design considerations for geosynthetic clay liners (gcls) in heap leach pad liner systems

29
 Design considerations for  hea  leach ad liner s stems C.  Athanassopoulos,  P E CETCO  U S A M.  Smith,  P E R RD  International  Corp,  US A September  25,  2013

Upload: jose-guilherme-valadares

Post on 01-Nov-2015

30 views

Category:

Documents


0 download

DESCRIPTION

Liner Applications in Heap Leaching

TRANSCRIPT

  • Designconsiderationsforgeosynthetic clay liners (GCLs) ingeosyntheticclayliners(GCLs)inheapleachpadlinersystemsC. Athanassopoulos, PECETCO, USA

    p p y

    ,

    M. Smith, PERRD International Corp, USA

    September25,2013

  • Liner Applications in Heap LeachingGeomembraneshaveaproventrackrecord,butarevulnerabletopuncturedamage

    LinerApplicationsinHeapLeaching

    InHeapLeachPads,puncturesserveasopenpathwaysforlossofPregnantLeachSolution(PLS):

    SmithandWelkner (1995)estimatedlinerleakageratesrangingfrom5to10,000L/ha/day

    ThielandSmith(2003)reportedupto2,000L/ha/dayforonevalleyfillwithhighheads

  • Liner Applications in Heap LeachingLinerApplicationsinHeapLeachingToreduceleakagethroughdefectstheGMcanbeplacedoveralowpermeability soil as part of a composite liner system:permeabilitysoil,aspartofacomposite linersystem:Compactedclaywithk=106 cm/sor107 cm/s;ORGeosyntheticclayliners(GCLs),sodiumbentonitebasedlinerswithky y ( )=5x109 cm/s

    Claycomponentwillplugdefectsorpuncturesinthegeomembrane,reducingoverallleakage

  • Low Permeability SubgradeLowPermeabilitySubgrade

    Smallerwettedarea,limitsPLSfromspreadingoutl lllaterally.

  • High Permeability SubgradeHighPermeabilitySubgrade

  • Landfill Liner Leakage RatesLandfillLinerLeakageRates

    Source: Bonaparte, Daniel, and Koerner. (2002) Assessment and Recommendations for Optimal Performance of Waste Containment Systems, EPA/600/R-02/099. USEPA, ORD, Cincinnati, OH

  • NOT like LandfillsNOTlikeLandfillsScaleofoperationsisawesome: Finalheapheightsashighas200mFinal heap heights as high as 00 m Resultinginenormousnormalstresses(upto3500kPa) Steepslopes1.4H:1V,approx.36

    Combinationofhighnormalstresses,overstressingofGMnexttopipes,largeangularrockinoverlinerandsubgrade,hightemperatures,andaggressiveleachingsolutions

    Pushesthelimitsoflinermaterials

    Requiresspecialdesignconsiderations

  • HeapLeachPadTechnicalConsiderations

    GCL Chemical Compatibility with

    Considerations

    GCLChemicalCompatibilitywithMineLiquids(includingpHeffects)

    GeomembraneandGCLPuncturePerformance

    GCLShearStrengthandSlopeStabilityStability

  • GCL Chemical CompatibilityASTMD6766,StandardTestMethodforE l ti f H d li P ti f

    GCLChemicalCompatibility

    EvaluationofHydraulicPropertiesofGCLsPermeatedwithPotentiallyIncompatibleFluids

    ModifiedversionofD5887andD5084(shoppressandfixedwallpermeameter)

    Termination criteria for chemicalTerminationcriteriaforchemicalequilibrium:E.C.In E.C.OutpHIn pHOut

  • GCL Permeability with Gold/Silver PLS

    1E-7

    GCLPermeabilitywithGold/SilverPLS)

    GoldPLS NaCN = 600 ppm

    1E-8

    m

    e

    a

    b

    i

    l

    i

    t

    y

    (

    c

    m

    /

    s

    e

    c

    )

    NaCN 600ppm pH=10to11 K

  • Compatibility with extremepH LiquidsCompatibilitywithextreme pHLiquids

    BentonitecanhandleawidepHrange3 12

    Strongacidattacksthel t it tclayorconvertsittononswellingform

    MetalsaremoresolubleatlowpH

    Jo H Y Katsumi K Benson C H and T Edil (2001) Hydraulic Conductivity and Swelling of NonprehydratedJo, H.Y., Katsumi, K., Benson, C.H., and T. Edil (2001), Hydraulic Conductivity and Swelling of NonprehydratedGCLs Permeated with Single-Species Salt Solutions, Journal of Geotechnical and Geoenvironmental Engineering, 127 (7): 557-567.

  • GCLPermeabilitywithCopperPLSy pp

    pH=1.7p ElectricalConductivity=

    37,000uS/cm Aluminum = 5,044 ppmAluminum 5,044ppm Calcium=262ppm Copper=800ppm

    I 1 788 Iron=1,788ppm Magnesium=498ppm Zinc=198ppm

    Source: Athanassopoulos et al (2009).

