dependence of the thickness and composition of the hfo2/si...

24
CINVESTAV 1 P.G. Mani-González and A. Herrera-Gomez [email protected] Dependence of the thickness and composition of the HfO 2 /Si interface layer on annealing CINVESTAV-UNIDAD QUERETARO

Upload: others

Post on 19-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

CINVESTAV 1

P.G. Mani-González and A. Herrera-Gomez

[email protected]

Dependence of the thickness and composition of the HfO2/Si interface layer on annealing

CINVESTAV-UNIDAD

QUERETARO

CINVESTAV 2

background

• Introduction – ALD

– DC Sputtering

– XPS

• ARXPS

• Growth of HfO2 films by ALD– Caracterization by XPS

• Growth of TaN films by DC sputtering– Caracterization by XPS

• Annealing of Si/HfO2/TaN– Removed TaN

– Charaterization by XPS

• Conclusions

CINVESTAV 3

Introduction

•High thermal stability and high dielectric

constant.

•Get the composition and thickness of the HfO2/Si

interface.

CINVESTAV 4

ALD (atomic layer deposition)

Si/HfO2

Si (001)

HfO2

RCA

Si (100)

M1

M2

M3

M4

M5

ALDPulse (seg) Drain (seg)

H2O 0.1 7

TDMA-Hf 0.08 7

CINVESTAV 5

DC sputtering

Si/HfO2/TaN

Si (001)

TaN

HfO2

PB= 6.4X10-6 torr

Ar

N2

CINVESTAV 6

XPS

X-ray source

Al K no-monochromatic

h = 1486.6 eV

K

L

M

electrons

X ray

EK=h -EB

Mg K no-monochromatic

h = 1253.6 eV

CINVESTAV 7

1385 1390 1395 1400 1405 1410 1415 1420 1425

0

500

1000

1500

2000

2500

3000

Inte

nsity

Kinetic Energy

Au 4f7/2

1385 1390 1395 1400 1405 1410 1415 1420 1425

0

500

1000

1500

2000

2500

3000

Inte

nsity

Kinetic Energy

1385 1390 1395 1400 1405 1410 1415 1420 1425

0

500

1000

1500

2000

2500

3000

Inte

nsity

Kinetic Energy

1385 1390 1395 1400 1405 1410 1415 1420 1425

0

500

1000

1500

2000

2500

3000

Inte

nsity

Kinetic Energy

1385 1390 1395 1400 1405 1410 1415 1420 1425

0

500

1000

1500

2000

2500

3000

Inte

nsity

Kinetic Energy

1385 1390 1395 1400 1405 1410 1415 1420 1425

0

500

1000

1500

2000

2500

3000

Inte

nsity

Kinetic Energy

1385 1390 1395 1400 1405 1410 1415 1420 1425

0

500

1000

1500

2000

2500

3000

Inte

nsity

Kinetic Energy

1385 1390 1395 1400 1405 1410 1415 1420 1425

0

500

1000

1500

2000

2500

3000

Inte

nsity

Kinetic Energy

1385 1390 1395 1400 1405 1410 1415 1420 1425

0

500

1000

1500

2000

2500

3000

Inte

nsity

Kinetic Energy

sample

X-Ray Source

Au 4f5/2

ARXPSconcentric hemiespheric analyzer

Si(001)

Au

15 to 90

XP

S s

ign

al (a

.u.)

Kinetic Energy eV

CINVESTAV 8

background

• Introduction – ALD

– DC Sputtering

– XPS

• ARXPS

• Growth of HfO2 films by ALD– Caracterization by XPS

• Growth of TaN films by DC sputtering– Caracterization by XPS

• Annealing of Si/HfO2/TaN– Removed TaN

– Charaterization by XPS

• Conclusions

CINVESTAV 9

Growth of HfO2 in silicon wafer by ALD

TDMA-Hf (Tetrakis dimetilamino-Hf)

H2O (DI)

Growth conditionPi= 2.039x10-1 torr

275 °C on the substrate

200 °C on the wall

70 °C on the cylinder TDMA-Hf

CINVESTAV 10

ARXPS in sample with 30 cycles

Si 2p

Hf 4f

O 1s

C 1s

Binding energy

Inte

nsity

CINVESTAV 11

Growth of HfO2/Si varying the number cycles

Hf 4fSi 2p

O 1s

Ciclos

25

20

15

10

5

Ciclos

5

10

15

20

25

Ciclos

25

20

15

10

5

Binding energy

Inte

nsity

Binding energy

Inte

nsity

Binding energy

Inte

nsity

CINVESTAV 12

background

• Introduction – ALD

– DC Sputtering

– XPS

• ARXPS

• Growth of HfO2 films by ALD– Caracterization by XPS

• Growth of TaN films by DC sputtering– Caracterization by XPS

• Annealing of Si/HfO2/TaN– Removed TaN

– Charaterization by XPS

• Conclusions

CINVESTAV 13

TaN film grown by DC sputtering

N2

Ta

PT= 2.6X10-4 torr

t= 4 min

P= 100 W

Thickness= 1000 Å

CINVESTAV 14

Characterization XPS in TaN films

Ta 4fTa 4d

N 2.5%

N 5%

N 10%

N 1s

Binding energy

Inte

nsity

CINVESTAV 15

Comparing TaN films grown by laser ablation and DC Sputtering

Ta 4f

Laser ablation *

10

5

2.5

N flow (%) Ar flow (%) N (cm3) Ar (cm3) Thickness (Å) Resistivity (Ω cm)

