design, construction, and performance of new generation open graded friction course (ogfc)

Upload: prof-prithvi-singh-kandhal

Post on 30-May-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    1/26

    DESIGN,CONSTRUCTION,ANDPERFORMANCEOFNEW-GENERATIONOPEN-GRADEDFRICTIONCOURSES

    By

    RajibB.Mallick

    PrithviS.KandhalL.AllenCooley,Jr.DonaldE.Watson

    ThispaperwaspublishedintheJournaloftheAssociationofAsphaltPavingTechnologists,AsphaltPavingTechnology,Volume69,2000

    277TechnologyParkway Auburn,AL36830

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    2/26

    DESIGN,CONSTRUCTION,ANDPERFORMANCEOFNEW- GENERATIONOPEN-GRADEDFRICTIONCOURSES

    By

    RajibB.Mallick

    AssistantProfessorWorcesterPolytechnicInstituteWorcester,Massachusetts

    PrithviS.Kandhal

    AssociateDirectorNationalCenterforAsphaltTechnology

    AuburnUniversity,Alabama

    L.AllenCooley,Jr.ResearchEngineer

    NationalCenterforAsphaltTechnologyAuburnUniversity,Alabama

    DonaldE.Watson

    GeorgiaDepartmentofTransportationForestPark,Georgia

    ThispaperwaspublishedintheJournaloftheAssociationofAsphaltPavingTechnologists,AsphaltPavingTechnology,

    Volume69,2000

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    3/26

    DISCLAIMER

    Thecontentsofthisreportreflecttheviewsoftheauthorswhoaresolelyresponsibleforthefactsandtheaccuracyofthedatapresentedherein.ThecontentsdonotnecessarilyreflecttheofficialviewsandpoliciesoftheNationalCenterforAsphaltTechnologyofAuburnUniversity.Thisreportdoesnotconstituteastandard,specification,orregulation.

    i

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    4/26

    ABSTRACT

    Open-gradedfrictioncourse(OGFC)hasbeenusedbyseveralstatedepartmentsof

    transportation(DOT)since1950.WhilemanyDOTsreportgoodperformance,manyotherstatesstoppedusingOGFCduetounacceptableperformanceand/orlackofadequatedurability.Avastmajorityofthestatesreportinggoodexperienceusepolymermodifiedasphaltbindersandarelativelycoarseraggregategradationcomparedtotheotherstatesreportingunsatisfactoryperformance.Obviously,thereisaneedtodevelopanimprovedmixdesignproceduretohelpthehighwayagenciesinsuccessfuluseofOGFC.

    TheprimaryobjectivesofthisstudyaretoevaluatetheperformanceofOGFCinthelaboratory

    withdifferentgradationsandtypesofadditives,andrecommendarationalmixdesignprocedureforthenew-generationOGFCmixes.Additionally,theconstructionandperformanceofsixOGFCpavements(constructedpriortothisstudy)arediscussed.ThesemixesgenerallymeettherequirementsforgradationbandandCantabroabrasionrecommendedinthenewmixdesignsystem.

    SeveralpolymersandfiberswereusedinOGFCmixes.Themixeswereevaluatedfordraindown,permeability,Cantabroabrasion,rutting,andmoisturesusceptibility.Atentativemixdesignsystemforthecoarsenew-generationOGFChasbeenrecommended.BasedupontheevaluationofsixOGFCfieldpavements,ithasalsobeenshownthatOGFCmixesmeetingthenewmixdesignrequirementsareconstructibleandhaveexhibitedgoodperformance.

    KEYWORDS:open-gradedfrictioncourse,OGFC,mixdesign,polymermodifiedbinder,fiber,

    draindown,abrasion,permeability,moisturesusceptibility

    ii

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    5/26

    Mallick,Kandhal,CooleyJr.,&Watson

    DESIGN,CONSTRUCTION,ANDPERFORMANCEOFNEW-GENERATIONOPEN-

    GRADEDFRICTIONCOURSES

    RajibB.Mallick,PrithviS.Kandhal,L.AllenCooley,Jr.,andDonaldE.Watson

    INTRODUCTIONOpen-gradedfrictioncourse(OGFC)hasbeenusedsince1950indifferentpartsoftheUnitedStatestoimprovethesurfacefrictionalresistanceofasphaltpavements.OGFCimproveswetweatherdrivingconditionsbyallowingthewatertodrainthroughitsporousstructureawayfromtheroadway.Theimprovedsurfacedrainagereduceshydroplaning,reducessplashandspraybehindvehicles,improveswetpavementfriction,improvessurfacereflectivity,andreducestrafficnoise.TheFederalHighwayAdministration(FHWA)developedamixdesignprocedureforOGFC(1)in1974,whichwasusedbyseveralstatedepartmentsoftransportation(DOTs).WhilemanyDOTsreportedgoodperformance,manyotherstatesstoppedusingOGFCdueto

    unacceptableperformanceand/orlackofadequatedurability(2).However,significantimprovementshavebeenmadeduringthelastfewyearsinthegradationandbindertypeusedin

    theOGFC.Recently,asurvey(3)ontheexperienceofstateswithOGFCwasconductedbytheNationalCenterforAsphaltTechnology(NCAT).AlthoughexperienceofstateswithOGFChasbeenvaried,halfofthestatessurveyedinthisstudyindicatedgoodexperiencewithOGFC.Morethan70percentofthestateswhichuseOGFCreportedservicelifeofeightormoreyears.About80percentofthestatesusingOGFChavestandardspecificationsfordesignandconstruction.Avastmajorityofstatesreportinggoodexperienceusepolymermodifiedasphaltbinders.Also,gradationsofaggregatesusedbythesestatestendtobesomewhatcoarsercomparedtogradationsusedearlierandgradationsusedbyotherstates.ItseemsthatgooddesignandconstructionpracticeisthekeytoimprovedperformanceofOGFCmixes.ThereisaneedtodevelopanimprovedmixdesignproceduretohelpthestatesinsuccessfuluseofOGFC.Awell-designedandwell-constructedOGFCshouldnothaveraveling/delaminationproblems

    andshouldreasonablyretainitshighpermeabilityandmacrotexture.

    Objective

    TheprimaryobjectiveofthisstudywastoevaluatethelaboratoryperformanceofOGFCwithdifferentgradationsandtypesofadditives,andbaseduponthisworkrecommendarationalmixdesignsystemforanew-generationOGFC.Additionally,theconstructionandperformanceofsixOGFCpavements(constructedpriortothislaboratorystudy)arediscussed.ThesemixesgenerallymeettherequirementsforgradationbandandCantabroabrasionrecommendedinthenewmixdesignsystem.

    SCOPEOFWORK

    ThemajorperformanceproblemsassociatedwithOGFCcanbeclassifiedintotwocategories:ravelinginOGFCandstrippinginunderlyingasphaltcourses.ThemajorcausesofravelinginOGFCarebelievedtobeinadequateasphaltbinderfilmthickness,excessiveagingofbinder,andlossofasphalt-aggregateadhesionunderfreeze-thawconditions.WhenOGFCwaspromotedbytheFederalHighwayAdministration(FHWA)inthe1970s,manystateseitheradoptedFHWA'smixdesignmethod(1)orusedarecipemixcomposition.Sincepolymermodifiedasphaltbinderswerenotavailableatthattime,andnofiberswereused,designasphaltcontentsinOGFCmixeswerekeptrelativelylowbecauseofbinderdraindownproblemsduringstorageand/ortransportation.SomestatesalsoexperiencedsignificantlossinpermeabilityofOGFCafter2-3yearsbecauseofcloggingofvoidsbydeicingmaterialsorotherdebris.

