design and modeling of nanodevices

40
NM6605 NTU–TUM X. ZHOU 1 © 2020 NM6605: Design and Modeling of Nanodevices Design and Modeling of Nanodevices Compact Modeling of Nano MOSFETs Design and Modeling of Nanodevices Compact Modeling of Nano MOSFETs Dr Zhou Xing Web: https://www.ntu.edu.sg/home/exzhou/Teaching/TUM-NM6605/ Office: S1-B1c-95 Phone: 6790-4532 Email: [email protected]

Upload: others

Post on 26-Feb-2022

10 views

Category:

Documents


0 download

TRANSCRIPT

NM6605 NTU–TUM

X. ZHOU 1 © 2020

NM6605: Design and Modeling of Nanodevices

Design and Modeling of NanodevicesCompact Modeling of Nano MOSFETs

Design and Modeling of NanodevicesCompact Modeling of Nano MOSFETs

Dr Zhou Xing

Web: https://www.ntu.edu.sg/home/exzhou/Teaching/TUM-NM6605/

Office: S1-B1c-95Phone: 6790-4532Email: [email protected]

NM6605 NTU–TUM

X. ZHOU 2 © 2020

Top-down vs Bottom-up

Top-down

Bottom

-up

Lithography

Assembly

Motivation:New models for future nano-devices at the atomic scale.

History:ICs have been designed by SPICE using BSIM over the past 30 years.

sand

device~20yrs~30yrs

EDA toolsfor nanodevice

BSIM/SPICEfor IC designs

100 m

10 m

1 m

100 nm

10 nm

1 nm

100 pm

1960 2060202020001980 2040

CNT

Singleatom

2007

Nanoelectronics

Microelectronics Mol.Ele.

Minimum Feature Size

SPICE models

NW

TG

NM6605 NTU–TUM

X. ZHOU 3 © 2020

M. Chan, et al., Microelectronics Reliability, vol. 43, pp. 399-404, 2003.

A disturbing version of “Moore’s law” — the number of compact-model parameters doubles about every decade (as a result of “evolutionary” development)

“Moore’s Law”

Compact Model Parameters

Chip complexity will double about every 18 months.

NM6605 NTU–TUM

X. ZHOU 4 © 2020

Approaches to Analyzing Microelectronic Systems

NM6605 NTU–TUM

X. ZHOU 5 © 2020

Process/structural variations

Device

Process

Gate

Block

Centered at transistor-level compact model

Parameterextraction

Analogand

Digitalacceleration

Subcircuitexpansion

Transistor optimization

System performance

MotivationCompact multi-level

technology/transistor/subsystem modeling

Technology development

Circuit

Interconnect

Process effectson device/circuit

Process – Device – Circuit – Block – System

NM6605 NTU–TUM

X. ZHOU 6 © 2020

“Vertically”-integrated giant semiconductor manufacturers

“Horizontally”-strong foundries and fabless design houses

FabDesign

CAD

IC ChipManufacturer

WaferFab

Foundry

FablessDesignHouse

EDAVendor

Paradigm Shift in IC Chip Design and Manufacturing

NM6605 NTU–TUM

X. ZHOU 7 © 2020

Ideality

SPICESPICE

Reality

EDA Vendor

CAD developer

Design House

Circuit designer

Wafer Fab

Process engineerCM

Model developer

Design–Fabrication Paradigm: Ideality & Reality

NM6605 NTU–TUM

X. ZHOU 8 © 2020

Wafer FabDesign House

EDA Vendor

CAD developer

Circuit designer Process engineerCM

Model developer

I won’t extract your model unless my customer

(designer) wants it…

I won’t use it unless it’s been implemented in

my SPICE simulator…

I won’t code it unless fab can provide data and model…

Do you want to trymy new model?

Will you supportmy new model?

Can you implementmy new model?

