design and numerical analysis of the … 044.pdfdesign and numerical analysis of the processes in...

1
DESIGN AND NUMERICAL ANALYSIS OF THE PROCESSES IN SILOXANE VAPOR DRIVEN TURBINE A. Sebelev 1 , R. Scharf 2 , N. Zabelin 1 , M. Smirnov 1 1 Peter the Great St. Petersburg Polytechnic University; 2 Leibniz University of Hannover Aleksandr Sebelev: [email protected], www.spbstu.ru Roland Scharf: [email protected], www.ikw.uni-hannover.de Motivation One of the most important questions in the designing process of a recovery plant for waste heat recovery is the choosing of a working fluid. Nowadays the aspects of using of various hydrocarbons, freons and alcohols in ORC are widely researched by different authors. Significant peculiarities in details of the expansion process in the ORC turbines No investigations of the fluid flow highlights in the siloxane vapor driven turbines 700 1700 120 4300 3220 1030 < 300 0,09 0,03 0,01 0,00 0,00 0,00 0,00 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,10 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 GWP ODP GWP ODP GWP ODP GWP ODP GWP ODP GWP ODP GWP ODP R-141b R-22 R-123 R-143a R-227ea R-245fa MM ODP GWP Ngyen et al., 2001, Pentane Yamamoto et al., 2002, R123 Li et al., 2013, R123 Klonowicz et al., 2014, R227ea Fu et al., 2015, R245fa Wang et al., 2010, R245+R365mfc 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 2000 2004 2008 2012 2016 Modern requirements for environment safety determine ozone depletion potential (ODP) and global warming potential (GWP) as main criteria for choosing of a working fluid. In this case the most promising alternatives to different hydrocarbons, freons and alcohols are zeotropic mixtures and siloxanes. Investigation object Subcritical ORC with hexametyldisiloxane 320,00 370,00 420,00 470,00 520,00 570,00 0,20 0,40 0,60 0,80 1,00 Turbine Regenerator (hot side) Condenser Evaporator s, kJ/kg T, K High enthalpy drop supersonic turbine Parameter Dimensions Value Parameter Dimensions Value D m mm 380 α 1 deg. 7,00 n rev/min 12000 ΔL ax mm 7,00 H 0 kJ/kg 66,26 ΔL tc mm 0,30 G kg/s 6,86 β 1 deg. 90,00 C ax /u - 1,52 Z 2 - 55 ε - 0,97 l 2 mm 24,75 Z 1 - 7 β 2 * deg. 30,00 l 1 mm 18,95 Ω deg. 60,00 Numerical model Numerical model Results Real gas model using Aungier Redlich-Kwong equation of state and Rigid Non Interacting Sphere model: ; ) ( ) ( b T a c b RT p ; 5 , 0 0 c T T a a c c c c c b b a p RT c ) ( 0 ; 4 5 3 4 2 3 2 1 0 T a T a T a T a a R c p 2 ) ( 69 , 26 T wT 420 430 439 449 458 468 477,2 0,04 0,2 0,36 0,52 0,68 0,84 1 p, МПа 1,18-1,21 1,15-1,18 1,12-1,15 1,09-1,12 1,06-1,09 1,03-1,06 1-1,03 T, K k Inlet, total parameters Symmetry boundary Nozzle Blade wheel Tip shroud Stationary wall Outlet, static parameters High Re k-ω SST 4 positions with Frozen rotor interface Progressive steps of the initial parameters 0,70 0,75 0,80 0,85 0,90 0,95 1,00 1,05 1,10 1,15 1,20 0,0092 0,0142 0,0192 Mach number Coordinate, m 0.5 mm before critical section critical section 0.5 mm after critical section 699 , 0 30 0 H G n M BW t The flow in the critical section is not fully supersonic. Physically, it means that the position of real critical section changed to the downstream direction in comparison with its design position. The velocity profile near the critical section is highly distorted towards to the straight nozzle wall The double-vortex structure appears in the nozzle and spreads to the bade wheel. The hub vortex rotates clockwise and rests against the blade wheel hub. The shroud vortex has a counterclockwise rotation and rests against the blade wheel shroud because of the inertial forces Hub vortex Shroud vortex Specific shape of the shock wave after the blade wheel. The intensity of the normal shock wave decreases from hub to shroud. Shroud vortex is underexpanded and continues its expansion after the blade wheel Vortices cores Boundary of vortices interaction Shock wave Tip shroud leakage ) ( 1 , 309 30 kW n M N BW

Upload: buidat

Post on 18-May-2018

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: DESIGN AND NUMERICAL ANALYSIS OF THE … 044.pdfDESIGN AND NUMERICAL ANALYSIS OF THE PROCESSES IN SILOXANE VAPOR DRIVEN TURBINE ... for waste heat recovery is the choosing of a working

