

Fixed

FIXED

MET. SAT.(s-E)

FIXE

D

FIXED

AERO

NAUT

ICAL M

OBILE

SATE

LLITE

(R) (s

pace

to Ea

rth)

AERO

NAUT

ICAL R

ADION

AVIGA

TION

RADIO

NAV.

SATE

LLITE

(Spac

e to Ea

rth)

AERO

NAUT

ICAL M

OBILE

SATE

LLITE

(R)

(space

to Ear

th)Mo

bile Sa

tellite

(S- E)

RADIO

DET. S

AT. (E

-S)MO

BILE

SAT(

E-S)

AERO

. RAD

IONAV

IGATIO

NAE

RO. R

ADION

AV.

AERO

. RAD

IONAV

.RA

DIO DE

T. SAT

. (E-S)

RADIO

DET. S

AT. (E

-S)MO

BILE S

AT. (E

-S)MO

BILE S

AT. (E

-S)Mo

bile Sa

t. (S-E

)RA

DIO AS

TRON

OMY

RADI

O AS

TRON

OMY

MOB

ILE S

AT. (

E-S)

FIXED

MOBI

LE

FIXED

FIXE

D(LO

S)MO

BILE

(LOS)

SPAC

ERE

SEAR

CH(s-

E)(s-s

)

SPAC

EOP

ERAT

ION(s-

E)(s-s

)EA

RTH

EXPLO

RATIO

NSA

T. (s-E

)(s-s)

Amate

ur

MOBI

LEFix

edRA

DIOLO

CATIO

N

AMAT

EUR

RADI

O AS

TRON

.SP

ACE

RESE

ARCH

EART

H E

XPL

SAT

FIXED

SAT

. (S

-E)

FIXED

MOBILE

FIXEDSATELLITE (S-E)

FIXED

MOBIL

EFIX

EDSA

TELL

ITE (E

-S)

FIXED

SATE

LLITE

(E-S

)MO

BILE

FIXED

SPAC

ERE

SEAR

CH (S

-E)(De

ep Sp

ace) AE

RONA

UTICA

L RAD

IONA

VIGAT

ION

EART

HEX

PL. SA

T.(Pa

ssive)

300

325

335

405

415

435

495

505

510

525

535

1605

1615

1705

1800

1900

2000

2065

2107

2170

2173

.521

90.5

2194

2495

2501

2502

2505

2850

3000

RADIO-LOCATION

BROA

DCAS

TING

FIXED

MOBILE

AMAT

EUR

RADIO

LOCA

TION

MOBIL

EFIX

EDMA

RITIM

EMO

BILE

MARI

TIME M

OBILE

(TEL

EPHO

NY)

MARIT

IME

MOBIL

ELA

NDMO

BILE

MOBIL

EFIX

ED

30.0

30.5

6

32.0

33.0

34.0

35.0

36.0

37.0

37.5

38.0

38.2

539

.0

40.0

42.0

43.6

9

46.6

47.0

49.6

50.0

54.0

72.0

73.0

74.6

74.8

75.2

75.4

76.0

88.0

108.

0

117.

975

121.

9375

123.

0875

123.

5875

128.

8125

132.

0125

136.

013

7.0

137.

025

137.

175

137.

825

138.

0

144.

014

6.0

148.

014

9.9

150.

0515

0.8

152.

855

154.

015

6.24

7515

7.03

7515

7.18

7515

7.45

161.

575

161.

625

161.

775

162.

0125

173.

217

3.4

174.

0

216.

0

220.

022

2.0

225.

0

235.

0

300

ISM – 6.78 ± .015 MHz ISM – 13.560 ± .007 MHz ISM – 27.12 ± .163 MHz

ISM – 40.68 ± .02 MHz

ISM – 24.125 ± 0.125 GHz 30 GHz

ISM – 245.0 ± 1GHzISM – 122.5 ± .500 GHzISM – 61.25 ± .250 GHz

300.

0

322.

0

328.

6

335.

4

399.

940

0.05

400.

1540

1.0

402.

0

403.

040

6.0

406.

1

410.

0

420.

0

450.

045

4.0

455.

045

6.0

460.

046

2.537

546

2.737

546

7.537

546

7.737

547

0.0

512.

0

608.

061

4.0

698

746

764

776

794

806

821

824

849

851

866

869

894

896

9019

0190

2

928

929

930

931

932

935

940

941

944

960

1215

1240

1300

1350

1390

1392

1395

2000

2020

2025

2110

2155

2160

2180

2200

2290

2300

2305

2310

2320

2345

2360

2385

2390

2400

2417

2450

2483

.525

0026

5526

9027

00

2900

3000

1400

1427

1429

.5

1430

1432

1435

1525

1530

1535

1544

1545

1549

.5

1558

.515

5916

1016

10.6

1613

.816

26.5

1660

1660

.516

68.4

1670

1675

1700

1710

1755

1850

MARIT

IME MO

BILE S

ATELL

ITE(sp

ace to

Earth)

MOBIL

E SAT

ELLITE

(S-E)

RADI

OLOC

ATIO

NRA

DION

AVIG

ATIO

NSA

TELL

ITE (S

-E)

RADI

OLOC

ATIO

NAm

ateur

Radio

locati

onAE

RONA

UTIC

ALRA

DION

AVIG

ATIO

N

SPA

CE R

ESEA

RCH

( Pas

sive)

EART

H EX

PL S

AT (P

assiv

e)RA

DIO

AST

RONO

MY

MOBI

LEMO

BILE

**FIX

ED-SA

T

(E-S)

FIXED

FIXED FIX

ED**

LAND M

OBILE

(TLM

)

MOBIL

E SAT

.(Sp

ace to

Earth

)MA

RITIME

MOBIL

E SAT

.(Sp

ace to

Earth

)Mo

bile(Ae

ro. TL

M)

MOBIL

E SA

TELL

ITE (S

-E)

MOBIL

E SAT

ELLITE

(Space

to Ear

th)AE

RONA

UTICA

L MOB

ILE SA

TELLI

TE (R

)(sp

ace to

Earth)

3.0

3.1

3.3

3.5

3.6

3.65

3.7

4.2

4.4

4.5

4.8

4.94

4.99

5.0

5.15

5.25

5.35

5.46

5.47

5.6

5.65

5.83

5.85

5.92

5

6.42

5

6.52

5

6.70

6.87

5

7.02

57.

075

7.12

5

7.19

7.23

57.

257.

307.

45

7.55

7.75

7.90

8.02

5

8.17

5

8.21

5

8.4

8.45

8.5

9.0

9.2

9.3

9.5

10.0

10.4

510

.510

.55

10.6

10.6

8

10.7

11.7

12.2

12.7

12.7

5

13.2

513

.4

13.7

514

.0

14.2

14.4

14.4

714

.514

.7145

15.13

65

15.3

5

15.4

15.4

3

15.6

315

.716

.617

.1

17.2

17.3

17.7

17.8

18.3

18.6

18.8

19.3

19.7

20.1

20.2

21.2

21.4

22.0

22.2

122

.5

22.5

5

23.5

5

23.6

24.0

24.0

5

24.2

524

.45

24.6

5

24.7

5

25.0

5

25.2

525

.527

.0

27.5

29.5

29.9

30.0

ISM – 2450.0 ± 50 MHz

30.0

31.0

31.3

31.8

32.0

32.3

33.0

33.4

36.0

37.0

37.6

38.0

38.6

39.5

40.0

40.5

41.0

42.5

43.5

45.5

46.9

47.0

47.2

48.2

50.2

50.4

51.4

52.6

54.2

555

.78

56.9

57.0

58.2

59.0

59.3

64.0

65.0

66.0

71.0

74.0

75.5

76.0

77.0

77.5

78.0

81.0

84.0

86.0

92.0

95.0

100.

0

102.

0

105.

0

116.

0

119.

98

120.

02

126.

0

134.

0

142.

014

4.0

149.

0

150.

0

151.

0

164.

0

168.

0

170.

0

174.

5

176.

5

182.

0

185.

0

190.

0

200.

0

202.

