design of geothermal power plants holistic approach...

30
ENGINE Final Conference Vilnius, Lithuania 12-15 February 2008 Stephanie Frick, Ali Saadat, Stefan Kranz GeoForschungsZentrum Potsdam DESIGN OF GEOTHERMAL POWER PLANTS holistic approach considering auxiliary power

Upload: others

Post on 23-Sep-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference

Vilnius, Lithuania

12-15 February 2008

Stephanie Frick, Ali Saadat, Stefan Kranz GeoForschungsZentrum Potsdam

DESIGN OF GEOTHERMAL POWER PLANTS

holistic approach considering auxiliary power

Page 2: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

� Power plants serve for net power production

� Net power = gross power - auxiliary power

� Auxiliary power

Introduction

conversion cycle

1

Page 3: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

source: http://www.erdwaerme-kraft.de/ source: http://www.refplus.com/

� Power plants serve for net power production

� Net power = gross power - auxiliary power

� Auxiliary power

Introduction

conversion cycle

cooling cycle

1

Page 4: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

� Power plants serve for net power production

� Net power = gross power - auxiliary power

� Auxiliary power

Introduction

conversion cycle

cooling cycle

thermal water cycle

1

Page 5: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

� Power plants serve for net power production

� Net power = gross power - auxiliary power

� Auxiliary power

� For geothermal power plants, a maximum net power

output can‘t be reached by maximising the gross power

� Geothermal power plant design needs a holistic approach

Introduction

conversion cycle

cooling cycle

thermal water cycle

1

Page 6: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

Overview

� Methodical approach to power plant design

� Gross power characteristics

� Auxiliary power characteristics

� Practical approach to power plant design

� Conclusions & Outlook

2

Page 7: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

Methodical approach

� site-specific reservoir characteristics and ambient

conditions(→ boundary conditions)

PI = II = 30 m3/(h MPa)

TTW = 150 °C ρTW = 1,147 kg/m3

cp = 3,5 kJ/(kg K) depth = 4.500 m

Ta = 20 °Cφa = 65 %

3

Page 8: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

Methodical approach

� site-specific reservoir

characteristics and ambient

conditions (→ boundary conditions)

� plant-specific parameters (→ component quality)

∆T = 5 K∆p = 0,1 bar

∆T = 5 K∆p = 0,1 bar

ηi = 0,75ηm = 0,95

η = 0,8

Isobutane

η = 0,6

∆T, ∆p, η, …

3

Page 9: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

� site-specific reservoir

characteristics and ambient

conditions (→ boundary conditions)

� plant-specific parameters

(→ component quality)

� design parameters:

condensation temp. TKond

injection temperature TTW,in

thermal water mass flow mTW

Methodical approach

TKond

TTW,inmTW

.

3

Page 10: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

� site-specific reservoir

characteristics and ambient

conditions (→ boundary conditions)

� plant-specific parameters

(→ component quality)

� design parameters:

condensation temp. TKond

injection temperature TTW,in

thermal water mass flow mTW

Methodical approach

TKond

TTW,inmTW

.

3

What influence have the

design parameters on

power plant performance?

Page 11: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

Methodical approach

TKond

TTW,inmTW

3

Exemplary power plant in the North German Basin:

TTW = 150 °C

PI = 30 m3/(h MPa)

...

other parameters see slide 13

Page 12: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

Gross power characteristics

4

0

1000

2000

3000

4000

20 40 60 80 100

thermal water mass flow in kg/s

gro

ss p

ow

er

in k

W...

T_cond=30 °C : T_TWin=60°C

T_cond=40 °C : T_TWin=80°C

Plant-specific parameters, reservoir and ambient conditions = const. (see slide 13)

Page 13: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

Gross power characteristics

gross power = ƒ (Tcond, TTW,in) • mTW

.

0

1000

2000

3000

4000

20 40 60 80 100

thermal water mass flow in kg/s

gro

ss p

ow

er

in k

W...

T_cond=30 °C : T_TWin=60°C

T_cond=40 °C : T_TWin=80°C

400

500

600

700

800

60 65 70 75 80

thermal water injection temperature in °C

T_cond=30 °C

T_cond=40 °C

thermal water mass flow 20 kg/s

Plant-specific parameters, reservoir and ambient conditions = const. (see slide 13)

4

Page 14: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

Auxiliary power characteristics

Conversion cycle

Plant-specific parameters, reservoir and ambient conditions = const. (see slide 13)

0

100

200

300

400

20 40 60 80 100

thermal water mass flow in kg/s

T_cond=30 °C : T_TWin=60°C

T_cond=40 °C : T_TWin=80°C

po

we

r d

em

an

d c

on

ve

rsio

n c

ycle

in

kW.

