desalting of proteins why? - universität innsbruck · 2015. 1. 20. · desalting of hydrophilic...

103
Desalting of Proteins – Why? Spin Columns C18-reversed phase dialysis Extraction Tips Spin Columns ZipTips (Millipore)

Upload: others

Post on 29-Jan-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Desalting of Proteins – Why?

    Spin Columns

    C18-reversed phase

    dialysis

    Extraction Tips

    Spin Columns

    ZipTips (Millipore)

  • N

    H

    OH

    SiHO

    SiHO

    SiOSi

    OH

    OH

    Fullerene C60-Silica for Desalting Biological Samples

    Proteines

    MALDI-MS spectra of the peptides and proteins which were eluted from Kovasil 300 Å C60-Silica

    breakthrough breakthrough

    sample sample

    elution elution

    Peptides

    SPESPESPEPart 2 Part 2

    5734.63

    8565.63

    2867.1016952.4014306.613

    0

    1.0

    2.0

    3.0

    4.0

    0

    1.0

    2.0

    3.0

    4.0

    8566.35

    14291.429

    2866.33 16943.00311466.50

    0

    1.0

    2.0

    3.0

    4.0

    8566.83

    2866.56

    4282.5911466.222 14291.426

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    2000 4000 6000 8000 10000 12000 14000 16000 18000

    A

    B

    C

    D

    5734.73

    5734.43

    4282.79

    m/z

    4x

    10

    Inte

    ns

    ity

    . [a

    .u.]

    129

    6.4

    4

    134

    7.5

    3

    161

    9.4

    8

    209

    4.0

    2

    175

    7.7

    5

    246

    6.1

    0

    0.0

    1.0

    2.0

    0.0

    1.0

    2.0

    134

    7.3

    2

    161

    9.3

    4

    246

    5.9

    2

    209

    3.6

    6

    175

    8.4

    7

    0.0

    1.0

    2.0

    161

    9.4

    5

    134

    7.4

    2

    246

    6.0

    6

    175

    8.5

    5

    209

    3.7

    8

    0.0

    1.0

    2.0

    800 1000 1200 1400 1600 1800 2000 2200 2400

    1046.54

    1046.72

    1047.39

    m/z

    A

    B

    C

    D

    Peptide Proteine

    SPESPESPEPart 2 Part 2

    5734.63

    8565.63

    2867.1016952.4014306.613

    0

    1.0

    2.0

    3.0

    4.0

    0

    1.0

    2.0

    3.0

    4.0

    8566.35

    14291.429

    2866.33 16943.00311466.50

    0

    1.0

    2.0

    3.0

    4.0

    8566.83

    2866.56

    4282.5911466.222 14291.426

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    2000 4000 6000 8000 10000 12000 14000 16000 18000

    A

    B

    C

    D

    5734.73

    5734.43

    4282.79

    m/z

    4x

    10

    Inte

    ns

    ity

    . [a

    .u.]

    129

    6.4

    4

    134

    7.5

    3

    161

    9.4

    8

    209

    4.0

    2

    175

    7.7

    5

    246

    6.1

    0

    0.0

    1.0

    2.0

    0.0

    1.0

    2.0

    134

    7.3

    2

    161

    9.3

    4

    246

    5.9

    2

    209

    3.6

    6

    175

    8.4

    7

    0.0

    1.0

    2.0161

    9.4

    5

    134

    7.4

    2

    246

    6.0

    6

    175

    8.5

    5

    209

    3.7

    8

    0.0

    1.0

    2.0

    800 1000 1200 1400 1600 1800 2000 2200 2400

    1046.54

    1046.72

    1047.39

    m/z

    A

    B

    C

    D

    Peptide Proteine

    immobilization washing elution

    before

    supernatant

    elution

    before

    supernatant

    elution

  • C60-amino-

    silica

    Vallant Rainer M; Szabo Zoltan; Bachmann Stefan; Bakry Rania; Najam-ul-Haq Muhammad; Rainer Matthias; Heigl

    Nico; Petter Christine; Huck Christian W; Bonn Gunther K. Analytical chemistry (2007), 79(21), 8144-53.

    Fullerene C60-amino silica for Desalting

  • C60-Amino Silica vs. ZipTip® C18 (Millipore)

    ZipTips C18

    supernatant

    ZipTips C18

    elution

    11

    40

    .52

    1.0

    2.0

    3.0

    4.0

    0.0

    0.2

    0.4

    0.6

    0.8

    5.0

    0.0

    Inte

    nsi

    ty. [

    a.u

    .]

    m/z

    Phosphopeptide in supernatant

    No immobilization on commercial

    ZipTip ® (Millipore)

    Phosphopeptide removed after washing

    No immobilization of phosphopeptide

    C60-Amino Silica

    supernatant

    C60-Amino Silica

    elution

    1.0

    2.0

    3.0

    4.0

    5.0

    1140

    .49

    0.0

    0.05

    0.10

    0.15

    0.20

    0.25

    1110 1120 1130 1140 1150 1160 1170 1180

    0.0

    No Phosphopeptide in supernatant

    Quantitative binding of phosphopeptide

    on C60-Amino Silica

    Phosphopeptide eluted from

    C60-Amino Silica

    Desalting of hydrophilic Phosphopeptides

  • Enrichment of Phenolic Compounds using

    Hexagonal Boron Nitride

    Martin Fischnaller, Rania Bakry, Günther Bonn

    Institute of Analytical Chemistry and Radiochemistry

    Austrian Drug Screening Institute – ADSI

    University of Innsbruck, Austria

  • Crystalline forms of Boron Nitride

    β or cubic BN

    • diamond analog

    • stable

    • very hard

    • black

    γ or wurzite BN

    • lonsdaleit analog

    • only stable under high

    pressure

    α or hexagonal BN

    • graphite analog

    • chemically inert

    • nontoxic

  • 0.1446 nm

    Covalent bonds

    Van der Waalsbonds

    0.3

    33

    1 n

    m

    Boron

    Nitrogen

    Structure of α-BN

    Arnold F. Holleman, N. W. Lehrbuch der Anorganischen Chemie; de Gruyter: Berlin, 2007; Vol. 102.

    δ 0.93e δ -0.93e

  • Wettability of α-BN

    SEM picture of BN with 60 m² surface area.

  • Wettability of α-BN

    Published in: Hui Li; Xiao Cheng Zeng; ACS Nano 2012, 6, 2401-2409.