0

217.

0

231.

0

235.

023

8.0

241.

0

248.

0

250.

0

252.

0

265.

0

275.

0

300.

0

ISM – 5.8 ± .075 GHz

ISM – 915.0 ± 13 MHz

INTER

-SATE

LLITE

RADIO

LOCA

TION

SATE

LLITE

(E-S)

AERO

NAUT

ICAL

RADIO

NAV.

PLEASE NOTE: THE SPACING ALLOTTED THE SERVICES IN THE SPEC-TRUM SEGMENTS SHOWN IS NOT PROPORTIONAL TO THE ACTUAL AMOUNTOF SPECTRUM OCCUPIED.

AERONAUTICALMOBILE

AERONAUTICALMOBILE SATELLITE

AERONAUTICALRADIONAVIGATION

AMATEUR

AMATEUR SATELLITE

BROADCASTING

BROADCASTINGSATELLITE

EARTH EXPLORATIONSATELLITE

FIXED

FIXED SATELLITE

INTER-SATELLITE

LAND MOBILE

LAND MOBILESATELLITE

MARITIME MOBILE

MARITIME MOBILESATELLITE

MARITIMERADIONAVIGATION

METEOROLOGICALAIDS

METEOROLOGICALSATELLITE

MOBILE

MOBILE SATELLITE

RADIO ASTRONOMY

RADIODETERMINATIONSATELLITE

RADIOLOCATION

RADIOLOCATION SATELLITE

RADIONAVIGATION

RADIONAVIGATIONSATELLITE

SPACE OPERATION

SPACE RESEARCH

STANDARD FREQUENCYAND TIME SIGNAL

STANDARD FREQUENCYAND TIME SIGNAL SATELLITE

RADI

O AS

TRON

OMY

FIXED

MARITIME MOBILE

FIXED

MARITIMEMOBILE Aeronautical

Mobile

STAN

DARD

FREQ

. AND

TIME

SIGN

AL (6

0 kHz

)FIX

EDMo

bile*

STAN

D. FR

EQ. &

TIME

SIG.

MET. A

IDS(Ra

dioson

de)Spa

ce Op

n. (S

-E)MO

BILE.

SAT. (

S-E)

Fixed

Standa

rdFre

q. and

Time S

ignal

Satell

ite (E-

S)

FIXE

D

STAN

DARD

FREQ

. AND

TIME

SIGN

AL (2

0 kHz

)

Amate

ur

MOBI

LE

FIXED

SAT.

(E-S)

Space

Resea

rch

ALLOCATION USAGE DESIGNATIONSERVICE EXAMPLE DESCRIPTION

Primary FIXED Capital LettersSecondary Mobi le 1st Capital with lower case letters

U.S. DEPARTMENT OF COMMERCENational Telecommunications and Information AdministrationOffice of Spectrum Management

October 2003

MOBIL

EBR

OADC

ASTIN

G

TRAVELERS INFORMATION STATIONS (G) AT 1610 kHz

59-64 GHz IS DESIGNATED FORUNLICENSED DEVICES

Fixed

AERO

NAUT

ICAL

RADI

ONAV

IGAT

ION

SPAC

E RES

EARC

H (Pa

ssive

)

* EXCEPT AERO MOBILE (R)

** EXCEPT AERO MOBILE WAVELENGTH

BANDDESIGNATIONS

ACTIVITIES

FREQUENCY

3 x 107m 3 x 106m 3 x 105m 30,000 m 3,000 m 300 m 30 m 3 m 30 cm 3 cm 0.3 cm 0.03 cm 3 x 105Å 3 x 104Å 3 x 103Å 3 x 102Å 3 x 10Å 3Å 3 x 10-1Å 3 x 10-2Å 3 x 10-3Å 3 x 10-4Å 3 x 10-5Å 3 x 10-6Å 3 x 10-7Å

0 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz 1 MHz 10 MHz 100 MHz 1 GHz 10 GHz 100 GHz 1 THz 1013Hz 1014Hz 1015Hz 1016Hz 1017Hz 1018Hz 1019Hz 1020Hz 1021Hz 1022Hz 1023Hz 1024Hz 1025Hz

THE RADIO SPECTRUMMAGNIFIED ABOVE3 kHz 300 GHz

VERY LOW FREQUENCY (VLF)Audible Range AM Broadcast FM Broadcast Radar Sub-Millimeter Visible Ultraviolet Gamma-ray Cosmic-ray

Infra-sonics Sonics Ultra-sonics Microwaves InfraredP L S XC Radar

Bands

LF MF HF VHF UHF SHF EHF INFRARED VISIBLE ULTRAVIOLET X-RAY GAMMA-RAY COSMIC-RAY

X-ray

ALLOCATIONSFREQUENCY

BRO

ADCA

STIN

GFI

XED

MO

BILE

*

BRO

ADCA

STIN

GFI

XED

BRO

ADCA

STIN

G

FIX

ED

Mob

ile

FIX

EDBR

OAD

CAST

ING

BROA

DCAS

TING

FIXED

FIXED

BROA

DCAS

TING

FIXED

BROA

DCAS

TING

FIXED

BROA

DCAS

TING

FIXED

BROA

DCAS

TING

FIXED

BROA

DCAS

TING

FIXED

BROA

DCAS

TING

FIXED

FIXED

FIXED

FIXED

FIXED

FIXED

LAND

MOBI

LE

FIXE

D

AERO

NAUT

ICAL

MOB

ILE (R

)

AMAT

EUR

SATE

LLITE

AMAT

EUR MO

BILE

SATE

LLITE

(E-S

)

FIXE

D

Fixe

dMo

bile

Radi

o-lo

catio

nFI

XED

MOBI

LE

LAND

MOB

ILE M

ARITI

ME M

OBILE

FIXED

LAND

MOB

ILE

FIXED

LAND

MOB

ILE

RAD

ION

AV-S

ATEL

LITE

FIXED

MOBI

LEFIX

ED LA

ND M

OBILE

MET. A

IDS(Ra

dio-

sond

e)SP

ACE O

PN.

(S-E)

Earth

Expl S

at(E-

S)Me

t-Sate

llite (E

-S)ME

T-SAT

. (E

-S)EA

RTH E

XPL

SAT. (

E-S)

Earth

Expl S

at(E-

S)Me

t-Sate

llite (E

-S)EA

RTH E

XPL

SAT. (

E-S)

MET-S

AT.

(E-S)

LAND

MOB

ILELA

ND M

OBILE

FIXED

LAND

MOB

ILEFIX

ED

FIXED

FIXED

LAND

MOB

ILELA

ND M

OBILE FIX

ED LA

ND M

OBILE

LAND

MOB

ILE LA

ND M

OBILE

LAND

MOB

ILE

MOBI

LEFIX

ED

MOBI

LEFIX

ED

BRO

ADCA

STMO

BILE

FIXED

MOBIL

EFIX

ED

FIXED

LAND

MOB

ILELA

ND M

OBILE

FIXED

LAND

MOB

ILE AERO

NAUT

ICAL M

OBILE

AERO

NAUT

ICAL M

OBILE FIX

EDLA

ND M

OBILE

LAND

MOB

ILELA

ND M

OBILE

FIXED

LAND

MOB

ILEFIX

EDMO

BILE

FIXED

FIXED

FIXED

MOBIL

EFIX

ED

FIXED

FIXED

BRO

ADCA

ST

LAND

MOB

ILELA

ND M

OBILE

FIXED

LAND

MOB

ILE

METE

OROL

OGICA

LAID

S

FXSp

ace r

es.