..

5

Page 15: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

Auxiliary power characteristics

Conversion cycle

Power demand conversion cycle = ƒ (Tcond, TTW,in) • mTW

.

0

100

200

300

400

20 40 60 80 100

thermal water mass flow in kg/s

T_cond=30 °C : T_TWin=60°C

T_cond=40 °C : T_TWin=80°C

po

we

r d

em

an

d c

on

ve

rsio

n c

ycle

in

kW.

..

20

40

60

80

60 65 70 75 80

thermal water injection temperature in °C

T_cond=30 °C

T_cond=40 °C

thermal water mass flow 20 kg/s

Plant-specific parameters, reservoir and ambient conditions = const. (see slide 13)

5

Page 16: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

Auxiliary power characteristics

Cooling cycle (wet cooling tower)

0

400

800

1200

1600

20 40 60 80 100

thermal water mass flow in kg/s

po

we

r d

em

an

d w

et co

olin

g in

kW

...

T_cond=30°C : T_TWin=60°C

T_cond=40°C : T_TWin=80°C

100

150

200

250

300

Plant-specific parameters, reservoir and ambient conditions = const. (see slide 13)

6

Page 17: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

Auxiliary power characteristics

Cooling cycle (wet cooling tower)

Power demand cooling cycle = ƒ (Tcond) • TTW,in • mTW

.

0

400

800

1200

1600

20 40 60 80 100

thermal water mass flow in kg/s

po

we

r d

em

an

d w

et co

olin

g in

kW

...

T_cond=30°C : T_TWin=60°C

T_cond=40°C : T_TWin=80°C

0

50

100

150

200

250

300

30 35 40 45

condensation temperature in °C

T_TWin=60°C

T_TWin=70°C

T_TWin=80°C

thermal water mass flow 20 kg/s

Plant-specific parameters, reservoir and ambient conditions = const. (see slide 13)

6

Page 18: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

Auxiliary power characteristics

Thermal water cycle

Power demand thermal water cycle = ƒ (mTW ).

Plant-specific parameters, reservoir and ambient conditions = const. (see slide 13)

7

0

1000

2000

3000

4000

20 40 60 80 100

themal water mass flow in kg/s

po

we

r d

em

an

d th

erm

al w

ate

r cycle

in

kW.

..

Page 19: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

Practical approach

site-specific reservoir and ambient conditions

plant-specificparameters

designparameters

power plant

design

net power output

gross power output

8

Page 20: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

Exemplary power plant design

TTW = 150 °C, PI = 30 m3/(h MPa), depthreservoir = 4,500 mreservoir conditions

1,8 MWgross power

maximum net power

(wet cooling)

30 °Ccondensation temp.

460 kWnet power

66 °Cth. water injection temp.

56 kg/sthermal water mass flow

maximum gross power

(wet cooling)

Plant-specific parameters, ambient conditions = const. (see slide 13) 9

site-specific reservoir and ambient conditions

plant-specifcparameters

designparameters

power plant

design

net power

outputmaximum

gross power

Page 21: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

Exemplary power plant design

TTW = 150 °C, PI = 30 m3/(h MPa), depthreservoir = 4,500 mreservoir conditions

1,3 MW1,8 MWgross power

600 kW

33 °C

71 °C

41 kg/s

maximum net power

(wet cooling)

30 °Ccondensation temp.

460 kWnet power

66 °Cth. water injection temp.

56 kg/sthermal water mass flow

maximum gross power

(wet cooling)

Plant-specific parameters, ambient conditions = const. (see slide 13) 9

site-specific reservoir and ambient conditions

plant-specifcparameters

designparameters

power plant

design

maximumnet power

gross power

output

Page 22: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

0

400

800

1200

1600

2000

0 200 400 600 800

net power in kW

gro

ss p

ow

er

in k

W…

.

Conclusions

► Choice of mTW, TTW,in and Tcond has a decisive impact

on power plant performance

► A maximum net power

output can‘t be reached by

maximising the gross power!

► Geothermal power plant

design needs a holisticapproach

maximum

gross power

maximum

net power

.