    1

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    6/26

    Mallick,Kandhal,CooleyJr.,&Watson

    Thefollowingquestionswereraisedtodevelopatestplanforevaluatingdifferentgradationsand

    additivesinthisstudy:1)WhatisagoodgradationforOGFCtoprovide

    a)adequatepermeabilitytodrainwaterquicklyandmaintainareasonable

    permeabilityduringservicelife?b)adequatestabilitythroughstone-on-stonecontacttominimizerutting?

    2)Whatkindofadditive(s)isneededtoa)preventdraindownofbinderatbindercontentsneededtoprovidesufficient

    binderfilmthickness?b)improveruttingresistanceanddecreasetemperaturesusceptibility?c)resistexcessiveaging?

    Toanswerthesequestions,thestudywasdividedintotwomainparts.First,alaboratorystudy

    wasconductedtoevaluatedifferentOGFCgradationsandtypesofadditives.Baseduponthislaboratorywork,anewOGFCmixdesignsystemwastoberecommended.Withinthenewdesignsystem,gradationbands,volumetricproperties,andperformancerelatedtestsweretobe

    identified.ThesecondpartofthestudyentailedidentifyingOGFCpavementsectionsthatwouldcloselyresembleOGFCmixesresultingfromtherecommendedmixdesignsystemanddocumentconstructionandperformance.

    LaboratoryStudy

    AflowchartforthelaboratorystudytestplanisshowninFigure1.InthefirstphaseofthestudyblendswerepreparedwithgradationssimilartoandcoarserthantheFHWArecommended(1)gradationforOGFCmixes.Table1andFigure2givetheFHWAgradationandtheotherthreenewgradationsevaluatedinthisstudy.TheFHWAgradationhas40percentmaterialpassingthe4.75mmsieve,andthecoarsestoftheotherthreegradationshas15percentmaterialpassingthe4.75mmsieve.ThecoarsestgradationisverysimilartothegradationthatisbeingusedbymanystatesreportinggoodexperiencewithOGFCmixes(suchasGeorgia).Mixeswerepreparedfor

    theseblendswithanunmodifiedPG64-22asphaltbinder.ThepropertiesofaggregateandasphaltbinderareshowninTables2and3,respectively.MixdesignswereconductedaccordingtoFHWAprocedures(1).Thesefourblendswereevaluatedforstone-on-stonecontactwithvoidsinthemineralaggregate(VMA)andvoidsinthecoarseaggregate(VCA)plots,andVCAdatafromdryroddedtestswithcoarseaggregatesfractiononly.TheVCAconceptisusedinthedesignofstonematrixasphalt(SMA)mixtures( 4).

    SamplespreparedwithFHWAgradationandcoarsergradationsweretestedfordraindown

    potential,permeability,abrasionresistance,agingpotential,andrutting.Thetestproceduresarediscussedlater.Allsampleswereinitiallycompactedwith100gyrationsofSuperpavegyratorycompactor,whichwereconsideredtobeequivalentto50blowsofMarshallhammerinSMAmixdesign.Theprimaryobjectiveofphase1wastoevaluatetherelativeimprovementsinmixcharacteristicswhentheFHWAgradationismadecoarserandcoarser.

    Inthesecondphaseofthestudy,mixeswerepreparedwiththecoarsestgradation(gradation#3

    inTable1)andsixdifferentbinders:PG64-22,PG64-22plusStyrene-Butadiene-StyreneorSBS(referredtohereinafterasPG64-22-SBS),PG76-22containingStyreneButadieneorSB(referredtoasPG76-22-SB),PG64-22pluscellulosefiber(referredtoasPG64-22-CF),PG76-22containingStyreneButadieneandslagwool(referredtoasPG76-22-SB-SW)andPG64-22plusslagwool(referredtoasPG64-22-SW).BothSBSandSBwereaddedtotheasphaltbinderat4percentbyweightofbinder.ThePG64-22and76-22(withSB)binderswerethebasebinders,towhichthedifferentadditiveswereadded.ThepropertiesofPG64-22and76-22(withSB)bindersareshowninTable3.Celluloseandmineralfiber(slagwool)wereaddedat0.37percentbyweightofthetotalmix.TheprimaryobjectiveofthesecondphasewastoevaluatetheperformanceofvariousadditivesintheOGFCmix.Basedondiscussionwithpersonnelfromthe

    2

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    7/26

    Mallick,Kandhal,CooleyJr.,&Watson

    Figure1.TestPlan3

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    8/26

    Mallick,Kandhal,CooleyJr.,&Watson

    Table1.GradationsUsed

    PercentPassingSieveSize Original Gradation New New New

    FHWA Similarto Gradation#1Gradation#2 Gradation#3Gradation FHWAUsed

    19mm --- 100 100 100 100

    12.5mm 100 95 95 95 95

    9.5mm 95-100 65 65 65 65

    4.75mm 30-50 40 30 25 15

    2.36mm 5-15 12 77 70.075mm 2-5

    433 3

    100

    90

    80

    70

    6050

    40

    30

    20

    10

    0

    0 0.0.20.0150.03075 .4 .6 0..680 1181.21. 1.4361.62. 1.8 4.752 2.2 2.4 2.69.52.8 312.53.2 3.4 3.6 193.8 4

    SieveSize

    FHWAgradation,40%passing4.75mmsieve 30%passing4.75mmsieve25%passing4.75mmsieve 15%passing4.75mmsieve

    Figure2.GradationsUsedintheStudy

    4

    PercentPassin

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    9/26

    Mallick,Kandhal,CooleyJr.,&Watson

    GeorgiaDepartmentofTransportation(GDOT),thesemixeswerepreparedwith6.5percent

    asphaltbinder,andcompactedwith50gyrationstomatchairvoidcontentsofOGFCcoresamplesobtainedfromthefieldwheresimilargradationhadbeenused.Thesemixeswerealsotestedforthedifferentpropertiesmentionedearlier.Resistancetomoisturedamagewasalso

    evaluatedinphase2.

    Table2.PropertiesofAggregates

    Aggregate

    Granite

    Size

    Fine

    Coarse

    Property

    BulkSpecificGravity

    WaterAbsorption,percent

    FineAggregateAngularity

    BulkSpecificGravity

    WaterAbsorption,percent

    Value

    2.712

    0.63

    49.5

    2.688

    0.58

    Table3.PropertiesofPG64-22and76-22(withSB)AsphaltBinder

    Asphalt HighTemperatureproperties LowTemperatureProperties Binder(PG) Temp

    oeratureC

    OriginalDSR,G*/Sin*

    RTFOTDSR,G*/Sin*

    TempoeratureC

    RTFOT+PAV,DSR,

    TempoeratureC

    RTFOT+PAV

    (kPa) (kPa) G*Sin* Creep m(Mpa) Stiffness, (slope)

    S(MPa)

    64-22 64 1.784 3.258 22 4426 -12 240 0.317

    76-22 76 1.478 2.356 31 4450 -12 155 0.32(withSB)

    FieldStudyTovalidatethepotentialforthenewmixdesignsystem,OGFCpavementswerefoundthatwouldcloselymeetrequirementsforthenewmixdesignsystem.SixOGFCpavementsectionswerelocatedonInterstate75southofAtlanta,Georgia.Thesesectionswereconstructedin1992andconsistofOGFCmixeswithdifferenttypes/combinationsofasphaltadditives.

    ConstructionofthesesixpavementswasdocumentedinaGDOTreport(5).Additionally,

    representativesofNCATperformedavisualdistresssurvey.Duringthesurvey,rutdepthsforeachsectionandthreecorespersectionwereobtained.Thecoreswereusedtomeasuredensityandlaboratorypermeability.