    DOI: 10.1021/nn204661d

    Copyright © 2012 American Chemical Society

    50-67° high wettability

    86° low wettability

    Snapshots of a water droplet on (A) an atomically BN sheet in the end of

    classical molecular dynamics

  • Boron Nitride, a Novel Material for the Enrichment and Desalting of Protein Digests and the Protein Depletion

    LC-ESI-MS

    Incubation

    with tryptic

    digests

    MALDI-MS

    Washing

    and

    enrichment

    Elution of

    peptides

    Analysis of desalted

    and protein free

    peptide solutions

    N

    B

    N

    B

    N

    B

    N

    B

    N

    B

    N

    B

    N

    B

    N

    B

    B

    N

    B

    N

    B

    N

    B

    B

    N

    B

    N

    B

    N

    N

    B

    N

    BN

  • Boron Nitride, a Novel Material for the Enrichment and Desalting

    Bradykinin Substance P Bombesin LHRH Oxytocin

    Recovery rates [%]

    A B A B A B A B A B

    BN 60 71.65 81.67 70.13 73.59 56.12 90.88 92.13 87.46 85.92 95.24

    BN 20 98.83 93.74 96.90 90.13 98.71 96.23 95.18 91.01 84.50 92.66

    BN NANO 96.75 94.46 108.52 91.30 89.36 95.70 97.07 93.44 91.39 92.85

    Graphite particle

    85.54 83.60 31.70 64.17 47.98 52.78 32.15 76.28 76.33 94.39

    Graphite 15 17.62 36.90 14.08 16.78 12.65 17.39 25.70 25.21 49.27 77.04

    Recovery Study using different Peptides

    A = 60% ACN in 1% TFA and 1% H3PO4; B = 60% ACN in 1% formic acid

  • 0

    5

    10

    15

    20

    25

    30

    0 10 20 30 40 50 60 70

    BN 60 m²/g

    BN 20 m²/g

    Graphite 15 m²/g

    Cequ [µg/ml]

    Mads

    [µg/m

    g]

    Langmuir adsorption isotherms of

    Bradykinin for BN 60, BN 20 and

    graphite 15

    max. loading capacity

    mads [µg/mg]

    mads/surface area

    [µg/m2]

    BN 20 m²/g 14.61 0.731

    BN 60 m²/g 24.13 0.402

    Graphite 15 m²/g 8.19 0.546

    Boron Nitride, a Novel Material for the Enrichment and Desalting

  • MALDI Spectra:

    The identified peptides are labeled with

    asterisk. Sequence Coverage of desalted

    BSA > 68 %

    Boron Nitride, a Novel Material for the Enrichment and Desalting

    0

    20

    40

    60

    80

    100

    Inte

    ns.

    [a.u

    .]

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    5x10

    Inte

    ns.

    [a.

    u.]

    1000 1500 2000 2500 3000 3500m/z

    *

    *

    *

    *

    *

    *

    *

    *

    *

    *

    *

    *

    *

    *

    *

    *

    *

    **

    *

    *

    *

    *

    *

    **

    *

    *

    *

    *

    *

    **

    *

    **

    *

    *

    *

    *

    **

    *

    *

    *

    *A

    B

    x 1000

    BSA digest in urine

    desalted urine sample 1000 fold increase in signal intensity

    N

    B

    N

    B

    N

    B

    N

    B

    N

    B

    N

    B

    N

    B

    N

    B

    B

    N

    B

    N

    B

    N

    B

    B

    N

    B

    N

    B

    N

    N

    B

    N

  • Depletion of proteins with BN

    0

    1000

    2000

    3000

    4000

    5000

    Inte

    ns.

    [a.

    u.]

    *

    0

    1

    2

    3

    4

    5

    4x10

    Inte

    ns.

    [a.

    u.]

    1000 1500 2000 2500 3000 3500m/z

    *

    ***

    ***

    **

    * **

    *

    **

    *

    *

    **

    **

    **

    **

    ***

    **

    **

    **

    **

    **

    ** *

    *

    ** *

    **

    **

    *

    *

    **

    **

    2000

    4000

    Inte

    ns.

    [a.

    u.]

    30000 40000 50000 60000 70000m/z

    2000

    4000

    Inte

    ns.

    [a.

    u.]

    30000 40000 50000 60000 70000

    m/z

    A

    B

    x 10

    Ser

    um

    alb

    um

    in

    Isofo

    rm 1

    [M+

    2H

    ] 2+

    Ser

    um

    alb

    um

    in

    Isofo

    rm 2

    (A) MALDI-MS analysis of a human albumin protein and those digest in a ratio of 50000-1 (1 mg/ml-0,02 µg/ml) and a image of the crystallization of the sample and matrix

    Sequence coverage of HSA 36%

    (B) MALDI spectra of the sample after SPE with BN (sequence coverage of 72%) and an image of the matrix crystallization

    asterisk: Mascot identified peptides

  • 15

    ‐ Pyrrolizidine alkaloids (PA) are secondary plant metabolites (for plant protection) ‐ 400 different PAs in approximately 6000 plant species are known Contamination of plant products during harvest or through animals (for example bees) Examples for contaminated food: herbal teas, honey, salads etc.

    ‐ Problem: Hepatotoxic for animals as well as for humans Safety values for the maximum dose for drugs in Germany:

    ‐ Application up to 6 weeks: 1 µg/day oral, 100 µg/day cortically ‐ Application for more than 6 weeks: 0.1 µg/day oral, 10 µg/day cortically

    Pyrrolizidine alkaloids Background

  • 16

    ‐ General structure:

    ‐ Requirement(s) for toxicity:

    ‐ 1,2-unsaturated necine ‐ Esterification of at least one OH-group with a branched acid

    Nearly all types are in coexistence with their N-oxides

    Pyrrolizidine alkaloids Toxicity

  • 17

    ‐ HPLC-MS (LOD ~ 1 ppb) ‐ GC-MS (LOD = 3 ppb) Otonecines and N-oxides (without derivatisation) not detectable ‐ Double antibody ELISA (LOD = 0.1 – 1.5 ppb) Antibodys only against some specific PAs ‐ HPLC Evaporative Light Scattering Detection (ELSD) (LOD = 40 ppm) ‐ Nonaqueous capillary electrophoresis (NACE) MS (LOD < 7.5 ppm) ‐ Photometric detection with Ehrlich reagent (LOD = 10 ppm)

    ‐ General problem for PA analysis: Only about 25 standards are available Validation is limited to a small spectrum of PAs

    Isolation of PAs out of plant material with countercurrent chromatography (CCC) to get more standards (Cooperation with Medical University of Lublin)

    Pyrrolizidine alkaloids Methods for detection

  • 18

    ‐ Detection only possible in the low ppb-range (for GC- and HPLC-MS) for lower concentrations and for separation from other plant substances enrichment is necessary ‐ Due to the chemical structure ion exchange is the enrichment method of choice ‐ Automation with PhyNexus MEA 2 possible PhyTip with Toyopearl SP-650 resin

    Pyrrolizidine alkaloids Cation exchange

  • 19

    Extraction of the plant material

    Enrichment of PAs with ion exchange

    Detection with UPLC-MS

    Pyrrolizidine alkaloids Procedure

  • 20

    Pyrrolizidine alkaloids Cation exchange – Comparison of commercial products

    • In terms of enrichment of pyrrolizidine alkaloids different commercial materials were tested

    • Best recoveries (94-99%) were achieved with a polystyrene-divinylbenzene

    resin functionalized with sulfonate groups • Further approach

    ‐ Polystyrene DVB resin in PhyNexus tips and automation of the cation exchange with PhyNexus MEA 2

    ‐ Continuing comparison with other resins (in cartridges and tips) ‐ Test of anion exchange resins and Immobilized Metal Ion Affinity

    Chromatography (IMAC)

  • 21

    Pyrrolizidine alkaloids

    • Development of a UPLC-MS/MS method for detection and quantification of standard PA´s

