densitometric vertebral fracture assessment in healthy ... vfa in healthy me…  · web...

26
Title: Vertebral fracture assessment in healthy men: prevalence and risk factors. Authors: A. El Maghraoui, A. Mounach, S. Gassim, M. Ghazi. Address: Rheumatology and physical Rehabilitation Department, Military Hospital Mohammed V, Rabat, Morocco. 1

Upload: others

Post on 23-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Densitometric vertebral fracture assessment in healthy ... VFA in healthy me…  · Web viewVertebral fractures were identified using VFA in 64 (29.6%); this group of men had a statistically

Title: Vertebral fracture assessment in healthy men: prevalence and risk factors.

Authors: A. El Maghraoui, A. Mounach, S. Gassim, M. Ghazi.

Address: Rheumatology and physical Rehabilitation Department, Military Hospital

Mohammed V, Rabat, Morocco.

1

Page 2: Densitometric vertebral fracture assessment in healthy ... VFA in healthy me…  · Web viewVertebral fractures were identified using VFA in 64 (29.6%); this group of men had a statistically

Abstract

Introduction: vertebral fracture assessment (VFA) is a technology than can reliably and

accurately diagnose vertebral fractures with greater patient convenience, less radiation

exposure, and lower cost than standard spine radiography.

Objective: to study prevalence and risk factors of vertebral fractures using VFA in healthy

men.

Methods: the study cohort consists of a population of 216 healthy men aged between 50 and

79 (mean age, weight and BMI of 63.8 years, 73.3 Kgs and 25.7 kg/m2, respectively). Lateral

VFA images and scans of the lumbar spine and proximal femur were obtained by two

technologists using a GE Healthcare Lunar Prodigy densitometer. Vertebral fractures were

defined using a combination of Genant semiquantitative (SQ) approach and morphometry.

Results: ninety-three percent of vertebrae from T4–L4 and 98% from T8–L4 were adequately

visualized on VFA. Vertebral fractures were detected in 29.6% (64/216) of these men: 34/216

(15.7%) had grade 1 and 30/216 (13.8%) had grade 2 or 3. Twenty one of men with VFA-

identified fracture (32.8%) had only a single vertebral fracture, while the other 67.2% had two

or more. Fractures were most common in the mid-thoracic spine and at the thoraco-lumbar

junction. As would be expected, the prevalence of VFA-detected fractures increased with age

and as BMD declined. This group of men had a statistically significant lower weight, height,

calcium consumption and T-score than those without a VFA-identified vertebral fracture.

Regression analysis showed that presence of vertebral fracture was mainly related to the

osteoporotic status (OR: 9.0; 95% CI: 3.5 – 22.8).

Conclusion: VFA allows evaluation of the majority of vertebral bodies in men. Vertebral

fractures are common in healthy men and are related to low BMD.

2

Page 3: Densitometric vertebral fracture assessment in healthy ... VFA in healthy me…  · Web viewVertebral fractures were identified using VFA in 64 (29.6%); this group of men had a statistically

Vertebral fracture is one of the most common consequences of osteoporosis, a major public

health burden worldwide characterized by decreased bone mass and by increased

susceptibility to fractures. Men account for 33–50% of all vertebral fractures, 20–35% of all

femoral fractures and 15% of all distal forearm fractures1. Vertebral fractures are important to

detect because they have been associated with reduced quality of life, increased morbidity and

mortality, and increased risk of future vertebral and non-vertebral fractures2, 3.

The standard method to assess vertebral fracture is radiography of the thoraco-lumbar spine.

However, there is no gold standard for the definition of osteoporotic vertebral fracture4. A

number of methods have been developed for interpretation of spinal X-rays, including the

Genant semi-quantitative method, which has been used as a surrogate gold standard in a

number of key osteoporosis studies5. This approach is more objective and reproducible than

other qualitative methods6. Vertebral morphometry using dual-energy X-ray absorptiometry

(DXA) also known as VFA is a fast, low-radiation technique which produces images that are

of sufficient quality to be used to diagnose the presence of vertebral deformity consistent with

fracture7. VFA has demonstrated utility for vertebral visualization and thus is an important

tool for fracture detection in women and men8, 9. VFA offers “point of service” convenience

for the patient when it is done at the same visit as for BMD measurement by DXA, with far

less radiation than standard radiography10. The effective radiation dose for VFA is about 30-

50 micro Sieverts (μSv) vs. 1800-2000 μSv for a lateral thoracic and lumber spine X-ray. By

comparison, typical background radiation at sea level in the USA is about 7 μSv per day11.