    LABORATORYTESTPROCEDURES

    Thefollowingtestprocedureswereusedinthelaboratorystudy.

    VoidsinCoarseAggregate(VCA)

    Similartostonematrixasphalt(SMA),OGFCmusthaveacoarseaggregate(retainedonNo.4.75mm)skeletonwithstone-on-stonecontacttominimizerutting(4).Theconditionofstone-

    5

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    10/26

    Mallick,Kandhal,CooleyJr.,&Watson

    on-stonecontactwithinanOGFCmixisdefinedasthepointatwhichthevoidsincoarse

    aggregate(VCA)ofthecompactedOGFCmixtureislessthantheVCAofthecoarseaggregatealoneinthedryroddedtest(AASHTOT19).TheVCAofthecoarseaggregateonlyfraction(VCADRC)isdeterminedbycompactingthestonewiththedry-roddedtechniqueaccordingtoAASHTOT19.Whenthedry-roddeddensityofthestonefractionhasbeendetermined,theVCA

    DRCcanbecalculatedusingthefollowingequation:

    where,GCA(s

    (w

    =bulkspecificgravityofthecoarseaggregate(AASHTOT85)=unitweightofthecoarseaggregatefractioninthedry-roddedcondition

    (kg/m3)(AASHTOT19)

    =unitweightofwater(998kg/m3

    )DraindownCharacteristicsTheNCATdraindowntestmethod(4)wasused.Asampleoflooseasphaltmixturetobetestedispreparedinthelaboratoryorobtainedfromfieldproduction.Thesampleisplacedinawirebasketwhichispositionedonaplateorothersuitablecontainerofknownmass.Thesample,basket,andplateorcontainerareplacedinaforceddraftovenforonehouratapre-selectedtemperature.Attheendofonehour,thebasketcontainingthesampleisremovedfromtheovenalongwiththeplateorcontainerandthemassoftheplateorcontainerisdetermined.Theamountofdraindownisthencalculated.

    Thistestmethodcanbeusedtodeterminewhethertheamountofdraindownmeasuredforagivenasphaltmixtureiswithinacceptablelevels.Thetestprovidesanevaluationofthedraindownpotentialofanasphaltmixtureduringmixturedesignand/orduringfieldproduction.Thistestisprimarilyusedformixtureswithhighcoarseaggregatecontentsuchasporousasphalt(OGFC)andSMA.Amaximumdraindownof0.3percentbyweightoftotalmixisrecommendedforSMAandisalsoconsideredapplicabletoOGFC.

    Permeability

    TheFloridaDOTfalling-headlaboratorypermeabilitytestwasused.Thistestusesafallingheadconcepttodeterminepermeability(6).

    ResistancetoAbrasion

    TheresistanceofcompactedOGFCspecimenstoabrasionlosswasanalyzedbymeansoftheCantabrotest(7).ThisisanabrasionandimpacttestcarriedoutintheLosAngelesAbrasionmachine(ASTMMethodC131).

    Inthistest,anOGFCspecimencompactedwith50blowsoneachsideisused.Themassofthe

    specimenisdeterminedtothenearest0.1gram,andisrecordedasP1.ThetestspecimenisthenplacedintheLosAngelesRattlerwithoutthechargeofsteelballs.Theoperatingtemperatureisusually25C.Themachineisoperatedfor300revolutionsataspeedof30to33rpm.Thetestspecimenisthenremovedanditsmassdeterminedtothenearest0.1gram(P

    2).Thepercentage

    abrasionloss(P)iscalculatedaccordingtothefollowingformula:

    6

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    11/26

    Mallick,Kandhal,CooleyJr.,&Watson

    Therecommendedmaximumpermittedabrasionlossvalueforfreshlycompactedspecimensis20percent(5).However,someEuropeancountriesspecifyamaximumvalueof25percent.

    Resistancetoabrasionusuallyimproveswithanincreaseinbindercontent.However,this

    resistanceisalsorelatedtotherheologicalpropertiesofthebinder.Foragivengradationandbindercontent,mixescontainingunmodifiedbindersgenerallyhavelessresistancetoabrasionthanmixescontainingpolymer-modifiedbinders.

    Aging

    BothunagedandagedcompactedOGFCweresubjectedtoCantabroabrasiontesttoevaluatetheeffectofacceleratedlaboratoryagingonresistancetoabrasion.Becauseofveryhighairvoid

    contentstheasphaltbinderinOGFCispronetohardeningatafasterratethandense-gradedhotmixasphalt(HMA),whichmayresultinreductionofcohesiveandadhesivestrengthleadingtoraveling.Therefore,themixdesignshouldbesubjectedtoanacceleratedagingtest(7).

    AgingwasaccomplishedbyplacingfiveMarshallspecimenscompactedwith50blowsina

    forceddraftovensetat60Cfor168hours(7days).Thespecimensarethencooledto25Candstoredfor4hourspriortoCantabroabrasiontest.Theaverageoftheabrasionlossesobtainedon5agedspecimensshouldnotexceed30percent,whilenoindividualresultshouldexceed50percent.

    FreezeandThawTestforResistancetoMoistureDamage

    RavelingoftheOGFCmaytakeplaceduetostrippinginthemix,especiallyfromfreezeand

    thawcyclesinnortherntierstateswithcoldclimates.ModifiedLottmantest(AASHTOT283)wasusedinthisstudy.Insteadofusingonefreeze/thawcycleusedfordense-gradedHMA,5cycleswereusedforOGFC.SincetheairvoidcontentishigherintheOGFCcomparedtodense-gradedHMA,moresevereconditioningwasdeemednecessarytoevaluatethestrippingpotential.

    Rutting

    ThepotentialforruttingofOGFCwasevaluatedwiththeAsphaltPavementAnalyzer(APA)whichisamodifiedversionofGeorgialoadedwheeltester.CylindricalOGFCspecimenswereloadedat64C(bothdryandunderwater)for8000cyclesandrutdepthmeasured.

    DEVELOPMENTOFMIXDESIGNPROCEDURE

    Asummaryofdataandanalysesusedtodevelopthemixdesignsystemarepresentedinthefollowingsections.

    PhaseOne

    TwoblendswithcoarseaggregateonlywerepreparedaccordingtotheAASHTOT19proceduretodeterminethedryroddedvoidsincoarseaggregate(VCADRC).Next,threeblendswerepreparedforeachgradationwith15%,25%,30%and40%passing4.75mmsieve.Asmentionedearlier,the40%passing4.75mmsieverepresentedFHWAgradationandtheremainingthreegradationswereallcoarserthantheFHWAgradation(Figure2,Table1).Since,ingeneral,theNCATsurveyindicatedgoodperformanceofmixeswithgradationscoarserthan

    7

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    12/26

    Mallick,Kandhal,CooleyJr.,&Watson

    theFHWAgradation(3),itwasdecidednottouseanygradationfinerthantheFHWA

    gradation.MixeswerepreparedwithPG64-22asphaltbinderandcompactedwith100gyrationsoftheSuperpavegyratorycompactor(SGC).TheasphaltcontentsweredeterminedbytheFHWAmethod(1).TheFHWAmethodconsistsofthefollowingsteps:(1)determinationof

    surfacecapacityofaggregatefractionretainedon4.75mmsievebyoilabsorptionmethod,and(2)determinationofasphaltcontentfromanempiricalformulawiththesurfaceconstant(obtainedinstep1).Thefollowingformulaisused:Table4givesthemixdesigndatausingtheFHWAprocedure.Unfortunately,theoptimumasphaltcontentisbasedontheoilabsorptionofthematerialretainedon4.75mmsieveonly.Therefore,theoptimumasphaltcontentsareverysimilarforallfourgradations,whichisnotlogical.Obviously,theFHWAformulawasdevelopedforonegradationband.