1 32

Model Developer’s Dilemma

NM6605 NTU–TUM

X. ZHOU 9 © 2020

Models and Modeling Groups

BSIM EKV HiSIM ULTRA-SOI/MGACM

NGSOI/MG Model

Xsim Technology-dependent predictive model DG/MG SiNW/CNT PCMOSISNE

III-V/Si

NM6605 NTU–TUM

X. ZHOU 10 © 2020

’70 ’80 ’90 ’00Time

Accuracy & Speed

’10

Central concern for CM: accuracy–speed tradeoff

Vt-based

s-based

P–S M1 M2 M3 B1 B2 B3

SPM11HiS

M9B4

SPP

EKV

Qi-based

U

Determined by demand/supply

X

(No demand for 30+ yrs)

(Not as slow with HPC)

Iterative: can be costly for digital

(High demand for analog)

ACM

B5

PSP

Future: how to tradeoff?

• Scalable (non-binnable): accuracy over geometry

• Single-piece across all regions• Selectable accuracy within the

same core model• Extension to non-bulk FETs

Accuracy–Speed Tradeoff: History & Future

NM6605 NTU–TUM

X. ZHOU 11 © 2020

Role of Compact Model

(Courtesy: M. Chan) Ultimate goal: towards accuracy and simplicity

NM6605 NTU–TUM

X. ZHOU 12 © 2020

f(x)

x

x0 x1x2

x3

1

1 2

1 1

01 2 2 1

21 1

2 2 3

1 1 2 1 2

1 2 1 1 2C

C C

C CI iR R h R h Vi iVC C

R h R R h

Transient:“companion”

1 11 2 2 1 0

21 1

2 2 3

1 1 1

1 1 1 0

jj C j C

R R R V I eVj C j C

R R R

AC:

1 2 01 2 2

1 22 2 3

1 1 1

1 1 1 0

V V IR R R

V VR R R

KVL/KCL:

1 2 2 1 0

2

2 2 3

1 1 1

1 1 1 0R R R V I

VR R R

DC:

1 '

nn n

n

f xx x

f x

Nonlinear: N–R iteration

0 1thV nvI I e

SPICE Circuit Simulation: (Modified) Nodal Analysis

NM6605 NTU–TUM

X. ZHOU 13 © 2020

What Is a Model, and Modeling?

“The sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a model is meant a mathematical construct which, with the addition of certain verbal interpretations, describes observed phenomena. The justification of such a mathematical construct is solely and precisely that it is expected to work.”

John von Neumann

A model is a mental image of reality

• One can have many different images of the same reality.• Correct physical approximations and correct mathematical

formulations to emulate ideal device physical behaviors and corroborate with real device characteristics.

• What does “compact” mean?• What is “physical” of a model?

NM6605 NTU–TUM

X. ZHOU 14 © 2020

ID(V) = Ids + Ib + IgMonte Carlo:(6-D, t)

ID(k,r,t)t

rk

Numerical:(3-D, t)

ID(r,t,)t

r(x,y,z)

Compact: (0-D, t)

ID

Ids

Ib

IgDGS

B

“DC”(n sets = “unphysical”)

Q + Q(t)

f, (t)

Vg,Vd,Vb,VsL,W,(Z)

Age

T

QI = Qv

Gij = Ii/Vj

Cij = Qi/Vj

SPICE(nodal analysis)

mental image

Perspective: Compact Modeling for Circuit Simulation

NM6605 NTU–TUM

X. ZHOU 15 © 2020

Ideal vs Real MOSFET To Be Modeled

(R. Rios, WCM2005)

This is what the core model deals with.

But we need to model this…

NM6605 NTU–TUM

X. ZHOU 16 © 2020

Binning = piece-wise (in geometry) Infinite number of bins = single-device model = nonscalable (= unphysical ?)

Key difference: “binnable” (transistor-based) vs “non-binnable” (technology-based) model Binnable model: parameters extracted by fitting electrical data at fixed geometry Non-binnable model: parameters extracted by fitting data over geometry at fixed

bias Compare: Meshing — necessary? and physical?