Clinical risk factors associated with vertebral fractures have been well studied in women12-15.

In contrast, few studies of prevalence and risk factors for vertebral fractures in men exist

especially in healthy and asymptomatic populations.

3

Page 4: Densitometric vertebral fracture assessment in healthy ... VFA in healthy me…  · Web viewVertebral fractures were identified using VFA in 64 (29.6%); this group of men had a statistically

We aimed in the present study to evaluate the prevalence, risk factors and clinical

characteristics associated with vertebral fractures in a cohort of healthy men aged over 50

who had a VFA examination during their bone mineral density (BMD) testing.

Material and methods

Subjects

A total of 216 healthy Caucasian men (age range: 5079 yr) living in the Rabat area

participated in the present study. Rabat is the capital of Morocco with a diverse population

representing most Moroccans. Morocco has a population of 29,891,708 (2004 population

Census), most of whom are Caucasians, and Rabat is a modern city of 627,932 inhabitants

(49.8% male). The subjects were extracted from a database of healthy volunteers aged

between 20 and 79 years which served to establish the normal reference curve of BMD in

Moroccan men. The recruitment was made in part among hospital staff, university students

and lay people contacted by word of mouth. Though the sample was not a true probability

sample, care was taken to ensure representativeness of the general population, enrolling

nearly ten subjects per year of age and with a particular regard to the inclusion of a wide

range of body sizes and activities.

The BMD of the lumbar spine and proximal right femur of these male volunteers with no

previous history of bone disease was measured after they gave informed consent. The study

was approved by the local Ethics Committee. All subjects were fully ambulatory. Screening

was done by physical examination and questionnaires. Men using medications affecting

calcium metabolism and those with medical conditions known to affect bone metabolism or

with a history of any fracture or major systemic disorder were excluded. Thus, we excluded

subjects with non-Caucasian origin, gastrectomy, intestinal resection, recent hyperthyroidism

or hyperparathyroidism, treatment with corticosteroids for more than 6 months, or recent

severe immobilization (last two years). We did not exclude individuals using inhalation

4

Page 5: Densitometric vertebral fracture assessment in healthy ... VFA in healthy me…  · Web viewVertebral fractures were identified using VFA in 64 (29.6%); this group of men had a statistically

steroids or with certain lifestyle habits, such as heavy smoking, being sedentary, being

athletic, or having a high or low calcium intake, which are examples of voluntary factors that

may have some impact on bone metabolism.

Each subject completed a standardized questionnaire designed to document putative risk

factors of osteoporosis. The questionnaire collected information on life style, smoking habits,

and level of physical activity in leisure time, along with calcium consumption and the use of

vitamins and medications. Height and weight were measured in our centre before DXA

measurement with light indoor clothes on, but without shoes. Body mass index (BMI) was

calculated by dividing weight in kilograms by height in meters squared. Lifestyle (alcohol

consumption, gymnastics or jogging/walking, smoking) and diet (milk, yogurt, cheese, coffee,

soda) habits were also recorded. The men were asked whether they usually drank milk, coffee,

soda or alcohol, if they ate cheese or yogurt, if they did gymnastics or jogging/walking, and if

they smoked tobacco. If the answer was positive, they were asked to quantify their average

current consumption (evaluated on the 7 days prior to the interview) of milk or yogurt (mL/d),

cheese (g/d), and wine and/or spirits (mL/d). Tobacco smoking was quantified as average

number of cigarets (smoked/d) multiplied by the number of years of smoking, gymnastics

(defined as a sport involving performance of exercises requiring physical strength, agility and

coordination) as minutes per week, or jogging/walking as minutes per day. Finally, patients

were categorized as never smokers, ex-smokers and current smokers; high, normal and low

calcium intake (more than 1500 mg/d, between 800 and 1500/d and below 800 mg/d

respectively); high, moderate and low coffee intake (more than 3 cups/d, between 1 and 3

cups/d and below 1 cup/d respectively); high, moderate and low soda intake (more than 500

mL/d, between 100 and 500 mL/d and less than 100 mL/d respectively); high, moderate and

low physical activity (more than 3 h/week, 2-3 h/week and below 1h/week respectively).