Radio

Ast

E-Ex

pl Sa

tFIX

EDMO

BILE*

*MO

BILE

SATE

LLITE

(S-E

)RA

DIODE

TERM

INATIO

N SAT

. (S-E)

Radio

locatio

nMO

BILE

FIXED

Amate

urRa

dioloc

ation

AMAT

EUR

FIXED

MOBIL

E

B-SA

TFX

MOB

Fixed

Mobil

eRa

dioloc

ation

RADI

OLOC

ATIO

N

MOBIL

E **

Fixed

(TLM

)LA

ND M

OBILE

FIXED

(TLM

)LA

ND M

OBILE

(TLM

)FIX

ED-SA

T

(S-E)

FIXED

(TLM

)MO

BILE

MOBIL

E SAT

.(Sp

ace to

Earth

)Mo

bile

**

MOBIL

E**

FIXED

MOBIL

E

MOBI

LE SA

TELL

ITE (E

-S)

SPAC

E OP

.(E-

S)(s-s

)EAR

TH EX

PL.SAT

. (E-S)(

s-s)SP

ACE

RES.

(E-S)(

s-s)

FX.

MOB.

MOBIL

EFIX

ED

Mobil

e

R- LO

C.

BCST

-SAT

ELLIT

EFi

xed

Radio

-loc

ation

B-SA

TR-

LOC.

FXMO

BFix

edMo

bile

Radio

locati

onFIX

EDMO

BILE*

*Am

ateur

RADI

OLOC

ATIO

N

SPAC

E RES

..(S-E

)

MOBIL

EFIX

ED MOBI

LE SA

TELL

ITE (S

-E)

MARI

TIME

MOB

ILE

Mobil

e FIXED

FIXED

BRO

ADCA

STMO

BILE

FIXED

MOBIL

E SAT

ELLIT

E (E-

S)

FIXED

F

IXED

MARI

TIME

MOB

ILE

F

IXED

FIXED

MOBIL

E**

FIXED

MOBIL

E**

FIXED

SAT

(S-E

)AE

RO.

RADI

ONAV

.

FIXED

SATE

LLITE

(E-S)

Amate

ur- sa

t (s-e)

Amate

urMO

BILE

FIXE

D SA

T(E-

S)

FIXE

DFIX

ED S

ATEL

LITE

(S-E)(

E-S)

FIXED

FIXED

SAT

(E-S)

MOBI

LE

Radio

-loc

ation

RADIO

-LO

CATIO

NFI

XE

D S

AT.(E

-S)

Mobil

e**

Fixe

dMo

bile

FX S

AT.(E

-S)L M

Sat(E

-S)

AERO

RAD

IONA

VFI

XED

SAT

(E-S

)AE

RONA

UTICA

L RAD

IONA

VIGAT

ION

RADI

OLOC

ATIO

NSp

ace

Res.(

act.)

RADI

OLOC

ATIO

NRa

dioloc

ation

Radio

loc.

RADIO

LOC.

Earth

Exp

l Sat

Spac

e Re

s.Ra

dioloc

ation

BCST

SAT

.

FIXE

DFIX

ED S

ATEL

LITE

(S-E)

FIXE

D SA

TELL

ITE

(S-E

)EA

RTH

EXPL

. SAT

.FX

SAT

(S-E

)SP

ACE

RES.

FIXE

D SA

TELL

ITE

(S-E

)FI

XED

SATE

LLIT

E (S

-E)

FIXE

D SA

TELL

ITE

(S-E

)MO

BILE

SAT.

(S-E)

FX S

AT (S

-E)

MOBI

LE S

ATEL

LITE

(S-E

)FX

SAT

(S-E

)ST

D FR

EQ. &

TIME

MOBIL

E SA

T (S-E

)EA

RTH

EXPL

. SAT

.MO

BILE

FIXE

DSP

ACE

RES. FI

XED

MOBI

LEMO

BILE

**FI

XED

EART

H EX

PL. S

AT.

FIXE

DMO

BILE*

*RA

D.AS

TSP

ACE

RES.

FIXE

DMO

BILE

INTER

-SATE

LLITE

FIXE

D

RADIO

AST

RONO

MYSP

ACE

RES.

(Pas

sive)

AMAT

EUR

AMAT

EUR S

ATEL

LITE

Radio

-loc

ation

Amate

urRA

DIO-

LOCA

TION

Earth

Exp

l.Sa

tellit

e(A

ctive

)

FIXE

D

INTER

-SATE

LLITE

RADIO

NAVIG

ATION

RADIO

LOCA

TION

SA

TELLI

TE (E-

S)INT

ER-SA

TELL

ITE

FIXE

DSA

TELL

ITE

(E-S

)RA

DIONA

VIGAT

ION

FIXE

DSA

TELL

ITE

(E-S

)FI

XED

MOBIL

E SAT

ELLIT

E (E-S

)FI

XED

SATE

LLIT

E (E

-S)

MOBI

LEFI

XED

Earth

Ex

plorat

ionSa

tellite

(S-

S)

std fre

q &

time

e-e-sa

t (s-s

)MO

BILE

FIXE

D e

-e-sa

tMO

BILE

SPAC

ERE

SEAR

CH (d

eep s

pace

)RA

DION

AVIG

ATIO

NIN

TER-

SAT

SPAC

E RE

S.

FIXE

DMO

BILE

SPAC

E RE

SEAR

CH(sp

ace-

to-Ea

rth)

SPAC

ERE

S.

FIXE

DSA

T. (

S-E)

MOBI

LEFI

XED

FIXE

D-SA

TELL

ITE

MOBIL

EFI

XED

FIXE

DSA

TELL

ITE

MOBI

LESA

T.FI

XED

SAT

MOBI

LESA

T.EA

RTH

EXPL

SAT

(E-S)

Earth

Expl.

Sat (s

- e)

SPAC

E R

ES. (E

-S) FX-S

AT(S

-E)

FIXED

MOBIL

EBR

OAD-

CAST

ING

BCST

SAT.

RADIO

ASTR

ONOM

YFI

XED

MOBI

LE**

FIXE

DSA

TELL

ITE (

E-S)

MOBI

LESA

TELL

ITE (

E-S)

FIXE

DSA

TELL

ITE (

E-S)

MOBI

LERA

DION

AV.

SATE

LLIT

EFI

XED

MOBI

LEMO

B. SA

T(E-S

)RA

DION

AV.S

AT.

MOBI

LESA

T (E

-S).

FIXE

DMO

BILE

FXSA

T(E-

S)

MOBI

LEFI

XED

INTE

R- S

ATEA

RTH

EXPL

-SAT

(Pa

ssive

)SP

ACE

RES.

INTE

R- S

ATSP

ACE

RES.

EART

H-ES

INTE

R- S

ATEA

RTH-

ESSP

ACE

RES.

MOBI

LEFI

XED

EART

HEX

PLOR

ATIO

NSA

T. (Pa

ssive

)SP

ACE

RES

.MO

BILE

FIXE

DIN

TER

- SAT

FIXE

DMO

BILE

INTER

-SA

TRA

DIO-

LOC.

MOBI

LEFI

XED

EART

HEX

PLOR

ATION

SAT. (

Passi

ve)

MOBIL

EFI

XED

INTER

-SA

TELL

ITEFI

XED

MOBI

LE**

MOBI

LE**

INTER

-SA

TELL

ITE

MOBI

LEINT

ER-

SATE

LLITE

RADI

OLOC

.Am

ateur Am

ateur

Sat.

Amate

urRA

DIOL

OC.

AMAT

EUR

SAT

AMAT

EUR

RADI

OLOC

.

SPAC

ERE

SEAR

CH(Pa

ssive)

EART

HEX

PL SA

T.(Pa

ssive)

FIXE

DMO

BILE

INTER

-SA

TELL

ITESP

ACE

RESE

ARCH

(Passi

ve)

EART

HEX

PL SA

T.(Pa

ssive)

Amatu

erFI

XED

MO-

BILE

INTER

-SA

T.SP

ACE

RES.

E A R T

H EX

PL . SA

T

INTER

-SA

TELL

ITE

INTER

-SAT.

INTER

-SAT.

MOBIL

EFIX

ED

FX-S

AT (S

- E)

BCST

- SAT

.B-

SAT.

MOB*

*FX

-SAT

SPAC

E RE

SEAR

CH

SPAC

ERE

S..

This chart is a graphic single-point-in-time portrayal of the Table of Frequency Allocations used by theFCC and NTIA. As such, it does not completely reflect all aspects, i.e., footnotes and recent changesmade to the Table of Frequency Allocations. Therefore, for complete information, users should consult theTable to determine the current status of U.S. allocations.