    • Improvement of enrichment methodologies with ion-exchange

    • Automation of enrichment method

    Output

  • SPE of Phenolic Acids using Bismuth Citrate and Zirconium Silicate Inside Micro Spin Columns

  • SPE of Phenolic Acids using Bismuth Citrate and Zirconium Silicate Inside Micro Spin Columns

    1,3,4,5-tetra-o-galloylquinic acid

    Cynarin Chlorogenic acid

    mono-caffeoylquinic-acid di-caffeoylquinic-acid

    Galloyl- and caffeoylquinic-acids are characterized

    by one free carboxylic group in the quinic acid

    moiety

    Caffeoylquinic acids are the esters of quinic acids

    with caffeic, ferulic or p-coumaric acids

    Galloylquinic acids are the esters of quinic acid with

    gallic acids

    Their biological activity includes anti-HIV,

    antiasthamatic, bronchial hyper reactivity, allergic

    reactions and anti-inflamatory properties

    Caffeoylquinic acids are antidiabetic, hypoglycemic,

    antihepatitis, hepatoprotective and anti cancer agents

  • Proposed binding mechanism of bismuth citrate and zirconium silicate with carboxylic group of phenolic acids

  • Zirconium Silicate

    45 µm

    Bismuth Citrate

    45 µm

    Hussain, Shah, et al. Journal of Pharmaceutical and Biomedical Analysis (2013) in press

  • Tetragalloyl-quinic acids

  • Crystalline forms of Boron Nitride

    β or cubic BN

    • diamond analog

    • stable

    • very hard

    • black

    γ or wurzite BN

    • lonsdaleit analog

    • only stable under high

    pressure

    α or hexagonal BN

    • graphite analog

    • chemically inert

    • nontoxic

  • Recovery for the enrichment of 5 Phenols

    Phenol 4-Nitrophenol 2-Chlorphenol 2-Nitrophenol Dimethylphenol

    [12.5 µg/ml] [12.5 µg/ml] [12.5 µg/ml] [12.5 µg/ml] [12.5 µg/ml]

    87.51 94.74 108.08 91.29 100.71

    93.97 102.95 114.70 95.20 111.82

    91.36 101.91 113.24 96.88 105.84

    Average 90.95 99.87 112.01 94.46 106.13

    RSD 2.66 3.65 2.84 2.34 4.54

    5 mg of BN was incubated with a phenol mixture and afterward eluted with

    80% acetonitrile in water.

  • BADGE·2H2O BADGE

    BPF BPA

    BPZ

    Bisphenol derivatives

    MW pKa log Kow R2 LOD

    [ng/ml] LOQ

    [ng/ml]

    BADGE·2H2O 376.44 14.7b 2.05b 0.999 27.0 82.0

    BPF 200.23 7.5a 2.91a 0.999 27.0 82.0

    BPA 228.29 9.6a 3.32a 0.999 33.0 99.0

    BPZ 268.35 9.7b 4.53b 0.999 28.0 85.0

    BADGE 340.41 - 4.02a 0.999 30.0 90.0

  • • The French Agency for Food, Environmental and Occupational Health & Safety showed that

    there are ‘recognized’ effects in animals (effects on reproduction, on the mammary gland, on

    metabolism, the brain and behaviour) and other ‘suspected’ effects in humans (on

    reproduction, metabolism and cardiovascular diseases). These effects could be observed, even

    at low levels of exposure, during sensitive phases of an individual’s development.

    • The French Agency for Food, Environmental and Occupational Health & Safety endorses the

    conclusions of the Expert Committee on Assessment of the risks related to chemical

    substances relating to the risks associated with BPA for human health, and on toxicological

    data and data on the use of bisphenols M, S, B, AP, AF, F and BADGE.

    • Endokrine Disruptoren

    Risk associated with bisphenols

    Tolerable Daily Intake (TDI) of 50 µg BPA/kg body weight (b.w.)/day as set by EFSA in 2006.

    The migration limit of BPA set by European Union of 600 µg/kg food.

    Tolerable Daily Intake (TDI) of 150 µg BADGE and its hydrolytic products/kg body weight (b.w.)/day.

    The migration limit of BADGE and its hydrolytic products 9000 µg/kg food.

    http://www.efsa.europa.eu/en/topics/topic/bisphenol.htm

    http://www.efsa.europa.eu/en/topics/topic/bisphenol.htmhttp://www.efsa.europa.eu/en/topics/topic/bisphenol.htmhttp://www.efsa.europa.eu/en/topics/topic/bisphenol.htmhttp://www.efsa.europa.eu/en/topics/topic/bisphenol.htmhttp://www.efsa.europa.eu/en/topics/topic/bisphenol.htmhttp://www.efsa.europa.eu/en/topics/topic/bisphenol.htmhttp://www.efsa.europa.eu/en/topics/topic/bisphenol.htmhttp://www.efsa.europa.eu/en/topics/topic/bisphenol.htmhttp://www.efsa.europa.eu/en/topics/topic/bisphenol.htmhttp://www.efsa.europa.eu/en/topics/topic/bisphenol.htmhttp://www.efsa.europa.eu/en/topics/topic/bisphenol.htmhttp://www.efsa.europa.eu/en/topics/topic/bisphenol.htm

  • Analysis of 5 bisphenol derivatives after enrichment

    with BN by LC and fluorescence detector

    HPLC-FLD chromatogramms of (A) standard solution containing 5 bisphenol

    derivatives [100 ng/mL] and (B) bisphenol leached from baby bottle after

    enrichment with h-BN-60. Chromatographic conditions: Shimadzu LC-10 Acvp, Phenomenex Luna 5u C18 250*4,6 mm, isocratic 3 min 30% B,

    gradient 30-70% B in 15 min, flow rate 1mL/min, 50°C, inj.: 30 µL,FLD: 230/303 nm

  • Recovery rates for the enrichment of 5 bisphenol

    derivatives

    Recovery rates ± SD [%]

    Concentration

    [ng/ml] BADGE·2H2O BPF BPA BPZ BADGE

    0.5 90.01 ± 5.65 96.43 ± 8.17 111.93 ± 3.8 95.40 ± 5.87 85.38 ± 11.53

    1 93.69 ± 2.57 98.88 ± 2.57 98.13 ± 4.05 100.90 ± 1.84 91.43 ± 4.47

    2 99.47 ± 1.91 100.92 ± 1.13 95.88 ± 4.21 102.11 ± 3.23 97.48 ± 1.97

    10 97.39 ± 2.41 102.47 ± 2.42 103.03 ± 4.21 101.67 ± 2.56 99.17 ± 4.15

    100 98.67 ± 5.78 101.55 ± 4.45 101.54 ± 4.47 100.23 ± 2.64 87.51 ± 7.78

  • Found ± SD [ng/ml] Recovery rates ± SD [%]

    BADGE·2H2O BPF BPA BPZ BADGE

    river watera nd

    (92.13 ± 2.69)

    nd

    (102.62 ± 3.73)

    nd

    (107.14 ± 6.50)

    nd

    (104.95 ± 1.92)

    nd

    (98.74 ± 2.57)

    drinking watera nd

    (90.16 ± 2.40)

    nd

    (98.56 ± 3.51)

    nd

    (99.16 ± 1.60)

    nd

    (101.14 ± 2.58)

    nd

    (96.68 ± 3.35)

    colab 4.63 ± 0.14

    (103.41 ± 4.39)