DESIGN AND NUMERICAL ANALYSIS OF THE PROCESSES IN SILOXANE VAPOR DRIVEN TURBINE

A. Sebelev1, R. Scharf2, N. Zabelin1, M. Smirnov1

1Peter the Great St. Petersburg Polytechnic University; 2Leibniz University of Hannover

Aleksandr Sebelev: [email protected], www.spbstu.ru

Roland Scharf: [email protected], www.ikw.uni-hannover.de

Motivation

One of the most important questions in the designing process of a recovery plant

for waste heat recovery is the choosing of a working fluid. Nowadays the aspects of

using of various hydrocarbons, freons and alcohols in ORC are widely researched

by different authors.

Significant peculiarities in details

of the expansion process in the

ORC turbines

No investigations of the fluid flow

highlights in the siloxane vapor

driven turbines

700

1700

120

4300

3220

1030

< 300

0,09

0,03

0,01

0,00 0,00 0,00 0,00 0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,10

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

GW

P

OD

P

GW

P

OD

P

GW

P

OD

P

GW

P

OD

P

GW

P

OD

P

GW

P

OD

P

GW

P

OD

P

R-141b R-22 R-123 R-143a R-227eaR-245fa MM

ODP GWP

Ngyen et al.,

2001, Pentane

Yamamoto et

al.,

2002, R123

Li et al.,

2013, R123

Klonowicz et

al., 2014,

R227ea

Fu et al.,

2015, R245fa

Wang et al.,

2010,

R245+R365mfc

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

2000 2004 2008 2012 2016

Modern requirements for

environment safety determine

ozone depletion potential

(ODP) and global warming

potential (GWP) as main

criteria for choosing of a

working fluid. In this case the

most promising alternatives

to different hydrocarbons,

freons and alcohols are

zeotropic mixtures and

siloxanes.

Investigation object

Subcritical ORC with

hexametyldisiloxane

320,00

370,00

420,00

470,00

520,00

570,00

0,20 0,40 0,60 0,80 1,00

Turbine

Regenerator

(hot side)

Condenser

Evaporator

s, kJ/kg

T, K

High enthalpy drop supersonic

turbine

Parameter Dimensions Value Parameter Dimensions Value

Dm mm 380 α1 deg. 7,00

n rev/min 12000 ΔLax mm 7,00

H0 kJ/kg 66,26 ΔLtc mm 0,30

G kg/s 6,86 β1 deg. 90,00

Cax/u - 1,52 Z2 - 55

ε - 0,97 l2 mm 24,75

Z1 - 7 β2* deg. 30,00

l1 mm 18,95 Ω deg. 60,00

Numerical model

Numerical model

Results

Real gas model using Aungier Redlich-Kwong equation of state and Rigid Non

Interacting Sphere model:

;)(

)(

b

Ta

cb

RTp

;

5,0

0

cT

Taa c

ccc

c b

b

ap

RTc

)(

0

;45

34

2321

0

TaTaTaTaaR

cp

2)(69,26

T

wT

420

430

439

449

458

468

477,2

0,040,20,360,520,680,841

p, МПа

1,18-1,21

1,15-1,18

1,12-1,15

1,09-1,12

1,06-1,09

1,03-1,06

1-1,03

T, K

k

Inlet, total parameters

Symmetry boundary

Nozzle Blade wheel Tip shroud

Stationary wall Outlet, static parameters

High Re k-ω SST

4 positions with

Frozen rotor interface

Progressive steps of

the initial parameters

0,70

0,75

0,80

0,85

0,90

0,95

1,00

1,05

1,10

1,15

1,20

0,0092 0,0142 0,0192

Mach

nu

mb

er

Coordinate, m

0.5 mm before

critical section

critical section

0.5 mm after

critical section

699,030 0

HG

nM BWt

The flow in the critical section is not fully supersonic. Physically, it means that the

position of real critical section changed to the downstream direction in comparison

with its design position. The velocity profile near the critical section is highly

distorted towards to the straight nozzle wall

The double-vortex structure appears in the nozzle and spreads to the bade wheel.

The hub vortex rotates clockwise and rests against the blade wheel hub. The

shroud vortex has a counterclockwise rotation and rests against the blade wheel

shroud because of the inertial forces

Hub vortex Shroud vortex

Specific shape of the shock wave after the blade wheel. The intensity of the

normal shock wave decreases from hub to shroud. Shroud vortex is

underexpanded and continues its expansion after the blade wheel

Vortices cores Boundary of vortices interaction Shock wave Tip shroud leakage

)(1,30930

kWnM

N BW