    Table4.FHWAMixDesignData(PhaseOne)

    Gradation(%passing4.75mmsieve)

    15

    25

    30

    40

    PercentOilRetained(POR)

    1.890

    1.839

    1.808

    1.724

    SurfaceConstant,Kc

    0.856

    0.836

    0.823

    0.789

    AsphaltContent,percent

    5.55

    5.51

    5.48

    5.42

    Theaverageairvoidsorvoidsintotalmix(VTM),voidsinmineralaggregate(VMA),voidsin

    coarseaggregate(VCA),andvoidsfilledwithasphalt(VFA)dataforthefourdifferentmixesareshowninTable5.TheVCADRCisalsoshowninTable5.PlotsofVTM,VMA,andVCAareshowninFigures3and4.Althoughthereisadifferenceofonly0.13%inasphaltcontentbetweenthemixeswithfourgradations,thereisasignificantrangeinvoids(VTM,VMAandVCA).TheVTMandVMAgenerallydecreasewithanincreaseinpercentpassing4.75mmsieve.Hence,thecoarserthemix,thehigheristheVTMandVMA.ThedryroddedcoarseaggregateVCA(VCA

    DRC)fallsbetweenthecompactedmixVCAvaluesforgradationswith

    15%and25%passingthe4.75mmsieve.Thisindicatesthatstone-on-stonecontactbeginsatsomepointbetween25%and15%(approximatelyat22%)passingthe4.75mmsieve.

    Table5.SummaryofMixVolumetricProperties

    CompactedOGFCMixGradation(%passing4.75mmsieve)

    AsphaltContent

    TMD*VTM,%

    VMA,%

    VCA,%

    VFA,%

    15 5.55 2.47515.1 26.3 37.3 42.6

    25 5.51 2.51214.3 24.5 43.3 41.7

    30 5.48 2.51113.6 24.0 46.6 43.3

    40 5.42 2.48712.5 23.9 54.1 47.3*TMD=TheoreticalmaximumdensityDryroddedVCA=41.7%.

    8

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    13/26

    Mallick,Kandhal,CooleyJr.,&Watson

    20

    19

    18

    17

    16

    15

    14

    13

    1211

    10

    0 5 10 15 20 25 30 35 40 45PercentPassing4.75mmSieve

    Figure3.PercentPassing4.75mmSievevs.VoidsinTotalMix

    Note:SamplesCompactedWith100GyrationsofSGC

    55

    VMA VCA50

    45

    40

    35

    30

    2520

    0 5 10 15 20 25 30 35 40 45

    PercentPassing4.75mmSieve

    Figure4.PercentPassing4.75mmSievevs.VMAandVCANote:Dry-RoddedVCA=41.7%

    9

    VoidsinTotal(MixVTM,%

    )

    Voids

    %

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    14/26

    Mallick,Kandhal,CooleyJr.,&Watson

    Also,theVMAcurvestartstocurlupward(VMAincreases)atabout30%passing4.75mm

    sieve.ThereducedslopeinVMAindicatesstone-on-stonecontactisbeginningtobelost,andfurtherincreasesintheamountofthefineaggregatedonotbringtheaggregatesanycloser.HighVTMassociatedwiththecoarsergradationwillalsofacilitatebetterdrainageofwater.A

    preliminary,crudetestcarriedoutbyholdingcompactedOGFCspecimensunderwatertapindicatedalmostfreeflowofwaterthroughthemixwith15%passingthe4.75mmsieve,moderateflowthroughmixwith25%passing4.75mmsieve,andverypoorornoflowthroughmixeswith30%and40%passingthe4.75mmsieve.

    Draindown

    Inhotmixasphalt,thecoarserthegradation,thegreateristhepotentialofdraindownofasphaltbinderduringstorageand/ortransportation.Draindowncausesdeficientbinderinpartofthemix(resultinginraveling)andexcessivebinderintheotherpartofthemixcausingbleedinglossofpermeability,andpotentialforflushingandrutting.DraindowntestswereconductedonuncompactedOGFCmixes(withPG64-22binder)at160Cand175CaccordingtotheNCAT

    draindowntestmethod.TheSchellenbergdrainagetestusedinEuropeisconductedat175C(7).TheresultsofNCATdraindowntestareshowninTable6.Themaximumpermissibledraindownis0.3%.Asexpected,themixwith15%passing4.75mmsieveshowedthemaximumdraindown.Themixwith25%passing4.75mmsieveshowedadraindownoflessthan0.3%at175C.However,whentestedwithPG76-22binder,themixwith15percentpassingthe4.75mmsieve,showedsignificantlylessdraindown.Itshouldbenotedthatthetemperaturesusedfordraindowntestsinthisstudyaresignificantlyhigherthantypicalproductiontemperatures.OGFCmixescontainingpolymermodifiedbinderssuchasSBorSBSarecommonlyproducedat150C.Itisrecommendedtoconductthedraindowntestattheproposedmixingtemperature.Nonetheless,thetestdatainTable6givestherelativedraindownpotentialofdifferentmixes.

    Table6.SummaryofDraindownTestResults

    Draindown(%)Gradation(percentpassing

    4.75mmsieve)

    15

    25

    30

    40

    PG64-22

    0.45

    0.10

    0.11

    0.12

    160C

    PG76-22

    0.05

    PG64-22

    1.27

    0.25

    0.24

    0.19

    175C

    PG76-22

    0.30

    AbrasionTest

    TheCantabroabrasiontestwasconductedonmixeswithdifferentpercentagesofmaterialpassingthe4.75mmsieve.First,theunagedsamplesweretested.Next,sampleswereagedandtestedforabrasionloss.TheresultsareshowninTable7.Thedatashowthatunderbothagedandunagedconditionstheabrasionlossincreasesasthemixismadecoarser,themixwith15%passing4.75mmsieveshowsthehighestabrasionloss.Although,themixwith15%passing4.75mmsievesatisfiestheCantabroabrasioncriteria(7)of20%maximumforunagedspecimensand30%maximumforagedspecimens,thelosscanbereducedfurtherbyusingamodifiedbinderandincreasingtheasphaltcontentbyuseoffibers.Thiswasinvestigatedinthesecondphaseofthestudyreportedlater.

    10

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    15/26

    Mallick,Kandhal,CooleyJr.,&Watson

    Table7.SummaryofAbrasionTestResults

    Gradation(percentpassing4.75mmsieve)

    1525

    30

    40

    Loss,%(Unaged)

    14.712.1

    11.7

    8.1

    Loss,%(Aged)

    29.319.6

    17.2

    15.5

    Differenceduetoaging(%)

    14.67.5

    5.5

    7.4

    PermeabilityThepermeabilityofmixeswithdifferentpercentagesofmaterialpassingthe4.75mmsieveweretestedwithafallingheadpermeameter.ThecoefficientsofpermeabilityobtainedforthedifferentmixesareshowninTable8.Asexpected,themixeswithlowerpercentageofmaterial

    passingthe4.75mmsieveshowhigherpermeability.Thereisasignificantincreaseinpermeabilitybetweenthemixwith30percentpassingthe4.75mmsieveandthemixwith15percentpassingthe4.75mmsieve.Forcomparison,coarsegradedSuperpavemixeshavebeenfoundtohavepermeabilityintherangeof1.5mperdayto8.8mperdaywithvoidsrangingfrom6.4to8.8percent(testedwiththeFloridaPermeabilityTestMethod)(6).