5

Page 6: Densitometric vertebral fracture assessment in healthy ... VFA in healthy me…  · Web viewVertebral fractures were identified using VFA in 64 (29.6%); this group of men had a statistically

In total, 678 men were screened. Among them 186 individuals were excluded from the study

according to predetermined exclusion criteria, whereas 592 met all inclusion criteria and were

invited to participate in the BMD measurement. Men aged over 50 had a VFA at the same

time of BMD measurement.

BMD Measurement

Bone mineral density was determined by a Lunar Prodigy Vision DXA system (Lunar Corp.,

Madison, WI). The DXA scans were obtained by standard procedures supplied by the

manufacturer for scanning and analysis. All BMD measurements were carried out by 2

experienced technicians. Daily quality control was carried out by measurement of a Lunar

phantom. At the time of the study, phantom measurements showed stable results. The

phantom precision expressed as the coefficient of variation percentage was 0.08. Moreover,

reproducibility has been assessed recently in clinical practice and showed a smallest

detectable difference of 0.04 g/cm2 (spine) and 0.02 (hips)16, 17. Patient BMD was measured at

the lumbar spine (anteroposterior projection at L1-L4) and at the femurs (i.e., femoral neck,

trochanter, and total hip). The World Health Organization (WHO) classification system was

applied, defining osteoporosis as T-score ≤−2.5 and osteopenia as −2.5<T-score<−1. Study

participants were categorized by the lowest T-score of the L1–4 lumbar spine, femur neck, or

total femur. The Moroccan male normative database was used for T-score calculation: the

mean (SD) values for young normal adults in the Moroccan male normative database were

1.205 g/cm2 (0.15) for lumbar spine, 1.147 g/cm2 (0.16) for femoral neck, and 1.161 g/cm2

(0.16) for total hip.

VFA was classified using a combination of Genant semiquantitative (SQ) approach and

morphometry in the following manner: each VFA image was inspected visually by two

clinicians (MG and AM who had a previous training session in VFA) to decide whether it

contained a fracture in any of the visualized vertebrae. Each vertebra that was judged as

6

Page 7: Densitometric vertebral fracture assessment in healthy ... VFA in healthy me…  · Web viewVertebral fractures were identified using VFA in 64 (29.6%); this group of men had a statistically

fractured by visual inspection by any of the investigators was measured using built-in

morphometry and assigned a grade based on Genant SQ scale5, where grade 1 (mild) fracture

is a reduction in vertebral height of 20-25%, grade 2 (moderate) a reduction of 26-40%, and

grade 3 (severe) a reduction of over 40%. Subjects with no fractures were included in the non-

fracture group, whereas those with grade 1 or higher fractures were included in the fracture

group. However, as many studies rarely report mild deformities as “fractures”, and to realize

comparisons with the literature, we performed a double analysis including and excluding

grade 1 fractures from the fracture group.

Statistical Analysis

Results are presented as means (SD) and categorical variables are expressed as frequencies.

To compare patients with and without vertebral fractures, chi-square test and analysis of

variance ANOVA were used firstly. Potential risk factors were entered to a stepwise

conditional binary regression analysis and the resulted odds ratios with 95% confidence

intervals were reported. The level for significance was taken as p 0.05. Excel 2007 and

SPSS 15.0 were used for statistical analysis.

Results

Patient demographics

In this cohort of 216 men, the mean ± SD (range) age, weight and BMI were 63.8 ± 8.2 (50 to

79) years, 73.3 ± 12.3 (40 to 106) and 25.7 ± 3.9 (17.0 to 37.5) kg/m2, respectively. All

patients were Caucasian. Vertebral fractures were identified using VFA in 64 (29.6%); this

group of men had a statistically significant lower weight, height, calcium consumption and

lumbar spine and total hip BMD and T-scores than those without a VFA-identified vertebral

fracture (Table 1).