10

Page 23: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

Outlook

� Successful geothermal project development needs a

detailed and site-specific analysis

� Further technical constraints need to be considered

� Possible combination with other energy carriers to hybrid-

plants (…please have a look at the poster “The combined use of geothermal

and biomass for power generation - drawbacks and opportunities –“)

11

Page 24: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

turbine

feed pump

condensator

heat transfer

thermal water

waste heat

(Biogas CHP)

heat

recuperation

turbine

feed pump

condensatorheat transfer

thermal water

waste heat I (Biogas CHP)

heatrecuperation

waste heat II (Biogas CHP)

BMKW

ORC

Kalina I

Kalina II

A B A B C A B CAreference cases

0

200

400

600

800

1000

1200

1400

1600

1800

0

200

400

600

800

1000

1200

1400

1600

1800

Ele

ctr

ic p

ow

er

in k

W

The combined use of geothermal and biomass for power generation- drawbacks and opportunities -

Jan Wrobel a, Martin Kaltschmitt a,b

a Institute for Environmental Technology and EnergyEconomics, Hamburg University of Technology

b Institute for Energy and Environment

IUEIUEIUEIUEIUEIUEIUEIUE

ENGINE Final Conference poster session

Page 25: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

Outlook

� Successful geothermal project development needs a

detailed and site-specific analysis

� Further technical constraints need to be considered

� Possible combination with other energy carriers to hybrid-

plants (…please have a look at the poster “The combined use of geothermal

and biomass for power generation - drawbacks and opportunities –“)

� Non-technical aspects can be further limiting factors

� Successful geothermal development needs integrating, holistic planning tools

11

Page 26: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

Thank you very much for your attention!

Contact: Stephanie Frick

GeoForschungsZentrum Potsdam

Telegrafenberg

14473 Potsdam

e-mail: [email protected]

http://www.gfz-potsdam.de/pb52

12

Page 27: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

Plant-specific parameters & site-specifc conditions

thermal water temperature 150°Creservoir depth 4,500 mthermal water heat capacity 3,5 kJ/(kg K)thermal water density 1,147 kg/m3

productivity-/injectivity index 30 m3/(h MPa)

ambient temperature 20°Crelative humidity 60%

reservoir and ambient conditions

down-hole pump efficiency 60%misc. parameter see [Legarth, 2005]

thermal water

cycle

wet cooling:water-sided pressure losses 1 barair-sided pressure losses 0,002 barcooling range 6Kapproach 3Kcooling tower constant 0,8cooling pump efficiency 80%fan efficiency 80%dry cooling: air-sided pressure losses 0,002 barfan efficiency 80%

cooling cycle

turbine isentropic efficiency 75%turbine mechanical efficiency 95%heat exchanger temp. gradients 5Kheat exchanger pressure losses 0,1 barworking fluid Isobutane

conversion cycle

plant-specific parameters

13

Page 28: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

Exemplary run of power output against

thermal water injection temperature

50 60 70 80 90 100

thermal water injection temperature

conversion efficiency

transferred heat

power output

Power output = transferred heat x conversion efficiency

14

Page 29: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

Auxiliary power characteristics

Cooling cycle (dry condensation)

0

400

800

1200

1600

20 40 60 80 100

thermal water mass flow in kg/s

po

we

r d

em

an

d d

ry c

oo

lin

g in

kW

... T_cond=30°C : T_TWin=60°C

T_cond=30°C : T_TWin=80°C

T_cond=40°C : T_TWin=60°C

T_cond=40°C : T_TWin=80°C

0

50

100

150

200

250

300

30 35 40 45

condensation temperature in °C

T_TWin=60°C

T_TWin=70°C

T_TWin=80°C

thermal water mass flow 20 kg/s

air-sided pressure loss 0,002 bar;

fan efficiency 80 %

Plant-specific parameter, reservoir and ambient conditions = const. (see slide 13)

15

Power demand cooling cycle = ƒ (Tcond) • TTW,in • mTW

.

Page 30: DESIGN OF GEOTHERMAL POWER PLANTS holistic approach ...engine.brgm.fr/web-offlines/Conference-Final_Conference_-_Vilnius... · Overview Methodical approach to power plant design Gross

ENGINE Final Conference, 12-15 February 2008

Exemplary power plant design

TTW = 150 °C, PI = 30 m3/(h MPa), depthreservoir = 4,500 mreservoir conditions

485 kW

1,1 MW

36 °C

73 °C

37 kg/s

maximum

net power

(dry cooling)

100 kW

1,8 MW

30 °C

66 °C

56 kg/s

maximum

gross power

(dry cooling)

600 kW

1,3 MW

33 °C

71 °C

41 kg/s

maximum

net power

(wet cooling)

460 kW

1,8 MW

30 °C

66 °C

56 kg/s

maximum

gross power

(wet cooling)

gross power

condensation temp.

net power

th. water injection temp.

thermal water mass flow

16