    2.23 ± 0.21

    (96.98 ± 2.39)

    10.34 ± 0.41

    (96.93 ± 5.72)

    nd

    (92.46 ± 6.58)

    1.49 ± 0.04

    (96.57 ± 3.84)

    apple juiceb 1.93 ± 0.15

    (96.43 ± 3.63)

    3.11 ± 0.30

    (90.77 ± 3.63)

    nd

    (84.22 ± 2.20)

    nd

    (98.74 ± 1.23)

    1.36 ± 0.22

    (98.22 ± 2.71)

    lemon sodab 8.14 ± 0.09

    (82.46 ± 3.01)

    1.40 ±0.07

    (84.45 ± 5.44)

    nd

    (97.60 ± 1.81)

    nd

    (87.61 ± 2.94)

    5.70 ± 0.04

    (94.00 ± 2.61)

    citrus soft drinkb 5.32 ± 0.71

    (103.90 ± 2.58)

    nd

    (97.82 ±5.82)

    1.04 ± 0.31

    (98.31 ± 5.67)

    nd

    (98.05 ± 4.04)

    1.56 ± 0.042

    (99.63 ± 4.42)

    herbal sodab nd

    (100.45 ± 5.15)

    nd

    (99.07 ± 5.09)

    nd

    (104.43 ± 6.20)

    nd

    (105.07 ± 7.21)

    nd

    (108.42 ± 4.83)

    energy drinkb 4.46 ± 0.07

    (98.54 ± 9.21)

    1.87

    (91.55 ± 4.21)

    5.57 ± 0.81

    (93.55 ± 5.84)

    nd

    (100.76 ± 2.04)

    nd

    (103.60 ± 1.91)

    canned mushroom liquidb 20.42 ± 1.19

    (99.06 ± 6.88)

    nd

    (91.35 ±0.79)

    8.60 ± 0.37

    (98.47 ± 8.37)

    nd

    (103.71 ± 6.17)

    1.81 ± 0.12

    (99.63 ± 0.62)

    pickled cucumber liquidb 1.81 ± 0.15

    (97.53 ± 1.12)

    2.23 ± 0.21

    (96.02 ± 2.45)

    125.00 ± 2.18

    (109.12 ± 0.77)

    nd

    (103.36 ±3.80)

    1.44 ± 0.06

    (92.67 ± 0.71)

    pickled onion liquidb 2.98 ± 0.08

    (105.80 ± 3.90)

    nd

    (96.53 ± 8.20)

    13.45 ± 0.63

    (92.03 ± 4.70)

    nd

    (97.91 ± 3.12)

    1.74 ± 0.00

    (95.20 ± 0.63)

    urineb nd

    (100.45 ± 3.13)

    nd

    (105.67 ± 0.68)

    nd

    (92.80 ± 2.52)

    nd

    (105.26 ± 4.00)

    nd

    (103.70 ±3.45)

    Determination of bisphenol derivatives

    Glas

    Dose

  • Leaching of BPA from polycarbonate products

    leached BPA [ng/ml] ± SD (%)

    Babybottle

    1. treatment 20.79 1.05

    Babybottle

    2. treatment 19.82 0.72

    muffin form 2.26 0.07

    Syringe 0.85 0.03

    Treatment conditions: boiling water for 1 h

  • Langmuir adsorption isotherms of Bisphenol A

    on h-BN-60

    M a

    ds

    [µg/m

    g]

    0

    10

    20

    30

    40

    50

    60

    70

    0 5 10 15 20 25 30

    Cequ[µg/ml]

    max. loading capacity of Bisphenol A = 60 µg/mg

  • Aufgabe 1

    Analyt: Disaccharide

    Welche Festphase? Warum?

  • Aufgabe 2

    Analyt: Proteine

    Welche Festphase? Warum?

  • Aufgabe 3

    Analyt: Pestizide

    Welche Festphase? Warum?

  • Grundlagen und Anwendung moderner Trennverfahren

    Günther K. Bonn Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens

    University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria

    40

    Teil 3 - Fällung

  • Komplexität von biologischen Proben

    1. enorme Komplexität der Proben

    2. geringe Konzentration der Zielanalyten

    3. beschränkter dynamischer Bereich der analytischen Messgeräte

    4. Störkomponenten (Detergenzien, Puffersysteme etc.)

    MS

    biologische Probe

    Herausforderungen:

    41

    Einleitung Analytik der Biomoleküle

    Matthias Rainer

  • 42

    22 Proteine machen 99% des gesamten Serumproteoms aus!

    90% 10%

    Einleitung Analytik der Biomoleküle

    1. Enorme Komplexität von biologischen Proben

    z.B. Blutserum

    Matthias Rainer

  • 43 Anderson, N. L. (2002) Mol. Cell. Proteomics 1: 845-867

    Dynamischer Bereich von Blutplasma

    Einleitung Analytik der Biomoleküle

    2. Geringe Konzentration vieler Zielanalyten

  • Selektivität

    Empfind-lichkeit

    Geschwin-digkeit

    Hoher Probendurchsatz

    Verbesserte Detektion

    Gezielte Analyse

    Effizienz

    Effiziente Probenvorbereitung

    Einleitung Analytik der Biomoleküle

    Matthias Rainer

  • Zusätzliche Komplexität durch Variationen von Proteinen

    • Bei einem Pentapeptid (Länge 5 Aminosäuren) gibt es 205 = 3.200.000

    Kombinationsmöglichkeiten

    • Proteine haben eine Länge von 100 bis 1000 Aminosäuren, also 20100 -

    201000 Kombinationsmöglichkeiten

    • Drehbarkeit der C-C Bindung in der Kette

    • Peptidbindung normalerweise in trans-, kann aber auch in cis-

    Konformationen vorliegen

    • Seitengruppen können modifiziert sein

    • Posttranslationale Modifikationen (z.B. Glykosylierung, Phosphorylierung)

    45

    Einleitung Analytik der Biomoleküle

  • Das Verhalten von Proteinen in wässriger Lösung hängt von

    der Art des Lösungsmittels ab, denn in Gegenwart von Salzen,

    Säuren oder Laugen ändert sich das Löslichkeitsverhalten der

    Proteine stark. Viele Methoden zur Trennung von Proteinen

    machen sich diese Eigenschaft zunutze, so z.B. bei der Fällung

    von Proteinen aus einer Lösung.

    Fällung von Proteinen

    46

  • Proteine können auf verschiedene Art in ihrer nativen Form gefällt werden:

    • Fällung durch Aussalzen

    • isoelektrische Fällung (Fällung am IEP)

    • Fällung mit organischen Lösungsmitteln

    • Co-Präzipitation

    Fällung von Proteinen

    47

  • Proteine können auf verschiedene Art in ihrer nativen Form gefällt werden:

    • Fällung durch Aussalzen

    Fällung von Proteinen

    Das Aussalzen von Proteinen ist ein Spezialfall einer Fällungsreaktion, die als Trennverfahren bei der Reinigung von Proteinen eingesetzt wird. Dabei nutzt man aus, dass Proteine nur dann in Lösung vorliegen, wenn sie über eine ausreichende Hydrathülle aus Wassermolekülen verfügen. Werden der Lösung Salze zugesetzt, so binden die dissoziierten Ionen ihrerseits Wassermoleküle in ihrer Hydrathülle und entziehen diese den Proteinmolekülen. Ab einer bestimmten Salzkonzentration, die von der Art des Salzes und dem Protein abhängt, wird dieser Effekt so stark, dass das Protein nicht mehr in Lösung gehalten werden kann, d.h. es fällt aus der Lösung aus und bildet einen Niederschlag.