Vertebral visualization and fracture identification on VFA

7

Page 8: Densitometric vertebral fracture assessment in healthy ... VFA in healthy me…  · Web viewVertebral fractures were identified using VFA in 64 (29.6%); this group of men had a statistically

In these 216 men, 93% of vertebrae from T4–L4 and 98% from T8–L4 were adequately

visualized on VFA (Figure 1). The percentage of vertebrae not visualized at T4, T5, and T6

levels was 42.1%, 26.9, and 13.0% respectively. Vertebral fractures were detected in 29.6%

(64/216) of these men: 34 (53.1%) had grade 1 and 30 (46.8%) had grade 2 or 3. Twenty one

of men with VFA-identified fracture (32.8%) had only a single vertebral fracture, while the

other 67.2% had two or more. Fractures were most common in the mid-thoracic spine and at

the thoraco-lumbar junction (Figure 2).

As would be expected, the prevalence of VFA-detected fractures globally increased with age

and as BMD declined (Figure 3). In this study population, 25% (n=55) had normal BMD,

62% (n=135) were osteopenic and 12% (n=26) osteoporotic. Though numerically more VFA-

identified fractures occurred in men with osteopenia, the fracture prevalence was higher

(p<0.0001) in men with lower BMD (Figure 4). Interestingly, a fracture was identified on

VFA in 21.8% of men with normal BMD. Stepwise regression analysis showed that presence

of vertebral fracture was mainly related to the osteoporotic status (OR: 9.0; 95% CI: 3.5 –

22.8).

Discussion

About 30% of asymptomatic healthy men over 50 had a previously undiagnosed vertebral

deformity. Sub-analysis of patients by grade of deformity revealed that 30 (13.8%) of the

patients had vertebral deformities of Grade 2 and Grade 3. This prevalence of vertebral

fractures in our population is similar to figures reported in western Caucasian populations as

reported in a recent review18 where prevalence of vertebral fracture (grade 2 and 3) is between

18% and 26%. This is also similar to the reported prevalence of vertebral fractures estimated

at 12% in a sample of 150 healthy Lebanese men over 64 years19.

The spine is a key fracture site20; however, it has been estimated that only 30% of vertebral

fractures receive clinical attention (which means that the majority of patients with vertebral

8

Page 9: Densitometric vertebral fracture assessment in healthy ... VFA in healthy me…  · Web viewVertebral fractures were identified using VFA in 64 (29.6%); this group of men had a statistically

fractures remain undetected)21, 22. It appears that only those patients with the most severe

vertebral fractures come to clinical attention (it is likely that this is due to higher levels of

back pain and disability). Moreover, even vertebral fractures that are visible on X-rays are

commonly not reported by radiologists23. Under-diagnosis of vertebral fractures on spine X-

rays has been observed worldwide, with false negative interpretation rates of about 45% in

North America, 46% in Latin America, and 29% in Europe/South Africa/Australia24. As many

vertebral fractures are clinically unappreciated, but convey increased risk for future fracture,

knowledge of existing fracture status is necessary for the optimal assessment of fracture risk25,

26.

Although spine radiographs are considered the gold standard for vertebral fracture detection,

Vertebral Fracture Assessment (VFA) offers advantages including patient convenience, lower

radiation exposure, cost effectiveness and ease of directly integrating knowledge of bone

density and fracture status into prediction of future fracture probability, and thus in the

therapeutic decision11, 27-29. The main limiting factor in utilizing VFA is the legibility of the

vertebrae. The difficulty is mostly seen in the upper thoracic vertebrae. However, so few

osteoporotic fractures occur at this level8. Our work reports the ability to visualize a greater

percentage of vertebral bodies than others in the field. This may be explained by two factors:

1.our technicians had been trained before for a long time in the performance of VFA, and 2.

our study population is composed of “healthy” men.