    Table8.SummaryofPermeabilityData

    Gradation(percentpassing4.75mmsieve)

    15

    25

    30

    40

    Rutting

    Permeability(coefficient,m/day)

    117

    8828

    21

    Ruttestswereconductedonthefourmixesatdesignasphaltcontents.TheAsphaltPavementAnalyzer(APA)wasusedtorutthemixesunderawheelloadof445N(100lb),andahosepressureof690kPa(100psi).Themixesweretestedat64C,sincethePGgradeoftheasphaltwasPG64-22.Table9showstheresultsofruttests.Therutdepthsat8,000cyclesdonotshowawiderange,nordoesitshowanyparticulartrendwithpercentpassingthe4.75mmsieve.However,alloftherutdepthsareverysmall,lessthan5mm,andareconsideredacceptable.

    Table9.SummaryofRutData

    Gradation(percentpassing4.75mmsieve)

    15

    25

    30

    40

    RutDepthat8000cycles,mm

    4.05

    3.83

    4.29

    3.41

    11

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    16/26

    Mallick,Kandhal,CooleyJr.,&Watson

    PhaseTwo

    Inthenextphaseofthelaboratorystudy,mixeswerepreparedwith15percentpassingthe4.75mmsieveand6.5percentasphaltcontentusingsixdifferentbinder/additivecombinations.Test

    samplesforthesixmixeswerecompactedwiththeSGC,usingthenumberofgyrationsrequiredtoachieveairvoidsclosertothosefoundinthefieldatthetimeofconstruction(about18percent).

    Astudywascarriedouttodeterminetherequirednumberofgyrations.Threesamplesofeach

    mixwerecompactedwith100gyrationsoftheSGCand50blowsofMarshallhammer.Theairvoidsatdifferentgyrationswerecomparedtoairvoidsgenerallyfoundinthefieldandtheairvoidsofthesamplecompactedwith50blowsMarshall(Figure5).Itwasdeterminedthatabout50gyrationswiththeSGCand50blowswiththeMarshallhammerproduceabout18percentairvoidsgenerallyfoundinthefield.Themixeswerepreparedwithsixdifferenttypesofbinderasdescribedearlier:PG64-22,PG64-22-SBS,PG76-22-SB,PG64-22-CF,PG76-22-SB-SWandPG64-22-SW.Thesamplesweretestedforvolumetricproperties,draindown,aging,rutting,and

    moisturesusceptibility.ThevolumetricpropertiesareshowninTable10.Resultsfromothertestsarediscussedinthefollowingparagraphs.

    242220

    181614

    121086420

    VoidsinSpecimenCompactedwith50BlowsofMarshallHammer

    0 20 40 60 80 100 120

    NumberGyrationsinSGC

    Figure5.Gyrationsvs.VTMplot.

    12

    VoidsinTotalMix

    VTM

    %

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    17/26

    Mallick,Kandhal,CooleyJr.,&Watson

    Table10.VolumetricPropertiesofMixesWithDifferentBinders(AverageValues)

    Binder BulkSp. TMD VTM VMA VCAGr.

    PG64-22 2.044 2.441 16.3 29.0 37.3PG64-22withcellulose 2.043 2.441 16.3 29.0 37.3

    PG64-22withslagwool 2.071 2.441 15.2 28.1 37.3

    PG64-22withSBS 2.026 2.441 17.0 29.6 37.3

    PG76-22-SB 2.002 2.441 18.0 30.5 37.3

    PG76-22withslagwool 2.046 2.441 16.2 28.9 37.3

    DraindownTheaveragedraindownvaluesat157C(315F)areshowninTable11.Thetesttemperatures

    werereducedinPhase2torepresentproductiontemperaturesgenerallyusedinthefield.ResultsfromamultiplecomparisontestarealsoshowninTable11.Theseresultsindicatewhetherthereisanysignificantdifferencebetweenthedifferentmeansandifthereis,providestherankingofthedifferentmixesbasedonthemeans.Table11indicatesthatthedraindownvaluesaresignificantlyhigherforallmixeswiththePG64-22andthePG76-22-SBandalsodonotmeetthecriteriaof0.3percentmaximum.ItseemsthatSBS,slagwool,andcellulosearemoreeffectiveinreducingthedraindownathighertemperatures.

    Table11.ResultsofDraindownTestsFromMixesWithDifferentBinders

    Draindownat157C(315F)

    DuncanGrouping Mean(%) AsphaltBinder

    A 1.3585 PG64-22

    A 1.1845 PG76-22-SB

    B 0.5405 PG64-22withSBS

    B 0.1245 PG76-22-SBwithslagwool

    B 0.0510 PG64-22withslagwool

    B 0.0040 PG64-22withcellulose

    AgingTestSamplesofmixespreparedwithdifferentbindersweretestedwiththeCantabroabrasiontesttodeterminetheeffectofaging.Allofthesampleswereagedat160Cfor168hours(7days).

    Table12showsthetestvaluesandtheresultsofmultiplecomparisontest.TheresultsshowthatthemixeswithunmodifiedPG64-22binderhavethehighestabrasionloss,andthemixeswithPG76-22-SWhavethelowestabrasionloss,withtheothermixeshavingvaluesinbetween.Ingeneral,mixeswithPG64-22plusSBSandthePG76-22-SBbindersshowlessabrasionthanmixeswiththeotherbinders.Althoughallmixesmeetthemaximumlosscriteriaof30percent,itappearsthatthecombineduseofpolymermodifiedbinderandfiberwillminimizetheabrasionlossfromagingandthusincreasethedurabilityoftheOGFC.

    13

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    18/26

    Mallick,Kandhal,CooleyJr.,&Watson

    Table12.AbrasionLoss(AgedSamples)forMixesWithDifferentTypesofBinder

    DuncanGrouping Mean(%) AsphaltBinder

    A 26.2 PG64-22

    B A 19.3 PG64-22withslagwool

    B A 18.8 PG64-22withcellulose

    B C 15.7 PG76-22-SB

    B C 13.0 PG64-22withSBS

    C 9.0 PG76-22withslagwool

    RuttingTestRuttingtestswereconductedonsamplesofmixeswithdifferentbinderswiththeAPAusingidenticalproceduresasphase1.Table13showsthemeansandtheresultsofmultiple

    comparisontest.TheresultsshowthatingeneralmixeswithPG76-22-SBbindershowlessruttingcomparedtomixeswithPG64-22binder.OfthemixeswithdifferentPG64-22binders,themixeswiththeunmodifiedbindershowedthehighestamountofrutting,whiletheonewithSBSshowedtheleastamountofrutting.ThelowestrutdepthwasobtainedincaseofSBmodifiedPG76-22withslagwool.Again,thecombineduseofapolymer-modifiedbinderandfiberresultedinthelowestrutdepth.

    Table13.RutDepthforMixesWithDifferentTypesofBinder

    DuncanGrouping Mean(%) AsphaltBinder

    A 6.28 PG64-22

    B A 5.24 PG64-22withcellulose

    B C 5.00 PG64-22withslagwool

    B C 4.70 PG64-22withSBSD C 3.81 PG76-22-SB

    D 2.70 PG76-22withslagwool

    MoistureSusceptibilityTestMoisturesusceptibilityofmixeswasevaluatedbyconductingtensilestrengthtestonconditioned(5freeze/thawcycles)andunconditionedcompactedsamples(airvoids71percent)ofmixeswithdifferentbinders.Thistestwasincludedinphase2toevaluatetheeffectofbindertypeandfibersonthemoisturesusceptibilityofOGFCmixes.Table14showstheaveragevaluesoftensilestrengthratiosobtainedforthedifferentmixes.TheresultsshowthatmixeswithPG64-22-SBSshowthehighestTSR(100percent),whereasthemixeswithunmodifiedPG64-22showthelowestTSR(below70percent).Ingeneral,allthemixes,exceptthosewithunmodifiedPG64-22andPG64-22-SWshowTSRvaluesgreaterthan80percent.Itappearsthatbothpolymer-modifiedbinderandfibershouldbeusedespeciallyinthenortherntierstatesoftheU.S.,whichexperiencecoldclimatesandfreeze/thawcycles.