    48

  • Proteine können auf verschiedene Art in ihrer nativen Form gefällt werden:

    • isoelektrische Fällung (Fällung am IEP)

    Fällung von Proteinen

    Praktisch lässt sich der IEP auch zur Fällung von Proteinen aus einer Lösung nutzen. Die Löslichkeit eines Proteins wird sehr stark durch den pH-Wert der Umgebung beeinflusst und erreicht am isoelektischen Punkt ein Minimum. Ober- oder unterhalb des IEP tragen alle Moleküle die gleiche Ladung (positiv oder negativ) und stoßen sich daher ab. Eine Zusammenballung zu unlöslichen Aggregaten ist durch die Abstoßung der Moleküle untereinander verhindert und das Protein bleibt in Lösung.

    49

  • Proteine können auf verschiedene Art in ihrer nativen Form gefällt werden:

    • Fällung mit organischen Lösungsmitteln

    Fällung von Proteinen

    Aceton Precipitation

    TCA Precipitation

    Wessel Flügge Precipitation

    50

  • 51

    Fällung von Proteinen

    Fällung mit organischen Lösungsmitteln

  • 52

    Fällung von Proteinen

    Fällung mit organischen Lösungsmitteln

  • 53

    Fällung von Proteinen

    Fällung mit organischen Lösungsmitteln

  • Proteine können auf verschiedene Art in ihrer nativen Form gefällt werden:

    • Co-Präzipitation

    Fällung von Proteinen

    54

  • 55

  • 56

  • 57

  • 58

  • 59

  • 60

  • Precipitation of Phosphoproteins by

    Trivalent Lanthanide Ions

    A Top-Down Approach

    61

  • Protein phosphorylation

    Protein dephosphorylation

    Berg JM et al. 2010

  • Protein separation and isolation

    2. Chromatographic techniques

    IMAC Immobilized Metal ion Affinity Chromatography

    MOAC Metal Oxide Affinity Chromatography

    Berg JM et al. 2010 According to: Leitner A. 2010

  • Proposed Precipitation Mechanism

    64

  • Lanthanide Phoshates (Solubility Products)

    solubility products

    [logKsp(M)]

    ErPO4 -25.13 ± 0.11

    EuPO4 -25.96 ± 0.03

    TbPO4 -25.39 ± 0.04

    Solubility products of the rare-earth phosphates

    References:

    Xuewu Liu and Robert H. Bryne, Geochimica et Cosmichimica Acta, 1997, Vol. 61,No8,pp. 1625-1633

    Li, X. et al. Geochimica et cosmochimica acta,1997.61(8):p.1625-1633

    65

  • Dissolvation

    of pellet

    MALDI-MS

    on-pellet

    digest

    denaturation, tryptic digestion

    30% formic acid

    washing

    precipitation

    10 min, 70W microwave-assisted digest

    MALDI-MS

    Peptides Proteins

    Scheme for Precipitation of Phosphoproteins by

    Trivalent Europium-, Terbium- and Erbium- Ions

    Precipitant

    KH2PO4

    Yüksel et al. Anal Bioanal Chem (2012) 403:1323–1331 66

  • Methods and instruments

    MALDI-TOF MS: linear mode

  • Methods and instruments

    MALDI-TOF MS: reflector mode

  • sign

    al in

    ten

    sity

    [a.

    u.]

    m/z

    Erbium Protein

    Standard

    Wash 1

    Wash 2

    Pellet

    Supernatent

    sig

    na

    l in

    ten

    sity

    [a

    .u.]

    m/z

    Terbium

    Wash 1

    Wash 2

    Pellet

    Supernatent

    Protein

    Standard

    αS1-casein (m/z ~24.5 kDa)

    β-casein (m/z ~25.1 kDa)

    Phosphoproteins cytochrom c (m/z ~11.7 kDa)

    lysozyme (m/z ~14.4 kDa) myoglobin (m/z ~17 kDa)

    BSA (m/z ~ 69 kDa)

    Standardproteins

    sig

    na

    l in

    ten

    sity

    [a

    .u.]

    m/z

    Europium

    Wash 1

    Wash 2

    Pellet

    Supernatent

    Protein

    Standard

    Precipitation of Phosphoproteins from Standards by

    Trivalent Europium-, Terbium- and Erbium- Ions

    Yüksel et al. Anal Bioanal Chem (2012) 403:1323–1331 69

  • Standart Eu

    0

    1

    2

    3

    4

    5

    4x1

    0In

    tens.

    [a.u

    .]

    1000 2000 3000 4000 5000 6000 Dam/z

    β

    β β

    β

    β

    α1

    β

    ββ

    α1

    α1

    α1

    α1

    α1

    α1

    α1

    α1

    α1

    α1

    α1

    α-casein seq. Coverage

    [%] Mascot Search

    Score Error [ppm]

    Er 94 90 117

    Eu 94 79 106

    Tb 92 98 117

    β-casein seq. Coverage

    [%] Mascot Search

    Score Error [ppm]

    Er 56 76 32

    Eu 67 54 94

    Tb 53 75 147

    Europium

    Peptide Mass-Fingerprint-Analyse

    α1... αS1-Casein

    β … β-Casein

    On-Pellet Digest of Precipitated Phosphoproteins by

    Trivalent Europium-, Terbium- and Erbium- Ions

    Yüksel et al. Anal Bioanal Chem (2012) 403:1323–1331 70

  • Bovine milk composition

    87,1%

    4,9% 3,9%

    3,4% 0,7%

    water

    carbohydrates

    fats

    proteins

    minerals

    38%

    9% 29%

    9%

    4% 9% 2%

    α-S1-casein

    α-S2-casein

    β-casein

    κ-casein

    α-lactalbumin

    β-lactoglobulin

    others

    according to Pavia DL. 1990 / Eigel WN et al. 1984

  • Milk proteins

    protein (variant) mol. weight /

    Da amino acids

    c / g∙L-1 P

    per mol SH | S-S per mol

    pI

    αS1-casein (B 8P) 23,614 199 12 – 15 8 0 | 0 4.4 – 4.8

    αS2-casein (A 11P) 25,230 207 3 – 4 11 2 | 0 −

    β-casein (A2 5P) 23,983 209 9 – 11 5 0 | 0 4.8 – 5.1

    κ-casein (B 1P) 19,023 169 2 – 4 1 2 | 0 5.3 – 5.8

    α-lactalbumin (B) 14,176 123 0.6 – 1.7 0 0 | 4 4.2 – 4.5

    β-lactoglobulin (B) 18,363 162 2 – 4 0 1 | 2 5.1

    serum albumin 66,267 582 0.4 0 1 | 17 4.7 – 4.9

    according to: Eigel WN et al. 1984 / Fox PF et al. 1998

  • sig

    na

    l in

    ten

    sity

    [a

    .u.]