This study is the first large descriptive evaluation of VFA in a population of asymptomatic

healthy men and documents that vertebral fractures are common when searched

systematically and that these fractures are directly related to low BMD. In fact, as could be

expected, the prevalence of vertebral fractures in this cohort of men was higher in those of

older age and with lower BMD. However, similar to prior reports, numerically more fractures

were observed in men with osteopenia. Importantly, approximately 14% of these men (with

9

Page 10: Densitometric vertebral fracture assessment in healthy ... VFA in healthy me…  · Web viewVertebral fractures were identified using VFA in 64 (29.6%); this group of men had a statistically

osteopenia) and 9% of men with normal BMD who otherwise may not have been identified as

being at greater fracture risk were found to have unappreciated evident vertebral fracture

(grade 2 and 3). It is well known in postmenopausal women that about half of fractures occur

in patients without densitometric osteoporosis and that other factors than BMD may play a

role30. In this case, recognition of vertebral fractures by imaging of the spine change the

patient’s diagnostic classification, estimation of fracture risk, and threshold for

pharmacological intervention as treatment of patients with prevalent vertebral fractures

reduces the risk of future fractures even when the baseline T-score is above the osteoporosis

diagnostic cutpoint of -2.5. Thus, these data suggest that T-score (i.e., osteopenia) by DXA

should receive consideration as an indication for performance of VFA in elderly men as it is

now recommended by the ISCD31.

The assessment of prevalent mild vertebral fractures is problematic, as although they

represent a large proportion of the vertebral fractures32, such deformities are sometimes

considered as an expected effect of aging. Indeed, some of grade 1 fractures may be missed

because physicians consider that there is only an expected effect of age, and because their

clinical significance has been a subject of controversy. Actually this point is raised when such

deformities are used to discriminate patients with or without osteoporosis33. However, in our

study, excluding patients with Genant grade 1 did not change the results when comparing

patients with and without vertebral fractures. Moreover, Mild vertebral fractures (grade 1)

have been shown recently to be a risk factor for subsequent vertebral and non-vertebral

fracture in postmenopausal women with osteoporosis34.

Vertebral deformities can be due to developmental abnormalities, Scheuermann’s disease

sequelae, and degenerative changes. Attention must be paid on osteoporotic depressions of the

central end plates of the vertebrae, as osteoarthritic changes occur only on the anterior part of

the vertebrae. The main difficulties are related to isolated short anterior vertebral heights at

10

Page 11: Densitometric vertebral fracture assessment in healthy ... VFA in healthy me…  · Web viewVertebral fractures were identified using VFA in 64 (29.6%); this group of men had a statistically

the mid-thoracic spine. The interpretation of such deformities must take into account

degenerative changes of adjacent discs, and the presence of deformities of similar appearances

on contiguous vertebrae, both signs being more in favor of a non-osteoporotic origin of the

deformity. Vertebral fractures are unlikely to have identical aspect and occur more frequently

to non-contiguous vertebrae, although these signs are not specific of osteoporosis35. Thus, as

we did in our study, the use of the semi quantitative method for fractures assessment needs a

first step of visual identification of nonfracture deformities or normal variants, otherwise the

method may be less specific than the quantitative approach.

Fractures of the spine are associated with reduced pulmonary function, chronic back pain, loss

of height, kyphosis, loss of self-esteem, abdominal discomfort, disability, loss of

independence, and death36. The mortality rate five years after a clinical vertebral fracture is

about 20% greater than expected, with mortality rates higher for men than women. Mortality

rates increase with the number of vertebral fractures37. New vertebral fractures, even those

that are not recognized clinically (i.e., morphometric fractures), are associated with substantial

increases in back pain and functional limitations38. The presence of a vertebral fracture

increases the relative risk of future vertebral fractures by about 4.4-fold, and increases the risk

of fragility fractures at other skeletal sites as well39, 40. The presence of a vertebral fracture is a

risk factor for future fracture that is independent of BMD41. Thus, many societies interested in

osteoporosis management recommend that patients with a prior vertebral fracture receive drug

therapy regardless of BMD T-score42.

Our study has strengths and limitations. The assessment of fracture was carefully conducted

using standard procedures of acquisition, and standard reading of all VFA. All the

morphometric assessments were made by two experienced investigators after training sessions

and after a previous global visualization. Before diagnosis of fracture, a non-osteoporotic

origin was considered for each deformity. However, even history of trauma was inquired, we

11

Page 12: Densitometric vertebral fracture assessment in healthy ... VFA in healthy me…  · Web viewVertebral fractures were identified using VFA in 64 (29.6%); this group of men had a statistically

cannot exclude that some subjects did not report remote traumas. The main limitation lies in

the procedures used to select subjects, who were all volunteers and ambulatory, and

presumably healthier than the general population. The Rabat population may not be

adequately representative of the whole population. However, since the population living in the

area of Rabat is a balanced mixture of the various regions constitutive of the country, we

believe the impact on prevalence estimate is limited.