L

Vt

N

N(x,y)

Numerical: meshing

Homogeneous:Meshing unnecessary,

1 mesh n mesh(s-model numerical)

Inhomogeneous:Meshing necessary,

and physical(s-model “less physical”)

Compact: binning

Necessary and physicalfor non-binnable model

Binnable model:n sets = “unphysical”

1 bin n bin

“Binning” vs “Meshing”

NM6605 NTU–TUM

X. ZHOU 17 © 2020

Sah–Pao (input)Voltage Equation

Pao–Sah (output)Current Equation s-based

Qi-based

Vt-basedQb linearization

Qi linearization

Iterative / explicit

1966 1978 1985 1995 2005

Pois

son

+ G

CA

Classical bulk-CMOS

ChargeSheetModel(Qsc=Qb+Qi)

~40 yrs

MOSFET Compact Models: History and Future

Non-classical CMOS

SOI

MG

Bulk Voltage/Current Equations, CSM

New Voltage/Current Equations

Partially-Depleted (PD) Fully-Depleted (FD), Ultra-Thin Body (UTB)

Non-Charge-SheetSymmetric/Asymmetric Double Gate (s-DG/a-DG)

nont

rivia

l

Tri-gate, GAA, Schottky-barrier, DSS, TFET, …Body Contact/Floating Body

NM6605 NTU–TUM

X. ZHOU 18 © 2020

Conceptual “Core” Bulk-MOS at Various Body Doping

VGVS VD

VB

Vs

Vb

VdVs Vdn+ n+

NA – ND

NsdXj

Ng

Lg

Tox

TSi

NA (cm3)

Xdm (m)

1017

1014

1010

0.1 1 10010

s

o

o

o

BulkFinFET/SiNW(unintentional doped)(intrinsic @ 200 C)

Intrinsic(27 C)

(NA = ND = 0: undoped = “pure” Si)

Bulk: TSi >> Xdm, with VB: o = Vb = VB

SOI: TSi > Xdm, without VB: o ‘floating’

DG/GAA: TSi/R << Xdm: ‘volume inversion’(o: ‘virtual electrode’)

NM6605 NTU–TUM

X. ZHOU 19 © 2020

Need for an Extendable Core Model for Future Generation

Bulk PD-SOI FD-UTB/SOI DG/GAA/SB/DSS

ID

Ids

DGS

B

(B)

Sub

IDDGS

DG1S

G2

ID

Sub

DGSID

Vt-based models

Time’60 ’70 ’80 ’90 ’00 ’10

Qi-based modelss-based models

Pao–Sah

History has witnessed generations of MOS modelsand efforts required from one generation to the next …

— Need for a core model extendable to future generations,and with less duplicating efforts

MG/FinFET is just a special case

HEMT – leveraging on MOS models

NM6605 NTU–TUM

X. ZHOU 20 © 2020

Vg

Vs Vd

Vb

(a)

PD-SOI

toxf

tSi

oxf

oxb toxb

s

b

0

Vg

Vs Vd

Vb

(b)

FD-UTB/SOI

Vg

Vs Vd

Vb

(c)

a-DG

Vg

Vs Vd

Vg

(d)

s-DG

Vg

Vs Vd

(e)

'Bulk-UTB'

Vg

Vs Vd

Vb

(f)

Bulk

Vb = Vg

toxb = toxftSi

half s-DGtSi

toxb '0 = 0

0 0'

b 0b = 0

b 0 'b 0

'0 = 0

s = b

PD-SOI FD-UTB/SOI a-DG s-DG UTB Bulk

'b = 0

b = 0

Seamless Transformation and Unification of MOSFETs

NM6605 NTU–TUM

X. ZHOU 21 © 2020

The Generic SOI/DG/GAA MOSFET

Common/symmetric-DG [GAA] Vg1 = Vg2 = Vg: two gates with one bias Cox1 = Cox2: s-DG (Xo = TSi/2; [R]) Full-depletion: VFD = Vg(Xd=TSi/2) Cox1 Cox2: ca-DG (Xo < TSi)