Page 11: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

Why should you care about Wireless Embedded Systems?

12

Page 12: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

Digital Radio

13

Source

Source

Source

Destination

Destination

Destination

Multiplex

Demultiplex

MAC

MAC

Modulator

Demodulator

Power Amp

Radio Channel

RF Filter

Carrier Frequency f0

Carrier Frequency f0

Limited bandwidthTime dependent

Noisy

Page 13: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

Radio Channel

• Path loss proportional to 1/dn

• Typical path loss constants

• Problems– Channel is time-varying and can be significantly different for nodes at

the same distance– Link can even be asymmetric, i.e., the link between node 1 and 2 is

different than the one from node 2 to 114

Environment nFree Space 2Urban area cellular radio 2.7-3.5Shadowed urban cellular radio 3 - 5In-building Line of Sight 1.6 to 1.8Obstructed in building 4 to 6Obstructed in factories 2 to 3

Page 14: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

No Disk Model Connectivity

• Hidden Terminal Problem

15

!

"

#

$

%

&!

&"

&#

&$

&% '(()(*+,-'(.+,-

!

!"#$%&'()'*+,-".+/%+0"1'23,#&''

(4'23,#&'5%%&#$63%"/7'8"/9':3%7",#';&,<",#'=+8&%)! !"#!$%&'!()*#&+(,$+#! +-#! .#/#(*#0! &(,)$%! &+.#),+-!1-#)! +-#! &#)0(),! 2'1#.!

*$.(#&! 03#! +'! 0(44#.#)+! 5$++#.6! &+$+3&! $)0! 0(44#.#)+! -$.01$.#!

/$%(5.$+(')7!8)!9(,3.#!:!;$<=!1#!3&#!+-#!&$>#!&#)0#.!$)0!.#/#(*#.=!

2%$/#0! ?@! 4##+! $2$.+7!"#! /-$),#! +-#! 5$++#.(#&! $+! +-#! &#)0#.! &(0#!

#$/-! +(>#7!A-#! .#&3%+! ()0(/$+#&! +-$+!0(44#.#)+!5$++#.6! &+$+3&!$+! +-#!

&$>#! &#)0#.! /$)! $44#/+! +-#! .#/#(*#0! &(,)$%! &+.#),+-7! 8)! 9(,3.#! :!

;5<=!1#!3&#! +-#!&$>#!5$++#.(#&!53+! ()!0(44#.#)+!&#)0#.&!#$/-! +(>#7!

A-#!&$>#! .#/#(*#.! (&!3&#0=!2%$/#0!?@! 4##+! $2$.+! 4.'>! +-#! &#)0#.7!

A-#!.#&3%+!&-'1&!+-$+!0(44#.#)+!&#)0#.&!1(+-!+-#!&$>#!5$++#.(#&!/$)!

$%&'!$44#/+!+-#!.#/#(*#0!&(,)$%!&+.#),+-7!

!

!

'$!

'(.)(

'(.

'(%)(

'(%

'(/)(

'(/

! "( (! /(

!"#$%&'(")*%

+((,'-.!/0

&)(%0 &)#0&)1"0 &)&%0

';$<!B)#!>'+#!1(+-!0(44#.#)+!5$++#.6!&+$+3&!

'$!'(.)('(.

'(%)('(%

'(/)('(/

'($)('($

'(()('((

! "( (! /(

!"#$%&'(")*%

+((,'-.!/0

2345*6 2345*,2345*7 2345*8

';5<!C(44#.#)+!>'+#&!1(+-!+-#!&$>#!5$++#.6!&+$+3&!

!"#$%&'>)''23<"+'5%%&#$63%"/7'8"/9';&,<",#'=+8&%.'

?@?' ;$AA3%7'+B'CD0&%"A&,/36'2&.$6/.'9.'>! +-#! #D2#.(>#)+$%! .#&3%+&=! 1#! ()4#.! +-$+! +-#! .$0('! '4! &#)&'.!

0#*(/#&!-$&!+-#!4'%%'1(),!>$()!2.'2#.+(#&E!

?7* *+,-".+/%+0"1E! A-#! .$0('! &(,)$%! 4.'>! $! +.$)&>(++#.! -$&!0(44#.#)+! 2$+-! %'&&! ()! 0(44#.#)+! 0(.#/+(')&! ;9(,3.#! ?! $)0!

9(,3.#!F!<7!

F7* E+,/",$+$.' F3%"3/"+,E! A-#! &(,)$%! 2$+-! %'&&! *$.(#&!/')+()3'3&%6! 1(+-! ()/.#>#)+$%! /-$),#&! '4! +-#! 2.'2$,$+(')!

0(.#/+(')!4.'>!$!+.$)&>(++#.!;9(,3.#!F!$)0!9(,3.#!G<7!

H7* G&/&%+#&,&"/7E! ! C(44#.#)/#&! ()! -$.01$.#! /$%(5.$+(')! $)0!5$++#.6!&+$+3&! %#$0! +'!0(44#.#)+!&(,)$%!&#)0(),!2'1#.&=!-#)/#!

0(44#.#)+!.#/#(*#0!&(,)$%!&+.#),+-&!;9(,3.#!:<7!

(@' HIJCK'LGC'2MJ5I'522CNOKM25LP'I&!1#!-$*#!&-'1)!()!'3.!#D2#.(>#)+&!$&!1#%%!$&!()!'+-#.!.#&#$./-!

.#&3%+&! JGK! JLK! JFHK! JFMK=! .$0('! (..#,3%$.(+6! (&! $! /'>>')!

2-#)'>#)')!()!1(.#%#&&!&#)&'.!)#+1'.N&7!A-#.#4'.#=!(+!(&!#&&#)+($%!

4'.! 1(.#%#&&! &(>3%$+(')&! +'! /$2+3.#! &3/-! #44#/+&7! A-(&! &#/+(')!

0#&/.(5#&! '3.! #44'.+! +'!>'0#%! &3/-! $! 2-#)'>#)')! ()! &(>3%$+(')!

#)*(.')>#)+&7!

(@Q' 5.+/%+0"1'23<"+'H+<&6.'8)! (&'+.'2(/! .$0('!>'0#%&=! +-#! .#/#(*#0! &(,)$%! &+.#),+-! (&! 3&3$%%6!

.#2.#&#)+#0!1(+-!+-#!4'%%'1(),!4'.>3%$E!

!"#"$%"&'($)*+,'(-."*)-/'O!("*&$*)'012".30+-/'4155P6+&$*)!;?<!A-#!("*&$*)'012".!'4!$!)'0#!(&!0#+#.>()#0!56!+-#!5$++#.6!&+$+3&!$)0! +-#! +62#! '4! +.$)&>(++#.=! $>2%(4(#.! $)0! $)+#))$7! 0+-/' 4155!0#&/.(5#&! +-#! &(,)$%Q&! #)#.,6! %'&&! $&! (+! +.$*#%&! +'! +-#! .#/#(*#.7!!

R$)6!>'0#%&!$.#!3&#0!+'!#&+(>$+#!+-#!0+-/'4155=!&3/-!$&!+-#!4.##S&2$/#!2.'2$,$+(')!>'0#%=!+-#!+1'S.$6!>'0#%!$)0! +-#!T$+$!>'0#%!

JFFK7! I%%! +-#&#! >'0#%&! $.#! (&'+.'2(/=! >#$)(),! +-$+! +-#! &(,)$%!

$++#)3$+#&! #D$/+%6! +-#! &$>#! ()! $%%! 0(.#/+(')&7! T'1#*#.=! '3.!

#D2#.(#)/#!$&!1#%%!$&!.#&3%+&!'5+$()#0!56!'+-#.&!JGK!JLK!JFHK!JFMK!

$%%!()0(/$+#!+-$+!+-#!(&'+.'2(/!>'0#%&!0')Q+!-'%0!1#%%!()!2.$/+(/#7!

