design of magneto-plasmonic heterostructures formed by au...

23
Design of magneto-plasmonic heterostructures formed by Au decorated on magnetic Prussian Blue-type nanocrystals Roger Sanchis Gual Instituto de Ciencia Molecular Small Chem 2021 Online International Conference 17/02/2021

Upload: others

Post on 28-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Design of magneto-plasmonicheterostructures formed by Au decorated on

    magnetic Prussian Blue-type nanocrystals

    Roger Sanchis Gual

    Instituto de Ciencia Molecular

    Small Chem 2021 Online International Conference

    17/02/2021

  • Prussian Blue Analogue (PBA)

    1

    MII and MIII = transition metal A = alkali cation

    • Chemical versatility• Tunability of the properties• Optical transparency• Charge transfer properties• Magnetic properties

    AaMb[M’(CN)6]c·nH2O

  • Prussian Blue Analogue (PBA)

    1

    MII and MIII = transition metal A = alkali cation

    • Chemical versatility• Tunability of the properties• Optical transparency• Charge transfer properties• Magnetic properties

    AaMb[M’(CN)6]c·nH2O

    PBAs have potential used in magneto-optical devices

    Magneto-optical effects are usually weak

    Magneto-optics are based on the interaction between the light and

    magnetically ordered materials

    Main problem

  • Magneto-plasmonics

    2ACS Appl. Mater. Interfaces 2013, 5, 1955−1960

    Ferromagnetic material

    Plasmonic material

    Large MO activity but broad and weak plasmon resonances

    Important plasmon resonances but too low MO activity

    Fair plasmon resonances and large enough MO activity

  • Magneto-plasmonics

    2

    Magneto-plasmonic materials are heterostructures where ferromagnetic and plasmonic structures are combined in a unique entity

    ACS Appl. Mater. Interfaces 2013, 5, 1955−1960

    Ferromagnetic material

    Plasmonic material

    Large MO activity but broad and weak plasmon resonances

    Important plasmon resonances but too low MO activity

    Fair plasmon resonances and large enough MO activity

  • Au-PBA heterostructures

    3

    100 nm

    Chem. Eur. J. 2017, 23, 7483 – 7496 Anal. Chem. 2017, 89, 1551−1557

    Due to the synthetic routes, thesehybrids are restricted to weak

    magnetic PBAs and isotropic Au cores

    Anal. Chim. Acta 2012, 711 40– 45

    TC = 2 K

    TC = 5 K

    TC = 5 K

  • Synthetic protocol

    50 nm

    50 nm

    4

  • Synthetic protocol

    50 nm

    50 nm

    4No interaction

    100 nm

  • 4000 3000 2000 1000

    νO-H

    νC-O-C

    νC-H

    Tran

    smitt

    ance

    / a.

    u.

    Wavelength / cm-1

    Au@Citrate Au@HS-PEG-NH2

    νC=O

    Synthetic protocol

    0 1 2 3 4 5 6 7 8-10

    0

    10

    20

    30

    40

    ζ-po

    tent

    ial /

    mV

    pH 5

    NPζ-potential / mV

    Citrate CTAB HS-PEG-NH2Au NPs -40 ± 6 / 9 ± 6Au NRs / 35 ± 7 12 ± 4Au NSs / / 12 ± 4Ag NPs -35 ± 2 / 11 ± 5

  • Synthetic protocol

    6

    pH 2-3 pH 3-5

  • Edge:M(CN)63- surroundedby 4 metallic centers

    Face:M(CN)63- surroundedby 5 metallic centers

    Larger negative charge density on (and near) the edges than on their faces

    7Higher interaction with the amino group

    Synthetic protocol

  • -2000 -1000 0 1000 2000-80

    -40

    0

    40

    80

    -100 0 100

    -5

    0

    5

    Au-PBA PBA

    M /

    emu·

    g-1

    H / Oe

    2K

    Magnetic properties

    0 20 40 60 80 1000

    20

    40

    60

    80 Au-PBA PBA

    M /

    emu·

    g-1

    T / K

    The magnetic properties of the hybrid are almost identical to those measured for pristine NiCr PBA NPs

    8

  • Plasmonic properties

    400 500 600 700 800 9000.0

    0.4

    0.8

    1.2

    1.6

    500 550

    0.5

    0.9

    Abso

    rban

    ce

    λ / nm

    Au Au-PBA(random) Au-PBA(edges) PBA

    400 500 600 700 800 9000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    480 520 560