Independent/asymmetric-DG Vg1 Vg2: ia-DG, biased independently Zero-field location may be outside body Consider two “independent” gates; linked

through full-depletion condition:

Unification of MOS

Zero-field potential: o [o'(Xo) = 0]

Imref-split: Vcr = Fn – Fp = Vc – Vr

Vr = Vb (BC: body-contacted)Vr = Vmin = min(Vs, Vd) (“FB”: w/o BC)

Bulk: special case of s-DG SOI: special case of ia-DG

Xd1 + Xd2 = TSi

GAA

• SOI ia-DG ca-DG s-DG bulk

NM6605 NTU–TUM

X. ZHOU 22 © 2020

Generic Double-Gate MOSFET with Any Body Doping

VG1VS VD

Ng1

Lg

Tox1s1

o1

n+

TSiNsd

0

0

x1

y1

R

r

n+

Tox2

s2

o1 = o2 = Vr = 0 (at Vgi=VFBi, Vs=Vd=0)

VG2

Xo1(Vg1)

x2

0

o2Xo2(Vg2)

Ng2

y2

p1

p2

(ox2)

NA (cm3)

Xdm (m)

1017

1014

1010

0.1 1 10010

BulkFinFET/SiNW(unintentional doped)(intrinsic @ 200 C)

Intrinsic doping(27 C)

(NA = ND = 0: undoped = “pure” Si)

Bulk: TSi >> Xdm, with BC: o = Vb = VB

SOI: TSi > Xdm, without BC: o ‘floating’

DG/GAA: TSi/R << Xdm: ‘volume inversion’(o: ‘virtual electrode’)2

(ox1)

0

(< 60 m)

3 60

NM6605 NTU–TUM

X. ZHOU 23 © 2020

PD/FD at Various Body Doping/Thickness

VGVS = 0 VD = 0

Ng

Lg

Tox

NA – ND(cm–3)

s

o

o

n+

TSi

Nsd

0

x

n+

Kox

s

o = Vr = 0 @ VG=VFB, VS=VD=0

VG

Xdm

TSi2

o

1018

1014

1017

y

VGVS = 0 VD = 0

n+ n+

TSi2

PD

VGVS = 0 VD = 0

n+ n+TSi2

Xdmo FDs

1018

sXdm

o PD

o FD1017

NM6605 NTU–TUM

X. ZHOU 24 © 2020

Dynamic Depletion (DD) at Various Body Thickness

VGVS = 0 VD = VDD

Ng

Lg

Tox

NA – ND(1017 cm–3)