(@R' 23<"+'5%%&#$63%"/7'H+<&6'S25H4'A-#!U8R!>'0#%!2.'2'&#0!-#.#! (&!$)!#D+#)&(')! +'! (&'+.'2(/! .$0('!

>'0#%&7! 8+! #)-$)/#&! (&'+.'2(/! .$0('! >'0#%&! 56! $22.'D(>$+(),!

+-.##!>$()!2.'2#.+(#&! '4! .$0('! &(,)$%&E! )')S(&'+.'2(/=! /')+()3'3&!

*$.($+(')! $)0! -#+#.',#)#(+6=! $&! 1#! &3>>$.(V#0! ()! &#/+(')! H7H7!

A-#&#!2.'2#.+(#&!$.#!)'.>$%%6!(,)'.#0!56!2.#*('3&!(&'+.'2(/!.$0('!

>'0#%&7!

!

!"#$%&'T)'J&#%&&'+B'5%%&#$63%"/7''

A-#! U8R! >'0#%! (&! >'+(*$+#0! 56! $! &(>2%#! CB8! ;C#,.##! '4!

8..#,3%$.(+6<! >'0#%! 5.(#4%6! >#)+(')#0! ()! +-#! %'/$%(V$+(')! 1'.N!

J?@K7!8)!+-#!CB8!>'0#%=!+-#!CB8!(&!3&#0!+'!0#)'+#!+-#!(..#,3%$.(+6!

'4! +-#! .$0('! 2$++#.)7! 8+! 1$&! '.(,()$%%6! 0#4()#0! $&! +-#! >$D(>3>!

.$),#! *$.($+(')! 2#.! 3)(+! 0#,.##! /-$),#! ()! +-#! 0(.#/+(')! '4! .$0('!

2.'2$,$+(')7! I&! &##)! ()! 9(,3.#! W=! 1-#)! +-#! CB8! (&! &#+! +'! V#.'=!

Zhou et al, Impact of Radio Irregularity on Wireless Sensor Networks

16 meters

13 meters

Page 15: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

Taxonomy of MAC Protocols

• Random-access vs. Scheduled • Time Slotted vs. Non-slotted• Peer-to-peer vs. Master-slave• MAC level retransmission

16Adapted from M. Srivastava EE202B Lecture

Page 16: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

Some Common Examples

• ALOHA– Random, slot-less or slotted, peer-to-peer

• IEEE 802.11 infrastructure DCF and ad-hoc mode – Carrier Sense Multiple Access With Collision Avoidance (CSMA/CA)– Random, slot-less, peer-to-peer

• IEEE 802.11 infrastructure PCF– Scheduled (polling), slot-less, master

• Bluetooth Piconets– Scheduled (polling), time-slot (with frequency hopping), master

• Time Division Multiple Access (TDMA)• Code Division Multiple Access (CDMA)

17

Page 17: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

Multi-Hop Routing

• Different protocols and algorithms for different goals• Any-to-any routing

– DSDV, DSR, AODV

• Geographic Routing– Nodes know their own and their neighbor location– Address is physical location of node– Forward to neighbor closest to address

• Directed Diffusion– Data, not node, centric– Nodes publish data, users subscribe

• Flooding, Gossiping, Trickle• Collection• IPv6 LoWPAN RPL (‘ripple’)

– proactive distance vector approach– optimized for low-power networks 18Ack: Culler, MobiHoc ‘05

Page 18: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

Power Aware MAC Protocols

19

Page 19: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

TI CC2520, TI MSP430, Actel SmartFusionPower Comparison

• TI CC2520– RX 18.5mA– TX 33.6 mA @ +5 dBm, 25.8 mA @ 0 dBm– < 1 uA in power down

• TI MSP430F5437A– Active Mode: 5.7 mA, 3.0 V @ 25 MHz– Standby Mode: 2.1 uA, 3.0 V

• Actel SmartFusion– MSS running at 100 MHz, 40 mA– MSS in WFI at 100 MHz, 20 mA– Stand By: 3 mA on 1.5 V, 1 mA on 3.3 V– Time Keeping: 10 uA on 3.3 V

20

Page 20: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

Time is Energy

21

Time Uncertainty Problem

Asynchronous Approach

(long preambles: e.g. 1212B @ 2.2%)

Synchronous Approach

(frequent sync packets: e.g. every 15s)

Adapted from M. Srivastava EE202B Lecture

Page 21: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

Receiver Initiated MACs

22

! "#$%&$'

($)$*+$' ! "

,"-"

,"-"

./01&/2/13/)4$2567891:;

"<=12'/%;:*;;*>%12*:$1?871@;

(A-A12B'%/'>B%&12*:$C1DE71@;

!

! F

F

Figure 1. A-MAC communications timing and flow. Asender listens (L) for a receiver’s probe (P) which it auto-acks (A) precisely 192 µs later. The sender subsequentlytransmits a data frame (DATA) after a short but randominterval, perhaps on a different channel, which the re-ceiver acknowledges with a second probe and then listensbriefly for an auto-ack before returning to sleep.

3 A-MAC Design OverviewThis section presents the design of A-MAC, a receiver-

initiated link layer for low-power wireless networks thatsupports several services under a unified architecture. Weground our discussion in the context of the IEEE 802.15.4standard. The basic A-MAC design requires a sender tofirst listen for a probe frame from the intended receiver, thenacknowledge the frame using the 802.15.4 standard’s sup-port for hardware automatic acknowledgments (auto-ack orHACK), then pause for a short, random delay, and finallytransmit the data frame if the channel is clear.

Figure 1 shows the critical time constants of an optimizedA-MAC communication over 802.15.4. In this figure, theprobe, labeled P, is a standard data frame transmitted bythe receiver with the acknowledgment request bit set. Thesender, upon receiving this probe frame, generates an auto-ack, labeled A. The 802.15.4 standard stipulates that theauto-ack must be generated precisely 12 symbol periods (192µs) after the end of P. The auto-ack frame is 11 bytes long1

and requires 352 µs to transmit. A sender transmits a DATAframe with a short, random delay after the auto-ack A, poten-tially on a different channel as stipulated in the probe. A sec-ond probe acknowledges the data frame. If the second probedoes not trigger an auto-ack, the receiver goes to sleep.

This design choice – to use an auto-ack – departs fromprior work in which receiver-initiated MACs simply send adata frame in response to a probe [17, 33]. This decision ismotivated by the observation that the most consequential de-cision that a low-power MAC makes after polling the chan-nel is whether to stay awake or go back to sleep. Since thisdecision must be made on the order of one hundred thousandtimes or more per day in a typical low-power MAC, being in-decisive or incorrect can get very costly very quickly. If theMAC decides traffic is pending when none exists – a falsepositive – then the radio will remain on, wasting energy. Ifthe MAC decides no traffic is pending when some is – a falsenegative – then the sender’s energy is wasted, communica-tion latency increases, and packet goodput drops.

1A hardware auto-ack or HACK frame includes: preamble (4),start-of-frame delimiter (1), length (1), frame control (2), sequencenumber (1), frame check sequence (2).

! "#$%&'(

)*&+&,-&./

#$%&'0)1&2%&./

! "#$%&'3)1&2%&./

4,56&2

7

7 !

! 4

! "4,56&2 7 !89:

! "4,56&2 7 !

! " 7 !89: 7

9:

7

;.<=&'+$>>,5,$2

?<+@+<56

Figure 2. A contention-free transfer (left) and a collision(right). Although the auto-ack frames collide, they do sonon-destructively, so the receiver correctly decodes theirsuperposition as a valid frame. Hence, the receiver con-cludes that traffic is pending, so it retransmits a probewith an explicit contention window, which Node 3 wins.

Clearly, making a good decision about whether to stayawake or go to sleep is a critical one, but it is not an easy onefor many reasons. First, external interference (e.g., 802.11network) might be mistaken for legitimate radio activity.Second, a receiver might overhear a partial packet sent toa different node, and stay awake until it can conclude thatthe packet is destined elsewhere. Third, hidden terminalsmight cause packets from multiple senders to collide at thereceiver. Note that it might not be possible for the receiver todifferentiate collisions from interference, forcing the radio tostay awake for shorter than required or longer than desired.