  • BentonitePolymer AlloysBentonitePolymerAlloysNewclaypolymernanocompositeswithimproved 1.00E-04

    tolerancetolowpH,highionicstrengthsolutionshavebeendeveloped

    1.00E-07

    1.00E-06

    1.00E-05

    n

    d

    u

    c

    t

    i

    v

    i

    t

    y

    ,

    c

    m

    /

    s

    RecenttestswithUraniummilltailingssolution(pH

  • HighLoadStaticPunctureTesting16staticpuncturetests,atloadsof:

    Testing

    1300kPa2580kPa3450 kPa3450kPa5170kPa

    FS = 1 5 for ore heights of:FS 1.5fororeheightsof:45m90m120m180m

    Source: Athanassopoulos et al (2009)

  • BenefitofGCLUnderneathGM(5172kPa,or180m)

    GMalone8.5%typicalstrain25.7%peakstrain

    3

    GM/GCL1.6%typicalstrain3.0%peakstrain03punctures 0punctures

  • BenefitofGCLunderGM:Deformation MeasurementsDeformationMeasurements

  • GeomembraneDamageduringShearing

    Constructionloading,oreplacement,seismicforces,orsettlementcancausesheardisplacement

    TestingatUCSanDiegofoundGMis vulnerable to shearinducedisvulnerabletoshearinducedpuncturedamageathighnormalstressI l di GCL b t th IncludingaGCLbetweenthegeomembraneandthesubgradesoilcanessentiallyeliminatesuchd t l tdamage,evenatnormalstressesashighas4144kPa(150moforewithFS=1.5)

    Athanassopoulos et al (2012). Shear-Induced Geomembrane Damage due to Gravel in the Underlying Compacted Clay Liner Underlying Compacted Clay Liner. GeoAmericas 2012.

  • DirectShearTestingofGeomembrane/GCL

    SheardeviceatUniversityofCaliforniaSan DiegoCalifornia SanDiego

    Testchamber=152x1067mmMaxnormalstress=4,144kPa

    Doublenonwoven,needlepunchreinforcedGCL

    testedagainstBlownfilmcoextrudedtexturedGM

    Source: Athanassopoulos, Fox, and Thielmann (2012), EuroGeo5

  • Sand(Subgrade)

    GCL HDPEGeomembrane

    Gravel(Overliner)

  • GM/GCLInterfaceatUltrahighloads(4,145kPa)

    2000

    )

    Peakfrom2013study

    1500

    p

    o

    r

    L D(

    k

    P

    a

    )

    LDfrom2013study 200mmPeakfrom2009studyLDfrom2009study 75mm

    19o

    17o15o

    24o

    23o

    20o1000

    r

    S

    t

    r

    e

    n

    g

    t

    h

    ,

    p

    22o21o 20

    o

    13o 9o 8o 5o 5o

    5o

    24o

    12o 10o 7o

    0

    500

    S

    h

    e

    a

    r

    00 500 1000 1500 2000 2500 3000 3500 4000 4500

    NormalStress,n (kPa)Thielmann et al (2013);Athanassopoulos et al (2009)

  • ApplicableStressRanges

    Liner Systemf,2n 2

    f,1n,2n,1

    f,2

    f,1c2,

    c1,1n,2n,1

    LowLDfrictionangleswilloccurunderthedeepestpartoftheheap.Therewillbemuchhigherf i i l i h i i l bili d h d h f ifrictionanglesinthecriticalstabilityzonetowardsthetoe,andthereforegreaterresistancetosliding.

  • BreitenbachandSwan(1999)( )

    IncreasedShearStrength(~5degrees)duetoGMDimplingunderHighNormalStress

  • ImprovingHeapLeachPadStabilitySpeedBumps

    Source:BreitenbachandAthanassopoulos(2013)

  • Source: Comanco

    Example stability berm configuration from a heap leach pad liner projectExamplestabilitybermconfigurationfromaheapleachpadlinerproject.

  • ImprovingHeapLeachPadStabilityp g p yStairStepberms

    Source:BreitenbachandAthanassopoulos(2013)

  • Source: Allan Breitenbach

    Stair step pattern on back slope

    Source:AllanBreitenbach

    Dependingonlocalterrain,incorporatingnaturalundulationsofStairsteppatternonbackslope.sitesubgradeintogradingplanmayreducecost.

  • HLPFeasibilityStudy ExampleGM/compacted

    soilGM/GCL

    Leakage (L/ha/day) 1 929 203Leakage(L/ha/day) 1,929 203

    CopperinPLS(ppm) 3,000 3,000

    Copper lost due to leakage 2 113 222Copperlostduetoleakage(kg/ha/yr)

    2,113 222

    Copperprice(Sept2013)($/kg) $7.06 $7.06pp p p g

    Costofcopperlost($/ha/yr) $14,910 $1,590

    Gain in Revenue ($/ha/yr) $13,340GaininRevenue($/ha/yr) $13,340

    BenefitCostRatio(PV,i =10%,n=15years,claycost=$4.30/m2,GCLcost=$5.90/m2) 6.3

  • GCLsinHeapLeachPads Summary ChemicalCompatibility.GCLsarecompatibilitywithCNleachsolutions.GCLpermeabilitycanbeaffectedbylowpHsulfuricacidleachsolutions;

    p y

    however,increasednormalstressmitigatestheseeffects.

    PunctureProtection.GCLscancushiongeomembrane from stones in both the overlinergeomembranefromstonesinboththeoverlinerandsubgrade.

    ShearStrengthandSlopeStability. GM/GCLinterfaceshavehighpeakstrengths,butg p g ,potentiallylowLDstrengths.However,incorporatingnonplanarfeaturesinthesubgrade(e.g.,speedbumps)canimprovestability,eveninworstcase conditions (7 degrees)worst caseconditions(7degrees)

    FeasibilityStudy.ImprovedPLScontainmentprovidedbyGCLoverlifeofprojectwilloftenmorethanoffsettheinitialcostofGCL.

  • ThankyouQ ti ?Questions?C.Athanassopoulos,PECETCO,[email protected]

    M.Smith,PERRDInternationalCorp,[email protected]