sn+

TSi

Nsd

0

x

y

n+

Kox

s

VG

TSi2

VGVS = 0 VD = VDD

n+ n+TSi2

o

Xdm,sXdm,d

PD

sXdm,c FD

VGVS = 0 VD = VDD

n+n+

TSi2

sXdm,s Xdm,d

DD

NM6605 NTU–TUM

X. ZHOU 25 © 2020

Symmetric Charge Linearization

0 0 0 ,ds i b th s i b th ds effI q A v q A v V

s s

s s

ii i s s ox i b s s

s

dQQ y Q C q Ad

i gb FB s s bq V V V 1

2b

s b

AV

0 0 oxWCL

, ,, ,

12 2

ds s eff ds d effs s s s d

V V

, , 2 2s s d s s F db F sb dsV V V

Symmetric bulk/inversion charge linearization

0 0eff oxWCL

0 0, 0,12eff eff s eff d 0

0,, ,

,1eff c

L c eff b sat c

c s dV V LE

Long-channel symmetric current model

, 2, , ,

s c F cb thV vgt c s c b th s c bV V v e V n ox b

eff gt s bSi n

CE V V

, ,

12gt gt s gt dV V V

, ,, ,

, , , ,2gt s sat s

ds sat d sat sgt s b s sat s b s th

V LEV V V

V A LE A v

, ,

, ,, , , ,2

gt d sat dsd sat s sat d

gt d b d sat d b d th

V LEV V V

V A LE A v

, , ',, , ; , ; ' ,c eff c c sat cc satV V V V c s d c d s

, , ,d eff s eff ds effV V V

,0

,2sat c

sat cvE

NM6605 NTU–TUM

X. ZHOU 26 © 2020

Symmetric Linearization of Bulk-Charge Factor for DD

Due to the use of ds and f(Vgf), no singularity occurs at flatband

FDPD DD

NM6605 NTU–TUM

X. ZHOU 27 © 2020

The Poisson–Boltzmann Equation and Solution

NM6605 NTU–TUM

X. ZHOU 28 © 2020

The Complete (“Sah–Pao”) Voltage Equation

NM6605 NTU–TUM

X. ZHOU 29 © 2020

yE y

0nx n cbJ qn dV dx

lnFn th iv n n

n nD kT q

,

ln

ny n y n

n

ni

n Fn

n cb

J x y qn E qD n y

kT nqny qn y

kT nqny q n

qn yqn dV dy

0

, ,

const.

Sitcbds n

s i cb

dVI y W qn x y x y dxdy

W y Q y dV dy

20

1 20 0 0 2

,, ,

, 2

F cb ths s

s F cb th

V vcb A

i cbV v

x cb A Si th

n V qNdx eQ y q n x y dx q n V d q d dd E V qN v e

2

212, sgn 1 1 sgn 2 ,F cb th th thvA

x th A SiV v v

Sith cb

qNE x y ve v e e qN F V

xE x

2

0 0 1 20 22

F cb thdb db s

sb sb F cb th

V vV V

ds i cb ox cbV V V vth

W W eI Q dV C d dVL L v e

2 F cb thV vAn N e

cb Fn FV y y

2

, ,

F cb th

cb di c

V vth

b

v e

F V F V

0 0

, , ,i it t

s ny x y n x y dx n x y dx 0

db db

sb sb

V V

s i cb i cbV Vy Q y dV Q y dV

Drain Current: Pao–Sah Double Integral

NM6605 NTU–TUM

X. ZHOU 30 © 2020

g ox gb FB s oxQ y C V V y Q

i g ox b ox gb FB s sQ y Q y Q Q y C V V y y

i b ox gQ Q Q Q

0

0 0 0

, 1, ,2

ths s

s

vA cb A

b A Ax cb cbA Si

N p Vdx qN eQ y q N p dx q N p d q d dd E V F VqN

0

1 , 02

sAb ox s s

A Si

qNQ y d C yqN

2 22 s F cb thy V y vgb FB s s thV V y y v e

2

2 2

2 2

21

1 1 1 12 2

gb FB scbth

s gb FB s s

oxth ox th ox ox

i b i b

i

i

V V ydV yv

d V V y y

Cv C v C CQ

Q yQy y Q y Q y Q y

cb sds s i

s

iss i s th

drift diff

dV y dI y W y Q yd dy

dQ ydW y Q y W y vdy dy

I y I y

Depletion approximation (n = p = 0; also ND = 0):

Potential/charge balance:

Charge-sheet model (CSM):

Sah–Pao (‘S–P’) voltage equation (s > 3vth):