Our design reliably and efficiently balances these con-flicting needs by using backcast, a link layer primitive thatallows a node to probe all of its neighbors in parallel androbustly distinguish the case of zero replies (indicating nopending traffic) from the case of one or more replies (indi-cating pending traffic) [13]. In the former case, the MAC canturn off the radio quickly2 and return to a sleep state. In thelatter case, the MAC would leave the radio on to receive theauto-ack frame and any additional data frames. Note that allsenders with pending traffic for a particular receiver concur-rently transmit an auto-ack, as Figure 2 shows. Althoughthese auto-acks collide, they do so non-destructively withhigh probability. Therefore, the receiver can decode theirsuperposition as a valid frame and conclude that traffic ispending. In the case of a data frame collision, the receiverretransmits the probe with a larger contention window.

All other link layer services are implemented above thebackcast synchronization primitive using a combination ofhardware auto-acks and judicious frame filtering. Unicast,in principle, could be implemented by auto-ack-ing framesbased on the probe source address. Broadcast and wakeupcould be implemented by auto-ack-ing all probes whichhave the ACK request bit set in the 802.15.4 frame controlfield. Pollcast could be implemented by including a pred-icate in the probe itself, which is quickly evaluated by thesender and if found true, then auto-acked. Unfortunately, theneeded hardware support is lacking in modern radios, requir-ing some creative contortions, which we describe next.

2Since the radio would not signal a start-of-frame (SFD) event.

! "#$%&$'

($)$*+$' ! "

,"-"

,"-"

./01&/2/13/)4$2567891:;

"<=12'/%;:*;;*>%12*:$1?871@;

(A-A12B'%/'>B%&12*:$C1DE71@;

!

! F

F

Figure 1. A-MAC communications timing and flow. Asender listens (L) for a receiver’s probe (P) which it auto-acks (A) precisely 192 µs later. The sender subsequentlytransmits a data frame (DATA) after a short but randominterval, perhaps on a different channel, which the re-ceiver acknowledges with a second probe and then listensbriefly for an auto-ack before returning to sleep.

3 A-MAC Design OverviewThis section presents the design of A-MAC, a receiver-

initiated link layer for low-power wireless networks thatsupports several services under a unified architecture. Weground our discussion in the context of the IEEE 802.15.4standard. The basic A-MAC design requires a sender tofirst listen for a probe frame from the intended receiver, thenacknowledge the frame using the 802.15.4 standard’s sup-port for hardware automatic acknowledgments (auto-ack orHACK), then pause for a short, random delay, and finallytransmit the data frame if the channel is clear.

Figure 1 shows the critical time constants of an optimizedA-MAC communication over 802.15.4. In this figure, theprobe, labeled P, is a standard data frame transmitted bythe receiver with the acknowledgment request bit set. Thesender, upon receiving this probe frame, generates an auto-ack, labeled A. The 802.15.4 standard stipulates that theauto-ack must be generated precisely 12 symbol periods (192µs) after the end of P. The auto-ack frame is 11 bytes long1

and requires 352 µs to transmit. A sender transmits a DATAframe with a short, random delay after the auto-ack A, poten-tially on a different channel as stipulated in the probe. A sec-ond probe acknowledges the data frame. If the second probedoes not trigger an auto-ack, the receiver goes to sleep.

This design choice – to use an auto-ack – departs fromprior work in which receiver-initiated MACs simply send adata frame in response to a probe [17, 33]. This decision ismotivated by the observation that the most consequential de-cision that a low-power MAC makes after polling the chan-nel is whether to stay awake or go back to sleep. Since thisdecision must be made on the order of one hundred thousandtimes or more per day in a typical low-power MAC, being in-decisive or incorrect can get very costly very quickly. If theMAC decides traffic is pending when none exists – a falsepositive – then the radio will remain on, wasting energy. Ifthe MAC decides no traffic is pending when some is – a falsenegative – then the sender’s energy is wasted, communica-tion latency increases, and packet goodput drops.

1A hardware auto-ack or HACK frame includes: preamble (4),start-of-frame delimiter (1), length (1), frame control (2), sequencenumber (1), frame check sequence (2).

! "#$%&'(

)*&+&,-&./

#$%&'0)1&2%&./

! "#$%&'3)1&2%&./

4,56&2

7

7 !

! 4

! "4,56&2 7 !89:

! "4,56&2 7 !

! " 7 !89: 7

9:

7

;.<=&'+$>>,5,$2

?<+@+<56

Figure 2. A contention-free transfer (left) and a collision(right). Although the auto-ack frames collide, they do sonon-destructively, so the receiver correctly decodes theirsuperposition as a valid frame. Hence, the receiver con-cludes that traffic is pending, so it retransmits a probewith an explicit contention window, which Node 3 wins.

Clearly, making a good decision about whether to stayawake or go to sleep is a critical one, but it is not an easy onefor many reasons. First, external interference (e.g., 802.11network) might be mistaken for legitimate radio activity.Second, a receiver might overhear a partial packet sent toa different node, and stay awake until it can conclude thatthe packet is destined elsewhere. Third, hidden terminalsmight cause packets from multiple senders to collide at thereceiver. Note that it might not be possible for the receiver todifferentiate collisions from interference, forcing the radio tostay awake for shorter than required or longer than desired.

Our design reliably and efficiently balances these con-flicting needs by using backcast, a link layer primitive thatallows a node to probe all of its neighbors in parallel androbustly distinguish the case of zero replies (indicating nopending traffic) from the case of one or more replies (indi-cating pending traffic) [13]. In the former case, the MAC canturn off the radio quickly2 and return to a sleep state. In thelatter case, the MAC would leave the radio on to receive theauto-ack frame and any additional data frames. Note that allsenders with pending traffic for a particular receiver concur-rently transmit an auto-ack, as Figure 2 shows. Althoughthese auto-acks collide, they do so non-destructively withhigh probability. Therefore, the receiver can decode theirsuperposition as a valid frame and conclude that traffic ispending. In the case of a data frame collision, the receiverretransmits the probe with a larger contention window.

All other link layer services are implemented above thebackcast synchronization primitive using a combination ofhardware auto-acks and judicious frame filtering. Unicast,in principle, could be implemented by auto-ack-ing framesbased on the probe source address. Broadcast and wakeupcould be implemented by auto-ack-ing all probes whichhave the ACK request bit set in the 802.15.4 frame controlfield. Pollcast could be implemented by including a pred-icate in the probe itself, which is quickly evaluated by thesender and if found true, then auto-acked. Unfortunately, theneeded hardware support is lacking in modern radios, requir-ing some creative contortions, which we describe next.

2Since the radio would not signal a start-of-frame (SFD) event.

from P. Dutta et. al “Design and Evaluation of a Versatile and Efficient Receiver-Initiated Link Layer for Low-Power Wireless”

Page 22: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

Talking to a Radio, TI CC2520

23

!

CC2520 DATASHEET 2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER SWRS068 – DECEMBER 2007

!

"#! !WWW.TI.COM

!

8.3 Block Diagram

$%&'()*

%)+,*-./0*).12!+13!4(5)'*!,+0'6.12

789:;

9:

<89

9140)5'0.(1!3*'(3*)

=/('>?)*4*0

$@A

B8C

789:D789:E789:"

789:F

789:G

<:

<9

=<1

HI'*J0.(1!'(10)(//*)

@B=

@B=

B@=

B@=

K8%

LM!A9M

8@

$M!A9M

@@%

KN@

@H<

A(35/+0()

<O106*4.P*)%<A

%<

$H%!B9QM:<=

M:<=E"A&R"

M:<=E"A&RF

S54!'(10)(//*)

S9@<

<=KT

$H<HL1

$S9@<

$%&N$%&8

@B9

Q)*2

B=:C8K

Q$H7&HN

B*,(3

@7=

8<

@B9

@0*40

!