In summary, VFA is a technology than can reliably and accurately diagnose vertebral

fractures with greater patient convenience, less radiation exposure, and lower cost than

standard spine radiography. Our results support the recommendation to perform VFA in

elderly men referred for DXA measurement especially for whom the diagnosis of vertebral

fracture is likely to influence clinical management and when BMD is low.

References

1. Naves M, Diaz-Lopez JB, Gomez C, Rodriguez-Rebollar A, Serrano-Arias M, Cannata-Andia JB. Prevalence of osteoporosis in men and determinants of changes in bone mass in a non-selected Spanish population. Osteoporos Int 2005;16(6):603-9.2. Briggs AM, Greig AM, Wark JD. The vertebral fracture cascade in osteoporosis: a review of aetiopathogenesis. Osteoporos Int 2007;18(5):575-84.3. Schuit SC, van der Klift M, Weel AE, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 2004;34(1):195-202.4. Ferrar L, Jiang G, Adams J, Eastell R. Identification of vertebral fractures: an update. Osteoporos Int 2005;16(7):717-28.5. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 1993;8(9):1137-48.6. Jiang G, Eastell R, Barrington NA, Ferrar L. Comparison of methods for the visual identification of prevalent vertebral fracture in osteoporosis. Osteoporos Int 2004;15(11):887-96.7. Genant HK, Li J, Wu CY, Shepherd JA. Vertebral fractures in osteoporosis: a new method for clinical assessment. J Clin Densitom 2000;3(3):281-90.8. Damiano J, Kolta S, Porcher R, Tournoux C, Dougados M, Roux C. Diagnosis of vertebral fractures by vertebral fracture assessment. J Clin Densitom 2006;9(1):66-71.9. Ferrar L, Jiang G, Clowes JA, Peel NF, Eastell R. Comparison of Densitometric and Radiographic Vertebral Fracture Assessment Using the Algorithm-Based Qualitative (ABQ) Method in Postmenopausal Women at Low and High Risk of Fracture. J Bone Miner Res 2008;23(1):103-11.10. Pavlov PW, Ginsburg J, Kicovic PM, van der Schaaf DB, Prelevic G, Bennink HJ. Double-blind, placebo-controlled study of the effects of tibolone on bone mineral density in

12

Page 13: Densitometric vertebral fracture assessment in healthy ... VFA in healthy me…  · Web viewVertebral fractures were identified using VFA in 64 (29.6%); this group of men had a statistically