CSM

2

122

i s s ox sox ox

bs

dQ d d C dC Cdy dy dy Q dy

CSM: Charge-Sheet Model

NM6605 NTU–TUM

X. ZHOU 31 © 2020

0db

sb

V

ds i cbV

WI Q dVL

0id

is

Q cbds i iQ

i

dVWI Q dQL dQ

0 0

s

s

L cbds i s s

s

dVWI Q dL d

1ln gb FBi icb

q q q

v vq q v nn n n

s

drift s idI y W y Q ydy

idiff s th

dQ yI y W y v

dy

0

0

2 2 3 2 3 20 0 0 0

1 22 3

sL

sdrift i s

ox gb FB sL s sL s sL s

WI Q dLWC V VL

i ox gb FB s sQ C V V

0

0

1 2 1 20 0 0

sL

sdiff th i

ox th sL s sL s

WI v dQL

WC vL

ds drift diffI I I

2s F cb thy V y vgb FB s s thV V y y v e CSM: S–P:

2

2ln 2i i b

i b gb fb F cb

q q qq q v v v

i i ox th

b b ox th s

q Q C v

q Q C v

Qi linearization

3s thv

s iQ

0 0 , 0

,s s cb sb

sL s cb db

V V

L V L V

From S–P:

UCCM:gb gb th

FB FB th

th

v V v

v V v

v

Drain Current Model: s-based vs Qi-based

NM6605 NTU–TUM

X. ZHOU 32 © 2020

0 0db id

sb is

V Q cbds i cb i iV Q

i

dVW WI Q dV Q dQL L dQ

2s F cb th

i ox gb FB s ox s

y V y vox s th ox s

Q C V V C

C v e C

1

cbds s i

s th is i

i

th is i

q ox i

dVI y W Qdy

d v dQW Qdy Q dy

v dQW Qn C Q dy

s q ox s saqn n C

1q b oxn C C 2

oxb

sa

CC

i s

q oxdQ dn Cdy dy

1 thi cb

q ox i

v dQ dVn C Q

lnip i ith p cb

q ox ip

Q Q Qv V Vn C Q

s pip iQ Q

CSM / S–P:

CSM / D+D:

Qi linearization:

UCCM:

ds f rI I I

0

2 2

0 0

1

2

id

is

Q thds i iQ

q ox i

id isth id is

q ox

vWI Q dQL n C Q

Q QW W v Q QL n C L

s is ox th

d id ox th

q Q C v

q Q C v

2 2

2 2ds s d

s ds q q

I q qq qI n n

20,s n th n oxI v C W L

2 22

0 2s d

ds ox th s dq

q qWI C v q qL n

ds drift diffI I I 0

,i sQ y q n x y dx qn y

From UCCM:

Qi-based Current Model

NM6605 NTU–TUM

X. ZHOU 33 © 2020

2

22 2

b ox s ox F sb

ox F sbF sb

Q C C V V y

V yC V

V

2 22 2

i ox gb FB s b

ox gb FB F sb F sbF sb

ox gs t b

Q C V V Q

V yC V V V V y V

V

C V V A V y

Source-referenced threshold condition (“pinned” surface potential):

112 2b

F sb

AV

2 2t FB F F sbV V V

0 00

12

dsV

ds drift i ox gs t b ds dsW WI I Q dV C V V A V VL L

Bulk-charge linearization: Threshold voltage:

Bulk-charge factor:

(For fixed bulk-charge: Ab = 1)

Linear (drift) current: , ,ds s i s i s y y sI y W Q y d dy WQ y v v E E d dy dV dy

(Vgs > Vt)

0 2s F

0 2s s cb F sby V y V V y , 0cb dsV y V y V V

Vt-based Model: Linear (Drift) Current

NM6605 NTU–TUM

X. ZHOU 34 © 2020

b ox ddQ C

s ddy Subthreshold surface potential:

gb FB dd b oxV V Q C

22

2 4dd gb FBV V

2dd F cb thV y vi ox dd th bQ C v e Q

CSM / S–P:

2

2

2

1

12

2

dd F cb th

dd F cb th

dd F cb th

V vthi ox dd ox dd

dd

V vthox dd ox dd

dd

V vthox

dd

vQ C e C

vC e C

vC e

cb sb cb dbis i id iV V V V

Q Q Q Q

0 0id

is

Q

ds th i th id isQ

W WI v dQ v Q QL L

220 1dd F sb th ds thV v V v

ds d thWI C v e eL

22

ox Si A Sid dd

dd dmdd

C q NCX

0 0b

b dd b s dd sdd

QQ Q

00

b s dgb FB dd dd s

ox ox

Q CV VC C

2dd F sb gs tV V V n 0 2s F sbV

' '

0

'2 1gs t th ds th

V V n v V vdds diff ox th

ox

CWI I C v e eL C

Subthreshold (diffusion) current:(Vgs < Vt)

1

12 2

d ox

F sb

n C C

V

'0

' 1.5,t t sff F bo sV V VV

bd

dd

Q C

2 Si dddm

A

XqN

s-based

Vt-based Model: Subthreshold (Diffusion) Current

NM6605 NTU–TUM

X. ZHOU 35 © 2020

Velocity Saturation and Saturation Current

Vertical-field mobility (empirical)

Saturation field

Lateral-field mobility

Linear current

v

EEsat

vsat

n

Bulk-Siproperty

~107 cm/s

1n

satsat

sat sat

E E EE Ev

v E E

12 san sat

satsat sat

tsat

n

EvE E

vE

Saturation current

12ds eff ox gs t b ds ds

WI C V V A V VL

1n

effds sat effV E L

dsat sat sat sat ox gs t b dsatI Wv Q Wv C V V A V

(1)

(2)

(1)(Vdsat) = (2): sat eff gs t

dsatgs t b sat eff

E L V VV

V V A E L

2gs tdsat sat ox

gs t b sat eff

V VI Wv C

V V A E L

gs tV V 0L

Linear!

112 2b

F sb

AV

0

1n

eff critE E

6

eff b i Si

gs t

ox

E Q Q

V VT

Piecewise model

(3)(3) (2):

i ox gs tQ C V V b ox tQ C V

i ox gs t bQ C V V A V y CSM:

( 0.5)

(Amplitude)

NM6605 NTU–TUM

X. ZHOU 36 © 2020

Charge-Sharing Model: Vt “Roll-Off”

o

n+

LeffTox

Xdm

Vb

VdVs

Vg

Qb

o o

o

n+ NsdXj

0

W

Q'b

Simple “Triangle” Model

Charge shared by the gate/drain

' 2

' '

1

B A eff d d

B A eff d

b dB

b B eff

Q qN W L X X

Q qN W L X

Q XQQ Q L

Charge-sharing model (“triangle”) Without charge-sharing

With charge-sharing2t FB bm ox FV V Q C

' ' 2bmt FB ox FV V Q C

'' 1

222

bm bm bm

bm

dmt t t

ox ox eff

F sb oxA dm dm Si

ox ox eff o jx g

Q Q Q XV V VC Q C L

V TX

qN X XT L L

2eff g jL L X

Lg

2 2dm Si F sb AX V qN

ox ox oxC T bm A dmQ qN X

Lg

Vt

Short-channel effect (SCE):Vt “roll-off”

Vt

Total bulkcharge:

Bulk chargeper unit area:

(Leff)

0dsV

NM6605 NTU–TUM

X. ZHOU 37 © 2020

Charge-Sharing Model: Vt “DIBL”

Charge-sharing model (“trapezoidal”) Source-end (linear): (Vds = Vd0)

Drain-end (saturation): (Vds = Vdd)

Average depletion width: (any Vds)

DIBL: Drain-Induced Barrier Lowering

, 2 2dm s Si F sb AX V qN

o

n+

LeffTox

Xdm,s

Vb

VdVs

Vg

Qb

o o

o

n+ NsdXj

0

W

Q'b

Charge shared by the drain

Lg y

Lg

Vt

Vt0

Vts

Vt0

, ,

22 22

2

dm s dm ddm

F sb F ds d bSi

A

X XX

V V

qN

Xdm,d

, 2 2dm d Si F db AX V qN

db sb dsV V V

0DIBL g t g ts gV L V L V L

00

ds dt t t V V

V V V

2 2t FB F F sbV V V

222 2

,2 2

F sb F dbdm Si oxAt s

s d

db ds

ox ox e f jf ox g

V VX TqNV VL X

VT L

ds ddts t t V V

V V V

Vts

'b A dm effQ qN X L

Trapezoidalarea = “box”