Figure 2: CC2520 block diagram

!==";"G!.4!0OJ.'+//O!'(10)(//*3!UO!+!,.')('(10)(//*)!'(11*'0*3!0(!06*!SPI!+13!4(,*!789:4V!L6*!,.')('(10)(//*)!W.//!4*13!.140)5'0.(14!0(!==";"G!+13!.0!.4!06*!)*4J(14.U./.0O!(-!06*!instruction decoder!0(!*I*'50*!06*!.140)5'0.(14!()!J+44!06*,!(1!0(!(06*)!,(35/*4V!!L6*!*I*'50.(1!(-!+1!.140)5'0.(1!()!*I0*)1+/!*X*104!Y*V2V!)*'*J0.(1!(-!+!-)+,*Z!,+O!)*45/0!.1!(1*!()!,()*!*I'*J0.(14V!L6*!*I'*J0.(14!J)(X.3*!+!X*)O!-/*I.U/*!,*'6+1.4,!-()!+50(,+0.12!0+4>4V!L6*O!'+1!-()!.140+1'*!U*!54*3!0(!0).22*)!*I*'50.(1!(-!(06*)!.140)5'0.(14!()!06*O!'+1!U*!)(50*3!(50!0(!789:!J.14!+13!54*3!+4!.10*))5J0!4.21+/4!0(!06*!,.')('(10)(//*)V!L6*!exception controller!.4!)*4J(14.U/*!-()!6+13/.12!(-!06*!*I'*J0.(14V!!

Page 23: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

TI CC2520 GPIO Configuration

24

!

CC2520 DATASHEET2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER

SWRS068 – DECEMBER 2007

!!

WWW.TI.COM "#!

11 GPIO $$%#%&!'()!*!+,-.!/01)!2'(2!3(1!45!01607068(99:!3;1<0=8>56!()!01/82)?!;82/82)!(16!(3207(25!/899@8/!>5)0)2;>)A!B(3'!+,-.!'()!(1!());30(256!>5=0)25>?!+,-.$CDE1?!F'5>5!2'5!GHI!3;1<0=8>5!2'5!/01!2;!502'5>!01/82!;>!;82/82A!C'5!+,-.$CDE!>5=0)25>!3;12>;9!/899@8/!<;>!5(3'!01607068(9!+,-.!/01?!5J2>(!6>075!)2>51=2'!<;>!(99!/01)!(16!(1(9;=!<81320;1!<;>!/01!&!(16!KA!H55!)5320;1!"&!<;>!652(09)!(4;82!25)2!<81320;1(902:!(16!;4)5>7(40902:!2'>;8='!+,-.A!!L;25!2'(2!+,-.#?!F'03'!0)!3;1<0=8>56!()!(1!01/82!01!E,G%?!)';896!45!2056!502'5>!2;!=>;816!;>!MNN!F'51!5125>01=!E,G%A!-<!+,-.#!O;>!(1:!;2'5>!01/82P!0)!95<2!<9;(201=?!2'5!38>>512!3;1)8Q/20;1!F099!45!81/>56032(495A!!

11.1 Reset Configuration of GPIO Pins

C'5!>5)52!)52201=!<;>!+,-.!/01)!(>5!()!)';F1!01!2'5!2(495!459;FA!C'0)!0)!(9);!2'5!3;1<0=8>(20;1!2'(2!0)!8)56!F'51!2'5!657035!0)!01!E,G%A!-<!(!60<<5>512!+,-.!)528/!0)!>5R80>56?!2'5!+,-.)!'(75!2;!45!>5@3;1<0=8>56!575>:!20Q5!$$%#%&!'()!4551!01!E,G%A!!C'0)!/(>20389(>!>5)52!3;1<0=8>(20;1!F()!)5953256!);!2'(2!$$%#%&!9;;S)!()!Q83'!90S5!$$%T%&!()!/;))0495A!!

Table 8: GPIO reset state

GPIO pin

Dir Value Pull up

Extra drive

Polarity Signal GPIOCTRLn value (hex)

Description

&! .82! &! L;! L;! ,;)02075! 39;3S! &J&&! KGUV!39;3S!)0=1(9!F02'!#&W#&!682:!3:395A!

K! .82! &! L;! L;! ,;)02075! <0<;! &J%X! U0='!F'51!;15!;>!Q;>5!4:25)!(>5!01!2'5!DY!Z-Z.A!E;F!68>01=!DY!Z-Z.!;75><9;FA!

%! .82! &! L;! L;! ,;)02075! <0<;/! &J%[! U0='!F'51!2'5!18Q45>!;<!4:25)!01!2'5!DY!Z-Z.!5J3556)!2'5!/>;=>(QQ(495!2'>5)';96!;>!(2!95()2!;15!3;Q/9525!<>(Q5!0)!01!2'5!DY!Z-Z.A!\9);!'0='!68>01=!DY!Z-Z.!;75><9;FA!

"! .82! &! L;! L;! ,;)02075! 33(! &J%]! $95(>!3'(1159!())5))Q512A!H55!ZHGHC\CK!>5=0)25>!<;>!652(09)!;1!';F!2;!3;1<0=8>5!2'5!45'(70;>!;<!2'0)!)0=1(9A!

T! .82! &! L;! L;! ,;)02075! )<6! &J%\! ,01!0)!'0='!F'51!HZN!'()!4551!>5350756!;>!2>(1)Q02256A!$95(>56!F'51!95(701=!DYWCY!>5)/5320759:A!

#! -1! C05!2;!=>;816!;>!MNN!

L;! L;! ,;)02075! ! &J]&! L;!<81320;1!

!

11.2 GPIO as Input

^'51!3;1<0=8>56!()!01/82?!2'5!+,-.!/01!3(1!45!8)56!2;!2>0==5>!;15!;<!K*!60<<5>512!3;QQ(16!)2>;45)!OH55!)5320;1!K#P!()!)';F1!01!2'5!+,-.!3;1<0=8>(20;1!2(495!01!)5320;1!K%A*A!C'5)5!3;QQ(16!)2>;45)!(>5!(!)84)52!;<!(99!2'5!H,-!01)2>8320;1)!(7(09(495A!C'5!3;QQ(16!)2>;45!0)!2>0==5>56!4:!(//9:01=!(!>0)01=!;>!<(9901=!56=5!2;!2'5!+,-.!/01!65/51601=!;1!2'5!)52201=!01!2'5!+,-.,.E\D-C_!>5=0)25>A!^'03'!3;QQ(16!)2>;45!2'5!/01!2>0==5>)!0)!)52!4:!2'5!X!EHI)!01!+,-.$CDE1A!!Example:!H52!8/!+,-.%!2;!>81!H\$`!01)2>8320;1!;1!>0)01=!56=5A!!

! H52!+,-.,.E\D-C_a%b!2;!cKdA!+,-.!/01!%!)52!2;!>0)01=!56=5!(32075A!! H52!+,.-$CDE%aXe&b!2;!fK&&&!&K&Kg!A!+,-.!/01!%!0)!1;F!(1!01/82!(16!3;1153256!2;!2'5!H\$`!01)2>8320;1A!!

!

Page 24: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

TI CC2520 Power States

cc2520driver.h! RX RadioState_turnOn()

! Active RadioState_standby()

! LPM1 RadioState_turnOff()

! LPM2 Not implemented yet RadioState_shutdown()

25

!

CC2520 DATASHEET 2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER SWRS068 – DECEMBER 2007

!

"#! !WWW.TI.COM

!

12 Power Modes $$%&%#!'()!*'+,,!-./,+!0.1,)!()!1,)2+34,1!4,5./6!78!(55!*',),!-./,+!0.1,)!*',!)9--5:!;.5*(<,!3)!(--53,1!*.!*',!23+293*6!!78!Low Power Mode 2!=>?@%A!*',!13<3*(5!;.5*(<,!+,<95(*.+!3)!*9+8,1!.BB!=CDEFGEHI#A!(81!8.!25.2J)!(+,!+98838<6!H.!1(*(!3)!+,*(38,16!K55!(8(5.<!0.195,)!(+,!38!-./,+!1./8!)*(*,6!!78!Low Power Mode 1!=>?@LA!*',!13<3*(5!;.5*(<,!+,<95(*.+!3)!.8!=CDEFGEHILAM!49*!8.!25.2J)!(+,!+98838<6!N(*(!3)!+,*(38,16!O',!-./,+!1./8!)3<8(5)!*.!*',!(8(5.<!0.195,)!(+,!2.8*+.55,1!4:!*',!13<3*(5!-(+*6!!78!Active mode!*',!13<3*(5!;.5*(<,!+,<95(*.+!3)!.8!=CDEFGEHILA!(81!*',!2+:)*(5!.)2355(*.+!25.2J!3)!+98838<6!O',!-./,+!1./8!)3<8(5)!*.!*',!(8(5.<!0.195,)!(+,!2.8*+.55,1!4:!*',!13<3*(5!-(+*6!!