    14

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    19/26

    Mallick,Kandhal,CooleyJr.,&Watson

    Table14.TSRValuesforMixesWithDifferentBinders

    AsphaltBinder Mean(%)

    PG64-22withSBS

    PG76-22withslagwoolPG64-22withcellulosefiber

    PG76-22-SB

    PG64-22withslagwool

    PG64-22

    SUMMARYOFLABORATORYSTUDYThefollowingobservationscanbeobtainedfromthelaboratorystudy:

    10098

    91877562

    1.Agradationwithnomorethanabout20percentpassingthe4.75mmsieveis

    requiredtoachievestone-on-stonecontactconditionandprovideadequatepermeabilityinOGFCmixes.2.Mixeswith15percentaggregatespassingthe4.75mmsievearesusceptibleto

    significantdraindownofthebinder.Therefore,itisnecessarytoprovideasuitablestabilizersuchasfiberinthemixtopreventexcessivedraindown.

    3.AbrasionlossofOGFCmixesresultingfromagingcanbereducedsignificantlywiththeadditionofmodifiers.Inthisstudy,allofthemodifiedbindershadsignificantlylowerabrasionlossthantheunmodifiedbinder.Theuseofbothpolymer-modifiedbinderandfibercanminimizetheabrasionlossandthusincreasethedurabilityofOGFC.

    4.Forthebindersusedinthisstudy,rutdepthsasmeasuredwiththeAPAdidnotvaryoverawiderange.However,withintherangeofrutvaluesobtained,themixeswithmodifiedbindershadsignificantlylessruttingthanmixeswithunmodifiedbinders.A

    higherPGbindergradeseemstohaveagreatereffectinreducingruttingthanalowerPGbindergrade.Apolymer-modifiedasphaltwithfibergavetheleastamountofrutting.

    5.Moisturesusceptibility,asmeasuredbyTSRvalues,islowerformixeswithmodifiedbindersthanmixeswithunmodifiedbinders.Allofthemodifiersexceptslagwool(withPG64-22)producedmixeswhichhadTSRvaluesinexcessof80percent.Again,bothpolymer-modifiedbinderandfibershouldbemosteffectiveespeciallyincoldclimateswithfreeze/thawcycles.

    TentativeOGFCMixDesignProcedure

    Thefollowingtentativemixdesignsystemisrecommendedforthenew-generationOGFCmixesonthebasisofthelaboratorystudy,observationofin-placeperformanceofOGFCmixesinGeorgia,andexperienceinEurope.Thesystemcanberefinedfurtherasmoreexperienceisgainedinthefuture.

    Step1.MaterialsSelection

    ThefirststepinthemixdesignprocessistoselectmaterialssuitableforOGFC.MaterialsneededforOGFCincludeaggregates,asphaltbinders,andadditives.Additivesincludeasphaltbindermodifiers,suchaspolymersandfibers.

    GuidanceforsuitableaggregatescanbetakenfromrecommendationsforSMA(4).Thebinder

    selectionshouldbebasedonfactorssuchasenvironment,traffic,andexpectedfunctionalperformanceofOGFC.Highstiffnessbinders,suchasPG76-xx,madewithpolymersare

    15

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    20/26

    Mallick,Kandhal,CooleyJr.,&Watson

    recommended(5)forhotclimatesorcoldclimateswithfreeze-thawcycles,mediumtohigh

    volumetrafficconditions,andmixeswithhighairvoidcontents(inexcessof22percent).Theadditionoffiberisalsodesirableundersuchconditionsandalsohavebeenshowntosignificantlyreducedraindown.Forlowtomediumvolumetrafficconditions,eitherpolymer

    modifiedbindersorfibersmaybesufficient.

    Step2.SelectionofDesignGradation

    BaseduponthislaboratorystudyandrecentexperiencesinGeorgia,thefollowingmastergradationbandisrecommended.

    Sieve

    19mm

    12.5mm

    9.5mm

    4.75mm

    2.36mm

    0.075

    mm

    PercentPassing

    100

    85-10055-

    7510-25

    5-10

    2-4

    Selectionofthedesigngradationshouldentailblendingselectedaggregatestockpilestoproducethreetrialblends.Itissuggestedthatthethreetrialgradationsfallalongthecoarseandfinelimitsofthegradationrangealongwithonefallinginthemiddle.Foreachtrialgradation,determinethedry-roddedvoidsincoarseaggregateofthecoarseaggregatefraction(VCADRC).Coarseaggregateisdefinedastheaggregatefractionretainedonthe4.75mmsieve.

    Foreachtrialgradation,compactspecimensatbetween6.0and6.5percentasphaltbinderusing50gyrationsofaSuperpavegyratorycompactor.Iffibersareaselectedmaterial,theyshouldbeincludedinthesetrialmixes.Determinethevoidsincoarseaggregate(VCA)foreachcompactedmix.IftheVCAofthecompactedmixisequaltoorlessthantheVCADRC,stone-on-stonecontactexists.Toselectthedesigngradation,chooseatrialgradationthathasstone-on-stonecontactcombinedwithhighvoidsintotalmix.

    Step3.DetermineOptimumAsphaltContent

    Usingtheselecteddesigngradation,prepareOGFCmixesatthreebindercontentsinincrementsof0.5percent.Conductdraindowntestonloosemixatatemperature15Chigherthananticipatedproductiontemperature.Compactmixusing50gyrationsofaSuperpavegyratory

    compactoranddetermineairvoidcontents.ConducttheCantabroabrasiontestonunagedandaged(7days@60C)samples.RuttingtestswiththeAsphaltPavementAnalyzerandlaboratorypermeabilitytestingareoptional.Insufficientdatawasaccumulatedinthisstudytorecommendacriticalrutdepth.However,laboratorypermeabilityvaluesgreaterthan100m/dayarerecommended.Theasphaltcontentthatmeetsthefollowingcriteriaisselectedasoptimumasphaltcontent.

    1.AirVoids.Aminimumof18percentisacceptable,althoughhighervaluesaremoredesirable.ThehighertheairvoidsarethemorepermeabletheOGFC.

    2.AbrasionLossonUnagedSpecimens.TheabrasionlossfromtheCantabrotestshouldnotexceed20percent.

    3.AbrasionLossonAgedSpecimens.TheabrasionlossfromtheCantabrotestshouldnotexceed30percent.

    4.Draindown.Themaximumpermissibledraindownshouldnotexceed0.3percentby

    totalmixturemass.

    16

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    21/26

    Mallick,Kandhal,CooleyJr.,&Watson

    Ifnoneofthebindercontentstestedmeetallfourcriteria,remedialactionwillbenecessary.Air

    voidswithinOGFCarecontrolledbythebindercontent.Ifairvoidsaretoolow,theasphaltbindercontentshouldbereduced.Iftheabrasionlossonunagedspecimensisgreaterthan20percent,moreasphaltbinderisneeded.Abrasionlossvaluesofagedspecimensinexcessof30

    percentcanberemediedbyeitherincreasingthebindercontentorchangingthetypeofbinderadditive.Ifdraindownvaluesareinexcessof0.3percent,theamountofbinderand/ortypeofbinderadditivecanbeadjusted.Fiberstabilizersaretypicallyincorporatedintothemixatarateof0.2to0.5%ofthetotalmix.