    m/z

    Terbium

    Wash 1

    Wash 2

    Pellet

    Supernatent

    milk

    sig

    na

    l in

    ten

    sity

    [a

    .u.]

    m/z

    Erbium

    Wash 1

    Wash 2

    Pellet

    Supernatent

    milk

    sig

    na

    l in

    ten

    sity

    [a

    .u.]

    m/z

    Europium

    PPC-5 (m/z ~12–13 kDa)

    α-lactalbumin (m/z ~14.1 kDa)

    β-lactoglobulin (m/z ~18.3 kDa)

    non-phosphorylated milk-proteins

    αS1-casein (m/z ~24.5 kDa)

    β-casein (m/z ~25.1 kDa)

    phosphoproteins

    αS2-casein (m/z ~24.5 kDa)

    κ-casein (m/z ~20.0 kDa)

    Wash 1

    Wash 2

    Pellet

    Supernatent

    milk

    Precipitation of Phosphoproteins from Bovine Milk by

    Trivalent Europium-, Terbium- and Erbium- Ions

    Yüksel et al. Anal Bioanal Chem (2012) 403:1323–1331 73

  • 0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    4x1

    0In

    tens.

    [a.u

    .]

    1000 2000 3000 4000 5000 6000m/z

    α1

    κ β

    κ

    Da

    κ

    α1

    α1α1

    α1

    α2

    α1

    α1

    α1

    ββ β

    ββ

    α2

    α2

    α2

    α2

    α2

    α2

    β

    Milk Tb

    Eu seq. Coverage [%] Mascot Search Score Error [ppm]

    α(S1)-casein 95 74 81 α(S2)-casein 76 68 55

    β-casein 25 72 53 κ-casein 50 68 46

    Tb seq. Coverage [%] Mascot Search Score Error [ppm]

    α(S1)-casein 95 69 98 α(S2)-casein 51 74 96

    β-casein 46 69 77 κ-casein 50 56 118

    Er seq. Coverage [%] Mascot Search Score Error [ppm]

    α(S1)-casein 98 70 74 α(S2)-casein 51 56 56

    β-casein 25 55 44 κ-casein 50 60 68

    Terbium

    α1... αS1-Casein

    α2... αS2-Casein

    β … β-Casein

    κ … κ-Casein

    Peptide Mass-Fingerprint-Analysis

    On-Pellet Digest of precipitated Phosphoproteins from Bovine Milk

    by Trivalent Europium-, Terbium- and Erbium- Ions

    Yüksel et al. Anal Bioanal Chem (2012) 403:1323–1331 74

  • sig

    na

    l in

    ten

    sity

    [a

    .u.]

    m/z

    Erbium

    Wash 1

    Wash 2

    Pellet

    Supernatent

    egg

    white

    sig

    na

    l in

    ten

    sity

    [a

    .u.]

    m/z

    Terbium egg

    white

    Pellet

    Wash 2

    Supernatent

    Wash 1

    lysozyme (m/z ~14 kDa)

    ovomucoid (m/z ~ 28 kDa)

    ovoglobulins G2+G3 (m/z ~30-45 kDa)

    ovotransferrin (m/z ~80 kDa)

    ovalbumin (m/z ~45 kDa)

    non phosphorylated egg-white proteins phosphoprotein

    sig

    na

    l in

    ten

    sity

    [a

    .u.]

    m/z

    Europium

    Wash 1

    Wash 2

    Pellet

    Supernatent

    egg

    white

    Precipitation of Phosphoproteins from Egg-White by

    Trivalent Europium-, Terbium- and Erbium- Ions

    Yüksel et al. Anal Bioanal Chem (2012) 403:1323–1331 75

  • ov

    ov

    ov

    ov

    ov

    ov

    ot

    ov

    ov

    ot

    otov

    ot

    ov

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    x10

    Inte

    ns. [

    a.u.

    ]

    1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

    m/zDa

    1.2

    ot

    ov

    ov

    ot

    ov

    ov ov

    ot

    ot

    ov

    Eu seq. Coverage [%] Mascot search

    Score Error [ppm]

    ovalbumin 74 62 169

    ovotransferrin 52 118 153

    Tb seq. Coverage [%] Mascot search

    Score Error [ppm]

    ovalbumin 59 75 169

    ovotransferrin 58 113 175

    Er seq. Coverage [%] Mascot search

    Score Error [ppm]

    ovalbumin 60 113 172

    ovotransferrin 80 66 184

    Europium Peptide Mass-Fingerprint-Analysis

    ov... Ovalbumin

    ot... Ovotransferrin

    On-Pellet Digest of precipitated Phosphoproteins from Egg-

    White by Trivalent Europium-, Terbium- and Erbium- Ions

    Yüksel et al. Anal Bioanal Chem (2012) 403:1323–1331 76

  • 2M Ln3+-Chloride

    UV/VIS

    take supernatant

    bicinchoninic acid (BCA)

    chelation of two bicinchoninic acid molecules with Cu+1

    reduction of Cu+2 to Cu+1 in the presence of proteins (alkaline conditions)

    colorimetric detection 562 nm

    Recovery Study of Phosphoprotein

    77

  • Methods and instruments

    Colorimetric assays: Bradford and BCA

    Bradford reagent: Coomassie Brilliant Blue G-250

    BCA assay reaction

    Lottspeich F. 2012

  • 0

    20

    40

    60

    80

    100

    0,5 1 1,5 2 2,5 3

    Re

    co

    ve

    ry [

    %]

    Volume Precipitant [µl]

    Recovery Study

    Lanthanum

    Europium

    Terbium

    Erbium

    100%

    Precipitation of Phosphoproteins by

    Trivalent Europium-, Terbium- and Erbium- Ions

    Recovery Study

    ccasein = 300µg/ml cprecip. = 2M

    79

  • Precipitation of Phosphopeptides by

    Trivalent Lanthanide Ions

    A Bottum-Up Approach

    80

  • A Novel Strategy for Phosphopeptide Enrichment using Lanthanide Phosphate Precipitation

    Workflow for the precipitation of phosphorylated peptides 81

  • A Novel Strategy for Phosphopeptide Enrichment using Lanthanide Phosphate Precipitation

    MALDI mass spectra taken from peptide mixture (α-casein, β-casein and ovalbumin) after precipitation with trivalent lanthanide ions. A, phosphopeptide enriched by precipitation with Er3+. B, phosphopeptide enriched by precipitation using Ho3+. C, phosphopeptide enriched by precipitation using Ce3+. Phosphorylated peptides are labeled.