VDIBL

“Dynamic depletion” (DD)

/0 0.~ .76 / 0d

NM6605 NTU–TUM

X. ZHOU 38 © 2020

Reverse Short-Channel Effect: Vt “Roll-Up” & “Halo”

Lg

Vt

Vt0

Reverse SCE: “Halo”

y

Neff

“Halo” o

n+

LeffTox

Xdm,s

Vb

VdVs

Vg

Qb

o o

o

n+ NsdXj

0

W

Q'b

Lg y

Xdm,d

Empirical RSCE model (“halo”)

Halo pile-up: ()

Halo lateral spread: ()

Replacing all previous NA by Neff

cosh 2pile

efe

Afff

NN

L lN

pile AN N

0.252 F sbl V ln iAF kT q N n

2y

pil

pl

leN y eN

0

effL

p effeff

eff eA

pile

ff

N y dy LN eN

l l ll l

rf erfL L

N

Gaussian halo model

Halo dose, tilt, energy

NA

NM6605 NTU–TUM

X. ZHOU 39 © 2020

Summary of Important (Simple) Equations

Effective body doping and related equations Halo doping

Threshold voltage Long-channel (1D theoretical model)

Any channel-length and body/drain-bias

2 Si eff

ox

NqC

ln efF h

i

ft n

Nv

2M sFB MS ox ox F oxg sNV E qQ C C

ox o oxxC T

1 d oxn C C d Si dmC X cosh 2pile

efe

Afff

NN

L lN

pile AN N 0.252 sbFl V

lnth iAF v nN Physical quantities 2geff jdL XL

oox x o SSi i o

2 2Si F sdm

eff

bVX

Nq

000

dssb

dt t t V VV

V V V

22 2

ss bFst gs F F bV FBV V V V

0dssb

ddts t t V VV

V V V

2, , 2 22 2

Sit t t t eff F F

oxs

oxsb ox sb sb

g dds sd

jd

TV T V VL X

V V V V N VV

Linear Vt0:

Saturation Vts:

0.0259thv

VqTk

, , , , ,g ox j M ssL T X N TPhysical parameters:

(Physical constants)

NM6605 NTU–TUM

X. ZHOU 40 © 2020

Summary of Important (Simple) Equations

Drain current Bulk-charge factor

Linear

Saturation

Subthreshold

1, ,2dlin eff ox t b

esgs gsds ds ds

ffb

WVI C V AVV VV VL

2, , ds

tdsat ox

t b ss

at e

gsgs

ffsb t

gsa

V VI C

V A EV WVV

Vv

L

2, , 1gs t dsth thV nv v

dsub n d theff

Vds

Vsbgs

WVI C v e eVVL

Drive current Ion:

2 asat

n

s tvE

1 ds

neff

sat effV E L

112 2b

F sbVA

0

1n

eff critEE

6gs

fox

tef

VVE

T

Mobility Vertical-field

0, ,on dsat ddd dVI VI

, ,00off dsub ddI I V

Leakage current Ioff:

/

0

, , , ,, , , ,

A d s d

sat crit

Nv E

Fitting parameters:(TCAD: W = 1 m)

Lateral-field

00

0

, ,

, ,dlin

dl

g ds

sin ddd

V

I

V

VV

I

, ,

, ,

0

0dsat

ds

gs dd

dat sdd

VI

I

V

VV

0 0, ,

, ,

0

0

dsub

ds

gs

ubs

d

ddgs

I

I

V V

VV