12.1 Switching Between Power Modes

P',8!*',!1,;32,!'()!4,,8!38!>?@%M!(55!+,<3)*,+!2.8*,8*!3)!5.)*6!O.!4+38<!*',!1,;32,!9-!*.!(2*3;,!0.1,M!(!+,),*!3)!+,Q93+,1!.+!*',!1,;32,!/355!4,!38!(8!98J8./8!)*(*,6!O',!+,),*!2(8!4,!(--53,1!,3*',+!4:!),**38<!*',!DEREO8!-38!5./M!.+!3))938<!(!+,),*!38)*+92*3.8!=RDERA!.;,+!*',!R?76!7*!3)!+,2.00,81,1!*'(*!*',!DEREO8!0,*'.1!3)!9),1M!4,2(9),!3*!/355!<3;,!(!2.8*+.55,1!)*(+*!(81!(9*.0(*32!)*(+*!.B!*',!2+:)*(5!.)2355(*.+6!!S,B.+,!,8*,+38<!>?@%M!3*!3)!)*+.8<5:!+,2.00,81,1!*'(*!*',!1,;32,!3)!+,),*6!O'3)!/(:M!*',!2.8B3<9+(*3.8!/355!(5/(:)!4,!*',!)(0,!/',8!*',!-./,+!*.!*',!13<3*(5!-(+*!3)!+,0.;,1M!(81!3*!3)!5,))!53J,5:!*'(*!*',+,!/355!4,!3))9,)!/3*'!29++,8*!)-3J,)!.+!.*',+!)31,!,BB,2*)!.B!*',!-./,+!4,38<!+,0.;,16!!

Active mode

R,*!DEREO8I#R,*!CDEFGEHIL

R,*!DEREO8ILR,*!$R8I#

P(3*!98*35!RTIL

P(3*!98*35!+,<95(*.+!'()!)*(4353U,16!V),!(!*30,.9*6

RWTR$TXX=D(13.!09)*!4,!315,A

RWTR$THRHT?

R,*!DEREO8I#R,*!$R8IL

R,*!CDEFGEHI#R,*!F?7T&I#

LPM1

LPM2

R,*!DEREO8IL!R,*!CDEFGEHIL

P(3*!98*35!+,<95(*.+!'()!)*(4353U,16!V),!(!*30,.9*6

RDER

RWTR$THRHT?

R,*!$R8I#

Active mode

RDER

R,*!$R8I#!(81/(3*!98*35!RTIL

R,*!$R8IL

R,*!$R8IL

!Figure 7: Procedures for switching between power modes.

!

RX

Page 25: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

TI CC2520 Power States (2)

• Switching state is NOT instantaneous• Depends on

– Radio hardware switch on/off times (e.g. crystal bootup)– SPI communication speed for initial configuration after shutdown

• Power Draw– RX: 18.5mA– TX: 33.6 mA @ +5 dBm– Active Mode: 1.6 mA– LPM1: 175 uA– LPM2: 30 nA

• Wake-Up and Timing– LPM2 ! Active Mode: 0.3 ms (regulator + XOSC startup time)– LPM1 ! Active Mode: 0.2 ms (XOSC startup time)– AM ! RX or TX: 192 us– DOES NOT INCLUDE SPI TRANSFERS!

26

Page 26: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

TI 2520 Driver Bootup

27

Turn On Radio

Initialize Radio AM ! RX

Mostly driver limitations, and slow SPI Clock @ 160kHz

Page 27: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

TI CC2520 Extra Features

• Received Signal Strength RSSI– 8-bit signed – Calculated for every packet receivedvoid Radio_receive(uint8_t seqn, uint16_t panid, uint16_t saddr, uint16_t daddr, uint8_t* payload, uint8_t length, int8_t rssi);

– Approximately related to received signal power asP = RSSI - OFFSET [dBm]where OFFSET ! 76 dBm

• CCA– Clear channel assessment– Measures noise level of RF channel– High noise level indicates on-going communication– Implemented, but not exported in current driver

• Many many more features– See TI CC2520 Datasheet

http://focus.ti.com/lit/ds/symlink/cc2520.pdf28

Page 28: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

Radio Modules

• IEEE 802.15.4 Radios– X-Bee

• Out-of-the-box RF communication• Serial UART interface (API or AT Commands)

– Atmel AT86RF230– STM32W (Cortex-M3 & Radio on a chip)

• ANT– e.g. Nordic nRF24AP1 or nRF24AP2– Nike+ and in many iPhones/iPods

• WiFi– DigiConnect ME WiFi

• Cellular– Telit GM862, GSM/GPRS & GPS– Runs Python Scripts

• RFID, DASH7, Bluetooth, Z-wave, RuBee, NFC29

Page 29: Design of Microprocessor-Based Systemsprabal/teaching/eecs... · I2C 6 Dual, 256-Tap, Volatile, Low-Voltage Linear Taper Digital Potentiometer MAX5387 _____ 11 Message Format for

Some References

• Prabal Dutta, Stephen Dawson-Haggerty, Yin Chen, Chieh-Jan Mike Liang, and Andreas Terzis, “Design and Evaluation of a Versatile and Efficient Receiver-Initiated Link Layer for Low-Power Wireless,” ACM Sensys 2010 (http://www.eecs.umich.edu/~prabal/teaching/eecs373-f10/readings/p101-dutta.pdf)

• Joseph Polastre, Jonathan Hui, Philip Levis, Jerry Zhao, David Culler, Scott Shenker, and Ion Stoica, “A Unifying Link Abstraction for Wireless Sensor Networks,” Sensys 2005

• Gahng-Seop Ahn, Emiliano Miluzzo, Andrew T. Campbell, Se Gi Hong, Francesca Cuomo, “Funneling-MAC: A Localized, Sink-Oriented MAC for Boosting Fidelity in Sensor Networks,” ACM Sensys 2006.

• Kevin Klues, Gregor y Hackmann, Octav Chipara, Chenyang Lu, “A Component-Based Architecture for Power-Efficient Media Access Control in Wireless Sensor Networks,” ACM SenSys 2007.

• Nicolas Burri, Pascal von Rickenbach, and Roger Wattenhofer, “Dozer: Ultra-Low Power Data Gathering in Sensor Networks,” ACM/IEEE IPSN 2007.

• Wei Ye, Fabio Silva, and John Heidemann, “Ultra-Low Duty Cycle MAC with Scheduled Channel Polling,” ACM Sensys 2006.

• M. Buettner, G. Yee, E. Anderson, R. Han, “X-MAC: A Short Preamble MAC Protocol for Duty-Cycled Wireless Sensor Networks,” ACM Sensys 2006.

• Amre El-Hoiydi and Jean-Dominique Decotignie, “WiseMAC: An Ultra Low Power MAC Protocol for Multi-hop Wireless Sensor Networks,” First International Workshop on Algorithmic Aspects of Wireless Sensor Networks (Algosensors 2004), July 2004.

• S. Ganeriwal, I. Tsigkogiannis, H. Sim, V. Tsiatsis, M. B. Srivastava, and D. Ganesan, “Estimating Clock Uncertainty for Efficient Duty-Cycling in Sensor Networks,” IEEE/ACM Transactions on Networking, 2008. (Accepted)

• J. Polastre, J. Hill, D. Culler, "Versatile Low Power Media Access for Wireless Sensor Networks," ACM Sensys 2004.

30