    Erbium

    Holmium

    Cer

    82

  • A Novel Strategy for Phosphopeptide Enrichment using Lanthanide Phosphate Precipitation

    MALDI mass spectra taken from peptide mixture (α-casein, β-casein and ovalbumin) after precipitation with trivalent lanthanide ions. A, phosphopeptide enriched by precipitation with La3+. B, phosphopeptide enriched by precipitation using Eu3+. C, phosphopeptide enriched by precipitation using Tm3+. Only phosphorylated peptides are labeled

    Lanthanum

    Europium

    Terbium

    83

  • A Novel Strategy for Phosphopeptide Enrichment using Lanthanide Phosphate Precipitation

    MALDI mass spectra taken from digested milk peptides after precipitation with trivalent lanthanide ions. A, phosphopeptide enriched by precipitation with Er3+. B, phosphopeptide enriched by precipitation using Ho3+. C, phosphopeptide enriched by precipitation using Ce3+. α-S1 and β-S2 refers to first and second subunits of α-casein respectively. β-C refers to peptides form β-casein

    Erbium

    Holmium

    Cer

    84

  • A Novel Strategy for Phosphopeptide Enrichment using Lanthanide Phosphate Precipitation

    MALDI mass spectra taken from egg white peptides after precipitation with trivalent lanthanide ions. A, phosphopeptide enriched by precipitation with Er3+. B, phosphopeptide enriched by precipitation using Ho3+. C, phosphopeptide enriched by precipitation using Ce3+. Only phosphorylated peptides are labeled

    Erbium

    Holmium

    Cer

    85

  • A Novel Strategy for Phosphopeptide Enrichment using Lanthanide Phosphate Precipitation

    MALDI mass spectra of a sensitivity study using two synthetic phosphopeptides. A, representing 500 fmol/µL; B, 10 fold dilution (50 fmol/µL) and C, 100 fold dilution (5 fmol/µL)

    500 fmol/µL

    50 fmol/µL

    5 fmol/µL

    86

  • [M+H]+ Da Phosphopeptide Sequencesa Phosho-

    groups

    ErCl3 HoCl3 CeCl3 LaCl3 EuCl3 TmCl3 TbCl3 TiO2

    1254.52

    1331.53

    1411.50

    1466.61

    1594.70

    1660.79

    1832.83

    1847.69

    1927.69

    1951.95

    2061.83

    2088.89

    2432.05

    2511.13

    2556.10

    2619.04

    2678.01

    2703.50

    2720.91

    2747.10

    2856.50

    2901.32

    2935.15

    2966.16

    3008.01

    3042.27

    3087.99

    3122.27

    3132.20

    EVVGSpAEAGVDAA (Ov-(340–352))

    EQLSpTSpEENSK (α-S2-(141–151))

    EQLSpTSpEENSK (α-S2-(141–151))

    TVDMESpTEVFTK (α-S2-(153–164))

    TVDMESpTEVFTKK (α-S2-(153–165))

    VPQLEIVPNSpAEER α(-S1-(121–134))

    YLGEYLIVPNSpAEER (α-S1)

    DIGSESpTEDQAMEDIK (α-S1-(58–73))

    DIGSESpTEDQAMEDIK (α-S1-(58–73))

    YKVPQLEIVPNSpAEER (α-S1-(119–134))

    FQSpEEQQQTEDELQDK (β-C-(33–48))

    EVVGSpAEAGVDAASVSEEFR (Ov-(340–359))

    IEKFQSpEEQQQTEDELQDK (β-C-(33–48))

    LPGFGDSpIEAQCGTSVNVHSSLR (Ov-(62–84))

    FQSpEEQQQTEDELQDKIHPF (β-C-(48-67))

    NTMEHVSpSpSpEESpIISQETYK (α-S2-(17–36))

    VNELSpKDIGSpESpTEDQAMEDIK (α-S1-(52–73))

    LRLKKYKVPQLEIVPNSpAEERL(α-S1-(114–135))

    QMEAESpISpSpSpEEIVPNSVEAQK (α-S1-(74–94))

    NTMEHVSpSpSpEESpIISQETYKQ (α-S2-(17–37))

    EKVNELSpKDIGSpESTEDQAMEDIK (α-S1-(50–73))

    FDKLPGFGDSpIEAQCGTSVNVHSSLR (Ov-(59–84))

    EKVNELSpKDIGSpESpTEDQAMEDIK (α-S1-(50–73))

    ELEELNVPGEIVESpLSpSpSpEESITR (β-C-(17–40))

    NANEEEYSIGSpSpSpEESpAEVATEEVK (α-S2-(61–85))

    RELEELNVPGEIVESLSpSpSpEESITR (β-C-(16–40))

    NANEEEYSIGSpSpSpEESpAEVATEEVK (α-S2-(61–85))

    RELEELNVPGEIVESpLSpSpSpEESITR (β-C-(16–40))

    KNTMEHVSpSpSpEESpIISQETYKQEK (α-S2-(16–39))

    Mono

    Mono

    Di

    Mono

    Mono

    Mono

    Mono

    Mono

    Di

    Mono

    Mono

    Mono

    Mono

    Mono

    Mono

    Tetra

    Tri

    Mono

    Penta

    Tetra

    Di

    Mono

    Tri

    Tetra

    Tetra

    Tetra

    Penta

    Tetra

    Tetra

    -

    -

    -

    +

    +

    +

    +

    -

    +

    +

    +

    +

    +

    -

    +

    +

    +

    +

    +

    +

    +

    +

    +

    -

    +

    +

    +

    +

    +

    -

    -

    -

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    -

    +

    +

    -

    +

    -

    -

    +

    -

    +

    -

    +

    +

    +

    +

    +

    -

    -

    -

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    -

    +

    +

    -

    +

    -

    -

    +

    +

    -

    +

    +

    +

    -

    +

    +

    -

    -

    -

    +

    +

    +

    +

    -

    +

    +

    +

    +

    +

    -

    +

    +

    -

    +

    +

    -

    -

    +

    +

    -

    +

    +

    +

    +

    +

    -

    -

    -

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    -

    +

    +

    -

    +

    +

    -

    +

    -

    +

    -

    +

    +

    +

    +

    +

    -

    -

    -

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    -

    +

    -

    -

    -

    -

    -

    -

    +

    -

    -

    -

    -

    -

    -

    -

    -

    -

    -

    +

    +

    +

    +

    -

    +

    +

    +

    +

    -

    -

    -

    -

    -

    +

    +

    -

    -

    -

    -

    -

    +

    +

    -

    +

    +

    -

    -

    -

    +

    +

    +

    +

    -

    +

    +

    +

    +

    -

    -

    +

    -

    +

    +

    +

    -

    +

    -

    +

    -

    +

    -

    +

    +

    +

    Recovery of Phosphopeptides

    23 20 19 20 21 12 14 18

  • P P

    P

    P P

    3.6% HCl

    P P

    P P

    P

    trypsin

    Tryptic On-Pellet Digest of Precipitated Phosphoproteins

    Inte

    nsity

    m/z 88

    Workflow

    Development of New Bioanalytical Tools and Methods for the Enrichment of Phosphorylated Peptides and Proteins

    Güzel, Y.; Rainer, M. (); Mirza, M.R.; Messner, C.B.; Bonn, G.K. Highly Selective Recovery of Phosphopeptides using Trypsin-Assisted Digestion of Precipitated Lanthanide-Phosphoprotein Complexes. Analyst (2013) 138(10), 2897-2905.