2.5 97.5 0.6 24.4 1464 1.596E+02

5 95 1.3 23.7 1090 7.358E-02

10 90 2.5 22.5 1087 6.36E-04

1000 3.73E-04 Laser A.

Binding energy

Inte

nsity

* Dr. Wencel de la Cruz (CNyN)

CINVESTAV 16

ARXPS in TaN films

N 1s

O 1s

Ta 4f

15°

30°

45°

60°

75°

Binding Energy

Inte

nsity

Inte

nsity

Binding Energy

Inte

nsity

Binding Energy

Ta associated in

TaN

Ta associated in

Ta2O5

CINVESTAV 17

Characterization XRD for TaN films

(111)

(200)

(220)

Inte

nsity

Laser ablation

DC Sputtering

CINVESTAV 18

background

• Introduction – ALD

– DC Sputtering

– XPS

• ARXPS

• Growth of HfO2 films by ALD– Caracterization by XPS

• Growth of TaN films by DC sputtering– Caracterization by XPS

• Annealing of Si/HfO2/TaN– Removed TaN

– Charaterization by XPS

• Conclusions

CINVESTAV 19

Thermal annealing and removed TaN for Si/HfO2/TaN

N2

T=700-1000 °C

10 seg

T2

AireAire

N2

Removed TaN

NH4OH:H2O:H2O2

10:1:1 to 85 °C

CINVESTAV 20

XPS after removed TaN filmO 1s

700 °C

800 °C

900 °C

1000 °C

Si 2pHf 4f

O associated

in HfO2

O associated

in SiO2

530.52 eV

531.92 eV

17.09 eV18.42 eV

99.4 eV

101.93 eV

399.17 eV405.14 eVN 1s

Ta 4f is not

NO2*

* V.B. Wiertz, P. Bertrand, Identification of the n-containing functionalities introduced at the surface of ammonia plasma treated carbon fibres by combined

TOF SIMS and XPS, Unité de Physico-Chimie et de Phys. Des Mat., Univ. Louvain 1348 Editor, Louvain.

Binding Energy

Inte

nsity

CINVESTAV 21

Thickness calculation

senexp

senexp

senexp1

1

senexp1

senexp1

,

,

2

2

2

Hf

HfO

SiO

SiO

Si

Si

C

C

C

C

SiSi

CC

Si

C

dd

a

a

d

s

s

I

I

r

r

S above

layers

i, cosexp

cosexp1

cosexp1

,

iS

i

S

S

S

S

SSSd

a

d

sAXI rr

Equations (model) and parameters employed in the calculations

KEA

1~ (not exactly, but close)

CINVESTAV 22

Parameters

SiO2 2.1 nm

4.8 nm

Si (100) substrate

C

HfO2

0.25 nm

effective attenuation lengths

cross section assymetry KE Si SiO2 HfO2 Carbon

Si 2p 0.11 1.1 1153.95 29.2 35.2 17.2 33.4

Hf 4f 0.118 1.02 1236.36 36.9 18 35

N 1s 0.024 2 854.511 28.4 13.9 27.2

O 1s 0.04 2 722.75 25.5 12.5 24.4

C 1s 0.013 2 967.76 31 15.1 29.5

Thickness 21.0038668 47.9606174 2.59638606

The thicknesses were varied to reproduce the anions’ (Si, Hf and C) data

CINVESTAV 23

Conclusions

•The annealing present a different phase of SiO2 and HfO2 moved the

binding energy.

•increasing the cycles number, the signal of O assotiated to HfO2

increase.

•TaN is not present after of removed in the samples annealing

•With annealing the N is going to entrance to lattice of the HfO2

•N 1s present a peak of correspond to NO2 is possible to introduce of

HfON, SiON or both of them.

•The thickness was calculated with the equation

CINVESTAV 24

Conclusiones

•Increase the SiO2 peak with annealing

•The suboxide in the Si 2p to continue increase with the temperature.

• We have a uniform and control in the grown of HfO2 films but is

formed a SiO2 in the interface of HfO2/Si.

• is possible to see the contribution of TaO and TaN respect the angle

resolution the Ta2O5 is on the surface and N of the TaN is depth.