    0.6

    0.8

    Abso

    rban

    ceλ / nm

    Au Au-PBA PBA

    Δλ = 6 nm Δλ = 0 nm

    Modification of the local refractive index at the surface of the Au NPsPlasmon

    shift9

  • 10

    400 500 600 700 800 9000,0

    0,4

    0,8

    1,2

    500 550

    0,5

    0,9

    Abso

    rban

    ce

    λ / nm

    Au Au-PBA PBA

    400 500 600 700 800 9000.0

    0.5

    1.0

    600 750

    0.5

    0.6

    0.7

    Abso

    rban

    ce

    λ / nm

    Au Au-PBA PBA

    400 500 600 700 800 9000

    1

    2

    800 900

    1

    2

    Abso

    rban

    ce

    λ / nm

    Au Au-PBA PBA

    100 nm100 nm

    Au NRs Au NSs

    300 400 500 600 700 8000.0

    0.4

    0.8

    1.2

    400 450

    0.5

    0.8

    1.1

    Abso

    rban

    ce

    λ / nm

    Ag Ag-PBA PBA

    100 nm

    Ag NPs

    100 nm

    Au NPs

    It is possible to tune the plasmonic properties of the hybrids in the whole visible spectrum

    Synthesis versatility

  • 11

    Synthesis versatility

    100 nm 400 nm100 nm

  • 12

    400 500 600 700 800 9000.0

    1.0

    2.0

    3.0

    Abso

    rban

    ce

    λ / nm

    Au Au-PB PB

    100 nm

    400 500 600 700 800 9000.0

    0.5

    1.0

    1.5

    Abso

    rban

    ce

    λ / nm

    Au Au-PBA PBA

    100 nm

    400 500 600 700 800 9000.0

    0.5

    1.0

    1.5

    Abso

    rban

    ce

    λ / nm

    Au Au-PBA PBA

    200 nm

    Synthesis versatility

    400 500 600 700 800 9000.0

    0.4

    0.8

    1.2

    Abso

    rban

    ce

    λ / nm

    Au Au-PBA PBA

    100 nm

  • Conclusions

    13

    This synthetic procedure permits to prepare hybrid magneto-plasmonic

    nanostructures formed by metallic NPs decorating PBA.

    We can control the location of the metallic NPs on the PBA: randomly

    over the whole cubic surface or preferentially on the edges.

    It is possible to anchor anisotropic metallic NPs allowing to tune the

    optical properties in a wide range of the visible spectrum.

    It provides a versatile platform to investigate the enhancement of the

    magneto-optical properties thanks to the coupling with the plasmons.

    "The design of magneto-plasmonic nanostructures formed by magnetic Prussian Blue-typenanocrystals decorated with Au nanoparticles" Chem. Comm. 2021

  • Thanks for your attention!

    University of Valencia

    Isidora Susic

    Ramón Torres-Cavanillas

    Dr. Marc Coronado-Puchau

    Prof. Eugenio Coronado

    Acknowledgments

    University of Antwerp

    Dr. Daniel Arenas-Esteban

    Prof. Sara Bals

    Universitey of Paris-Saclay

    Prof. Talal Mallah

  • Design of magneto-plasmonic heterostructures formed by Au decorated on

    magnetic Prussian Blue-type nanocrystals

    Roger Sanchis Gual

    Instituto de Ciencia Molecular

    Small Chem 2021 Online International Conference

    17/02/2021

  • Supporting: AuNRs decoration

  • Supporting: Au decoration

  • Supporting: Au/PBA molar ratio

    0.31:1 0.40:1 0.50:1

    0.28:1 0.41:1 1.12:1

  • Stability characterization

    10 20 30 40 50

    (2 0

    0)

    Inte

    nsity

    / a.

    u.2θ / º

    Au-PBA PBA

    (1 1

    1)

    400 500 600 700 800 9000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Abso

    rban

    ce

    λ / nm

    0 min 10 min 60 min 90 min 120 min 3h 24h 48h

    8

    Aggregation of the heterostructure occurs with time

    Design of magneto-plasmonic heterostructures formed by Au decorated on magnetic Prussian Blue-type nanocrystalsNúmero de diapositiva 2Número de diapositiva 3Número de diapositiva 4Número de diapositiva 5Número de diapositiva 6Número de diapositiva 7Número de diapositiva 8Número de diapositiva 9Número de diapositiva 10Número de diapositiva 11Número de diapositiva 12Número de diapositiva 13Número de diapositiva 14Número de diapositiva 15Número de diapositiva 16Número de diapositiva 17Número de diapositiva 18Design of magneto-plasmonic heterostructures formed by Au decorated on magnetic Prussian Blue-type nanocrystalsNúmero de diapositiva 20Número de diapositiva 21Número de diapositiva 22Número de diapositiva 23