    LaPO4

    P P

    P

    P P

    washing

    LaPO4

  • Overview of recovered phosphopeptides from a proteinmixture (lysozyme, cytochrome c, myoglobin, bovine serum albumin, a- and b-casein) and bovine milk

    proteinmixture milk 1:100 dilution

    [M+H]+ Position Protein Phosphopeptide sequences Phospho groups LaCl3 CeCl3 TiO2 LaCl3 CeCl3 TiO2 LaCl3 CeCl3 1466.6 153-164 α-S2 TVDMESpTEVFTK mono + + - + + + + +

    1482.6 153-164 α-S2 TVDM*ESpTEVFTK mono + + - - + - + +

    1594.7 153-165 α-S2 TVDMESpTEVFTKK mono + + + + + + + +

    1610.7 153-165 α-S2 TVDM*ESpTEVFTKK mono + + - - + - + +

    1660.7 121-134 α-S1 VPQLEIVPNSAEER mono + + + + + + + +

    1832.8 104-119 α-S1 YLGEYLIVPNSpAEER mono + + + + + + + +

    1847.6 58-73 α-S1 DIGSESpTEDQAMEDIK mono + + - - - - - -

    1927.6 58-73 α-S1 DIGSpESpTEDQAMEDIK di + + - + + + + +

    1943.6 58-73 α-S1 DIGSpESpTEDQAM*EDIK di + + + + + + + +

    1951.9 119-134 α-S1 YKVPQLEIVPNSpAEER mono + + + + + + + +

    1981.8 48-63 β FQSpEEQQQTEDELQDK mono + + + + - + + -

    2000.0 118-134 α-S1 KYKVPQLEIVPNSpAEER mono + + - + + - - +

    2061.8 48-63 β FQSpEEQQQTEDELQDK mono + + + + + + - -

    2080.0 118-134 α-S1 KYKVPQLEIVPNSpAEER mono + + + + + + + +

    2432.0 45-63 β IEKFQSpEEQQQTEDELQDK mono + + - + + - - -

    2548.2 119-139 α-S1 YKVPQLEIVPNSpAEERLHSMK mono + + - + + - + +

    2560.1 44-63 β KIEKFQSpEEQQQTEDELQDK mono + + - + + - - -

    2564.6 119-139 α-S1 YKVPQLEIVPNSpAEERLHSM*K mono + + - + + - + +

    2598.0 52-73 α-S1 VNELSpKDIGSpESpTEDQAMEDIK di + + - + + - + +

    2678.0 52-73 α-S1 VNELSpKDIGSpESpTEDQAMEDIK tri + + - + - + + +

    2703.5 114-135 α-S1 LRLKKYKVPQLEIVPNSpAEERL mono + + - + + + - -

    2716.2 130-152 α-S2 NAVPITPTLNREQLSpTSpEENSKK di + + - + + - + +

    2720.9 74-94 α-S1 QMEAESpISpSpSpEEIVPNSpVEQK penta + + - + + - - -

    2747.1 17-37 α-S2 NTMEHVSpSpSpEESpIISQETYKQ tetra + + + + + + - -

    2856.5 50-73 α-S1 EKVNELSpKDIGSESTEDQAMEDIK di + + - + + - + +

    2935.1 50-73 α-S1 EKVNELSpKDIGSpESTEDQAMEDIK tri + + - + - - + +

    2966.1 17-40 β ELEELNVPGEIVESpLSpSpSpEESITR tetra + + + + + - - -

    3008.0 61-85 α-S2 NANEEEYSIGSpSpSpEESpAEVATEEVK tetra + + + + + + + +

    3024.2 16-40 β RELEELNVPGEIVESLSpSpSpEESITR tri + + + + + - - -

    3042.2 16-40 β RELEELNVPGEIVESLSpSpSpEESITR tri + + + + + - - -

    3087.9 61-87 α-S2 NANEEEYSpIGSpSpSpEESpAEVATEEVK penta + + - + + - - -

    3122.2 16-40 β RELEELNVPGEIVESpLSpSpSpEESITR tetra + + + + + + + +

    3132.2 16-39 α-S2 KNTMEHVSpSpSpEESpIISQETYKQEK tetra + + - + + + + +

    34 15 31 16 22

  • Dephosphorylated HeLa cell lysate (1 mg/mL) with spiked α- and ß-casein (5 μg/mL) after enzymatic on-pellet digestion using trivalent cerium cations. α1, α2 and β correspond to the tryptic phosphopeptides deriving from αS1-, αS2, and β-casein, respectively

    HeLa cell lysate - digest

    spiked cell lysate after precipitation

    Development of New Bioanalytical Tools and Methods for the Enrichment of Phosphorylated Peptides and Proteins

    On-pellet digest of precipitated α-/ß-casein from spiked cell lysates

  • crude saliva digest

    precipitated fraction CeCl3

    Rainer, M. (), Güzel, Y., Messner, C., & Günther Bonn (2014). Co-Precipitation of Phosphorylated Proteins Using Trivalent Cerium-, Holmium-, and Thulium Cations. Current Pharmaceutical Analysis, 10(3), 175-184.

    Development of New Bioanalytical Tools and Methods for the Enrichment of Phosphorylated Peptides and Proteins

    On-pellet digest of precipitated proteins from Human Saliva

  • 92

    Conclusion

    simple and fast method

    highly selective for phosphorylated peptides and proteins

    enables top-down and bottum-up phosphoproteomics

    no stationary phase or resin required (reduced unspecific binding)

    trypsin was observed to be not affected by the lanthanide ions

    the amount of precipitant can be adjusted to each application

    MS and LC-MS compatible

    allows automation using liquid handling robotics

    Highly efficient precipitation of phosphorylated peptides and proteins using trivalent lanthanide ions

  • Gelelektrophorese

  • Structure of the Repeating Unit of Agarose, 3,6-anhydro-L-galactose

    Basic disaccharide

    repeating units of

    agarose,

    G: 1,3-β-d-galactose

    and

    A: 1,4-α-l-3,6-

    anhydrogalactose

  • Gel Structure of Agarose

  • Crosslinking Acrylamide Chains

  • Improvements in 2D-PAGE

    - +

    - IPG (Immobilised Ph Gradient) strips for the first dimension

    pH-forming chemical groups are grafted onto the polyacrylamide matrix, creating a mechanically stable pH gradient

    + + mechanical stability

    + + reproducibility

    + + loadable amounts

    + + „zoom“ pI ranges

    pH 3.0 10.0

    1st dimension

  • Protein sample can be applied at sample application well following

    the rehydration step if the protein sample was not included in the

    rehydration solution.

  • Place assembled strip holder on electrophoresis platform

  • Equilibration step 1 :

    • SDS

    • Buffer pH 6.8

    • DTT (reduce –S-S-)

    • Iodoacetamide

    (alkylate –S-S-)

    After IEF : equilibration and 2nd dimension

    + -

    6.5 10 3.0 5.5 8.5

    pI

    100

    75

    50

    37

    20

    10

    150

    kDa

    Size

  • horizontal gel electrophoresis

  • Electrophoresis Equipment

    Vertical gel

  • Electrophoresis Equipment

    Combs are used to put wells in the cast gel for sample loading.

    – Regular comb: wells separated by an “ear” of gel

    – Houndstooth comb: wells immediately adjacent