    Step4.EvaluateMixforMoistureSusceptibility

    ThemixdesignedwithStep1through3shouldbeevaluatedformoisturesusceptibilityusingthemodifiedLottmanmethod(AASHTOT283)withfivefreeze/thawcyclesinlieuofonecycle.Theretainedtensilestrength(TSR)shouldbeatleast80percent.

    CONSTRUCTIONOFTESTSECTIONS

    In1992,theGDOTinitiatedafieldstudytoevaluateOGFCmixes(5).TheprimaryobjectiveofthisstudywastocompareGDOTconventionalOGFCswithcoarserOGFCsmodifiedwithdifferentbinderadditivecombinations.Thiswasaccomplishedbyconstructingsixtestsectionsusingacoarsergradationwithsixcombinationsofpolymer/additiveonI-75southofAtlanta,Georgia.

    ThesixtestsectionswerecharacterizedasacoarseOGFC(D),coarseOGFCwith16percent

    crumbrubber(D16R),coarseOGFCwithcellulosefibers(DC),coarseOGFCwithmineralfibers(DM),coarseOGFCwithSBpolymer(DP),andcoarseOGFCwithSBpolymerandcellulosefibers(DCP).Mixdesignsforeachofthesemixeswasconductedusingthe"MethodofDeterminingOptimumAsphaltContentforOpen-GradedBituminousPavingMixtures,"whichisastandardprocedureforGDOT(GDT-114).

    Job-mix-formula(JMF)dataforeachofthesixmixesarepresentedinTable15.Thistable

    showsthatallsixOGFCmixeshadidenticalgradationsandonlydifferedbyrespectiveasphaltcontents.Ofinterest,theJMFgradationfallswithinthegradationbandrecommendedinthenewmixdesignsystem(Figure6).

    Table15.LaboratoryTestResultsfortheSixOGFCMixes(6)

    Test D D16R DM DC DP DCP

    Percentpassing19.0mm 100 100 100 100 100 100

    Percentpassing12.5mm 99 99 99 99 99 99

    Percentpassing9.5mm 75 75 75 75 75 75

    Percentpassing4.75mm 18 18 18 18 18 18Percentpassing2.36mm 8 8 8 8 8 8

    Percentpassing0.075mm 2 2 2 2 2 2

    PercentAsphaltBinderofTotalMix

    %AC 6.0 6.6 6.3 6.4 6.2 6.4

    OtherTestData

    Cantabro(%Wear) 13.5 8.6 5.7 5.8 8.6 8.2

    Drainage(%Loss) 0.37 0.05 0.06 0.06 0.34 0.04

    17

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    22/26

    Mallick,Kandhal,CooleyJr.,&Watson

    Figure6.GradationofOGFCFieldTestSections

    TestsconductedinadditiontothemixdesignincludedtheCantabroabrasionandSchellenbergDrainagetests.ResultsoftheCantabroabrasiontestindicatedthatallsixoftheOGFCmixeswouldmeettherequirementof20percentlossmaximumrecommendedintheproposedmixdesignsystem.Infact,forthefivemixescontainingbinderadditives,abrasionlossvalueswerealllessthan9percent.ThoughtheSchellenbergDrainagetestisnotidenticaltothe

    NCATdraindowntest(4),fourofthesixmixesmettypicalSchellenbergdrainagerequirementsof0.3percentbytotalbindermass.Ofthetwomixesnotmeetingthe0.3percentdraindown,oneusednopolymers/additives(D)andtheotherusedjustapolymer(DP).

    Productionofthemixesinthefieldwasaccomplishedwithadouble-barreldrumplant.The

    plantwasmodifiedslightlyinordertoincorporatethecrumbrubberandfibersintothemixingprocess.Duringproduction,trucksampleswereobtainedtodetermineasphaltcontent,gradation,airvoids,andCantabroabrasionlossvalues.Table16presentstheresultsofthistesting.

    BasedonTable16,fiveoftheproducedmixeswerefinerthantheJMFgradationonthe4.75

    mmsieve.Onlyonegradation(DM)didnotmeettherecommendedgradationbandwithinthe

    newmixdesignprocedure.However,thismixonlyvariedfromthebandby1.2percentonthe9.5mmsieve.Asphaltcontentsrangedfrom5.9to6.4percent.Airvoidcontentsoflabcompactedsamplesusing25blowsperfaceofaMarshallhammerrangedfrom10.9to14.1percentandarelowerthanwouldbeanticipatedontheroadway.Cantabroabrasionlossvaluesrangedfrom7.0to15.7percentandarealllowerthanthesuggested20percentmaximumcriteria.

    18

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    23/26

    Mallick,Kandhal,CooleyJr.,&Watson

    Table16.LaboratoryTestResultsforFieldProducedOGFCMixes( 6)

    SampleType JMF D DM DC DCP DP D16R

    SieveSize,mm TotalPercentAggregatePassingbyWeight

    19.0 100 100 100 100 100 100 100

    12.5 99 98.3 98.9 96.7 97.0 99.1 96.3

    9.5 75 70.0 76.2 64.0 68.6 69.9 60.3

    4.75 18 21.0 23.9 19.0 19.1 23.1 15.7

    2.36 8 8.7 9.0 7.7 7.8 8.4 7.4

    0.075 2 3.6 3.1 2.8 2.4 3.1 2.6

    MiscellaneousTestData

    AsphaltContent Extracted 5.85 6.22 6.16 6.14 6.25 6.41

    TMD --- 2.484 2.445 2.429 2.424 2.476 2.451

    VTM --- 12.2 11.4 11.5 10.9 14.1 12.0

    Cantabro(%Wear) --- 10.3 8.1 14.7 7.0 15.9 7.6

    Inadditiontotestingtrucksamples,coreswereobtainedfromeachofthesixtestsections.Testingofthesesamplesincludedasphaltcontentsandgradationsbyextractionandairvoidcalculations.Anadditionaltestconductedwasthein-placepermeabilityofeachsection.ResultsofthistestingarepresentedinTable17.

    Table17.LaboratoryTestResultsforRoadwayCoreSamplesfromOGFCTestSections

    SampleNo. JMF D DM DC DCP DP D16R

    SieveSize,mm TotalPercentAggregatePassingbyWeight19.0 100 100 100 100 100 100 100

    12.5 99 99.3 98.6 99.2 97.6 99.3 99.2

    9.5 75 77.3 77.2 75.5 73.1 76.5 76.7

    4.75 18 28.1 28.3 28.0 26.9 27.8 28.0

    2.36 8 13.1 13.6 13.7 13.0 13.1 13.1

    0.075 2 3.8 4.1 3.5 3.9 3.8 3.4

    MiscellaneousTestData

    AsphaltContent Extracted 5.51 5.87 6.18 5.27 5.85 5.69

    VTM --- 17.8 17.2 16.4 16.0 17.6 18.1

    Permeability --- 46 82 71 71 84 67(m/day)

    OfnoteinTable17arethein-placeairvoidcontentsofthecompactedmixes.Airvoidcontentsrangedfrom16.0to18.1percentwhichrelatewelltothedataaccumulatedinthelaboratorypartofthisstudy(Table10).Thesevaluesalsoseemtovalidatetheselectionof18percentairvoidsminimumduringthenewmixdesignsystemasmixesmeetingthegradationrequirementscanbeconstructedtohave18percentairvoids.Permeabilityvaluesobtainedfromthesixtestsectionsrangedfrom46to84m/dayandappeartocorrespondreasonablywellwithpermeabilitydatafromthelaboratoryworkinthisstudy(Table8).

    19

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    24/26

    Mallick,Kandhal,CooleyJr.,&Watson

    DataobtainedfromthisGDOTfieldstudyindicatethatOGFCmixesmeetingthegradation

    requirementsoftherecommendedmixdesignprocedurecanbeproducedsuccessfullyinthefield.Also,becauseofthetestingproceduresusedbyGDOTintheirfieldstudy,itisbelievedthatthesixmixeswouldbesimilartoOGFCmixesdesignedusingthenewmixdesign

    procedure.Therefore,theperformanceofthesemixesinthefieldshouldprovidevaluableinformationonhowmixesdesignedwiththenewprocedurewouldperform.

    PERFORMANCEOFTESTSECTIONS

    During1998(sixyearsafterconstruction),representativesofNCATperformedavisualdistresssurveyonthesixOGFCtestsections(8).Thesurveyconsistedofevaluatingeachsectionforsurfacetexture,rutting,cracking,andraveling.Duringthecourseofthesurvey,coreswereobtainedfromeachsectionandusedtodeterminethelaboratorypermeability.AlsoreportedinthissectionaretheresultsoffrictiontestingconductedbytheGDOT3.5yearsafterconstruction(5).

    VisualDistressSurvey

    SurfaceTexture

    Allsixtestsectionshadexperiencedsomecoarseaggregatepopout.TheD16RsectionappearedtohavethemostwhiletheDC,DM,andDPsectionsallhadaverylowamount.Anothersurfacetextureitemwastheexistenceofsmallfatspotsonthepavementsurface.Eachofthesixsectionshadthesefatspots.However,nonewerelargerthanapproximately15cmdiameter.TheDandDCPappearedtohavethemostbutwerenotdeemedsignificant.

    Rutting

    Rutdepthmeasurementsweremadeforeachsectionusingastringline.Rutdepthsrangedfrom0.0mmfortheDPsectionto4.1mmfortheDCsection.Noneofthesectionswerecharacterizedashavingsignificantamountsofrutting.

    Cracking

    TheprimaryformofcrackingonallsixsectionswasreflectivefromaPortlandcementconcretepavementunderlyingeachsection.Table18presentsdescriptionsandpercentagesofreflectivecracksencountered.Percentagesweredeterminedbycountingthenumberoftransversecracksvisibleatthepavementsurface.

    Table18.SeverityandPercentageofTransverseReflectiveCracks

    Section

    D

    D16R

    DMDC

    DP

    DCP

    Description

    Lowtomediumseverity

    Lowtohighseverity

    LowseverityLowseverity

    Lowtomediumseverity

    Lowtomediumseverity

    %CracksShowing

    75

    87

    5545

    61

    65

    Table18showsthatfiveofthesixsectionshadlowtomediumseverityreflectivecracking.ThetwoOGFCmixescontainingonlyfibers(DMandDC)hadtheleastamount(andseverity)ofcrackingwhiletheD16Rsectionhadthehighestamountandseveritycracking.Reflectivelongitudinalcrackswerealsoobservedonfivesections.OnlytheDandD16Rsectionshadwhatcouldbecharacterizedasmediumseveritylongitudinalcracking.

    20

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    25/26

    Mallick,Kandhal,CooleyJr.,&Watson

    Besidesreflectivecracking,onlytheD16Rsectionshowedanyothertypeofcracking.

    Secondarycrackingaroundsomereflectivecrackshadoccurred.

    Raveling

    Allsixsectionsshowedsomesignsofraveling.However,allravelingwasminimalexcepttheD16Rsectionwhichshowedsomemediumseverityravelingnexttosomecracks.

    PermeabilityTestingofCores

    Three150mmcoreswereobtainedfromeachofthesixsections.Table19presentstheaveragelaboratorypermeabilityvaluesfromeachsectionaswellasaveragein-placeairvoidcontents.Statistically,nosignificantdifferencesexistbetweenthepermeabilityvalues;however,theDCandDCPsectionsdidhavethehighestaveragepermeabilityat74and70m/day,respectively.In-placeairvoidcontentsrangedfrom15to19percent.Bulkspecificgravitymeasurementsweredeterminedbyvolumetricmeasurements.Itisinterestingthatthisrangeofairvoidcontentscorrespondwellwiththeroadwaycoreairvoidcontents(atthetimeofconstruction)presented

    inTable17.Again,thisappearstoprovidevaliditytotheselectionof18percentairvoidsminimuminthenewmixdesignsystem.ThiscriteriaappearstoberelatedtoairvoidcontentsatbothconstructionandduringthelifeofanOGFCpavement.Additionally,itappearsthatthemixdesignprocedureusedbyGDOTinthisexperimentresultedinOGFCmixeswithstone-on-stonecontacteventhoughitwasnotspecificallytested.

    Table19.AveragePermeabilityandIn-PlaceAirVoidContentsfortheSixTestSections

    Section

    D

    D16R

    DM

    DCDP

    DCP

    FrictionTesting

    Avg.Permeabilitym/day

    25

    38

    28

    7416

    70

    Avg.In-PlaceAirVoids,%

    16.7

    15.8

    19.9

    16.213.9

    19.2

    FrictiontestingwasconductedbyGDOT3.5yearsafterconstructionaccordingtoASTME274procedures(5).Resultsofthistestingindicatedthatfrictionvaluesforthesixsectionsrangedfrom49to51.Thesevaluesweredeemedsatisfactory(5).

    CONCLUSIONS

    ResultsofthisstudyshowedthatacoarsergradationforOGFCmixesprovidesabetterperformingOGFCpavement.Gradationsnear15%passingthe4.75mmsieveperformedmuchbetterthanfinergradationsinthelaboratory.Modifiers,whetherpolymerand/orfibers,werealsoshowntoenhancetheperformanceofOGFCmixes.Usingthisknowledge,anewmixdesignsystemforOGFCmixeswasrecommended.

    ConstructionandperformancedataforsixOGFCpavementsthatwouldcloselyresemblemixes

    resultingfromthenewmixdesignsystemwerealsodiscussed.Basedupontheinformationobtainedfromboththelaboratoryandfieldwork,itisconcludedthatthenew-generationOGFCwillprovideabetterperformingmixture.

    21

  • 8/9/2019 Design, Construction, and Performance of New Generation Open Graded Friction Course (OGFC)

    26/26

    Mallick,Kandhal,CooleyJr.,&Watson

    REFERENCES

    1.

    2.3.

    4.

    5.

    6.

    7.

    8.

    Smith,R.W.,J.M.Rice,andS.RSpelman.DesignofOpen-GradedAsphaltFrictionCourses.ReportFHWA-RD-74-2,FederalHighwayAdministration,January1974.

    Smith,H.A.PerformanceCharacteristicsofOpen-GradedFrictionCourses.NCHRPSynthesisofHighwayPractice180,TRB,1992.Kandhal,P.S.,andR.B.Mallick.Open-GradedFrictionCourse:StateofthePractice.TransportationResearchCircularNumberE-C005,TRB,December1998.Brown,E.R.,andL.A.Cooley.DesigningStoneMatrixAsphaltMixturesforRut-ResistantPavement.NCHRPReport425,TRB,1999.Santha,Lanka.ComparisonofStandardOpen-GradedFrictionCourseswithModifiedOpen-GradedFrictionCourses.GeorgiaDepartmentofTransportationResearchProjectNo.9110,FinalReport,April1997.FloridaDepartmentofTransportation."FloridaMethodofTestforMeasurementofWaterPermeabilityofCompactedAsphaltPavingMixtures."FM5-565,March1999.PorousAsphalt.Manual17,SabitaLtd,Roggebaai,SouthAfrica,November1995.

    Cooley,Jr.,L.A.andE.R.Brown."EvaluationofOGFCPavementsContainingCelluloseFibers."NationalCenterforAsphaltTechnology.PreparedforInterfibeCorporation.April1999.

    22