postmenopausal osteoporotic women with and without previous fractures. Gynecol Endocrinol 1999;13(4):230-7.11. Lewiecki EM, Laster AJ. Clinical review: Clinical applications of vertebral fracture assessment by dual-energy x-ray absorptiometry. J Clin Endocrinol Metab 2006;91(11):4215-22.12. El Maghraoui A, Guerboub AA, Mounach A, et al. Body mass index and gynecological factors as determinants of bone mass in healthy Moroccan women. Maturitas 2007;56(4):375-82.13. Gluer MG, Minne HW, Gluer CC, et al. Prospective identification of postmenopausal osteoporotic women at high vertebral fracture risk by radiography, bone densitometry, quantitative ultrasound, and laboratory findings: results from the PIOS study. J Clin Densitom 2005;8(4):386-95.14. Sornay-Rendu E, Munoz F, Garnero P, Duboeuf F, Delmas PD. Identification of osteopenic women at high risk of fracture: the OFELY study. J Bone Miner Res 2005;20(10):1813-9.15. Nevitt MC, Cummings SR, Stone KL, et al. Risk factors for a first-incident radiographic vertebral fracture in women > or = 65 years of age: the study of osteoporotic fractures. J Bone Miner Res 2005;20(1):131-40.16. El Maghraoui A, Achemlal L, Bezza A. Monitoring of dual-energy X-ray absorptiometry measurement in clinical practice. J Clin Densitom 2006;9(3):281-6.17. El Maghraoui A, Do Santos Zounon AA, Jroundi I, et al. Reproducibility of bone mineral density measurements using dual X-ray absorptiometry in daily clinical practice. Osteoporos Int 2005;16(12):1742-8.18. Johnell O, Kanis J. Epidemiology of osteoporotic fractures. Osteoporos Int 2005;16 Suppl 2:S3-7.19. Baddoura R, Arabi A, Haddad-Zebouni S, et al. Vertebral fracture risk and impact of database selection on identifying elderly Lebanese with osteoporosis. Bone 2007;40(4):1066-72.20. Vallarta-Ast N, Krueger D, Wrase C, Agrawal S, Binkley N. An evaluation of densitometric vertebral fracture assessment in men. Osteoporos Int 2007;18(10):1405-10.21. Grigoryan M, Guermazi A, Roemer FW, Delmas PD, Genant HK. Recognizing and reporting osteoporotic vertebral fractures. Eur Spine J 2003;12 Suppl 2:S104-12.22. Guermazi A, Mohr A, Grigorian M, Taouli B, Genant HK. Identification of vertebral fractures in osteoporosis. Semin Musculoskelet Radiol 2002;6(3):241-52.23. Papaioannou A, Kennedy CC, Ioannidis G, et al. The osteoporosis care gap in men with fragility fractures: the Canadian Multicentre Osteoporosis Study. Osteoporos Int 2007.24. Delmas PD, van de Langerijt L, Watts NB, et al. Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study. J Bone Miner Res 2005;20(4):557-63.25. Naves M, Diaz-Lopez JB, Gomez C, Rodriguez-Rebollar A, Rodriguez-Garcia M, Cannata-Andia JB. The effect of vertebral fracture as a risk factor for osteoporotic fracture and mortality in a Spanish population. Osteoporos Int 2003;14(6):520-4.26. Lentle BC, Brown JP, Khan A, et al. Recognizing and reporting vertebral fractures: reducing the risk of future osteoporotic fractures. Can Assoc Radiol J 2007;58(1):27-36.27. Jacobs-Kosmin D, Sandorfi N, Murray H, Abruzzo JL. Vertebral deformities identified by vertebral fracture assessment: associations with clinical characteristics and bone mineral density. J Clin Densitom 2005;8(3):267-72.28. Howat I, Carty D, Harrison J, Fraser M, McLellan AR. Vertebral fracture assessment in patients presenting with incident nonvertebral fractures. Clin Endocrinol (Oxf) 2007;67(6):923-30.

13

Page 14: Densitometric vertebral fracture assessment in healthy ... VFA in healthy me…  · Web viewVertebral fractures were identified using VFA in 64 (29.6%); this group of men had a statistically

29. Duboeuf F, Bauer DC, Chapurlat RD, Dinten JM, Delmas P. Assessment of vertebral fracture using densitometric morphometry. J Clin Densitom 2005;8(3):362-8.30. El Maghraoui A, Roux C. DXA scanning in clinical practice. Qjm 2008;Mar 10 [Epub ahead of print].31. Schousboe JT, Vokes T, Broy SB, et al. Vertebral Fracture Assessment: The 2007 ISCD Official Positions. J Clin Densitom 2008 ; 11 (1): 92-10832. Ruyssen-Witrand A, Gossec L, Kolta S, Dougados M, Roux C. Vertebral dimensions as risk factor of vertebral fracture in osteoporotic patients: a systematic literature review. Osteoporos Int 2007;18(9):1271-8.33. Rea JA, Li J, Blake GM, Steiger P, Genant HK, Fogelman I. Visual assessment of vertebral deformity by X-ray absorptiometry: a highly predictive method to exclude vertebral deformity. Osteoporos Int 2000;11(8):660-8.34. Roux C, Fechtenbaum J, Kolta S, Briot K, Girard M. Mild prevalent and incident vertebral fractures are risk factors for new fractures. Osteoporos Int 2007;18(12):1617-24.35. Roux C, Fechtenbaum J, Briot K, Cropet C, Liu-Leage S, Marcelli C. Inverse relationship between vertebral fractures and spine osteoarthritis in postmenopausal women with osteoporosis. Ann Rheum Dis 2008;67(2):224-8.36. Lindsay R, Burge RT, Strauss DM. One year outcomes and costs following a vertebral fracture. Osteoporos Int 2005;16(1):78-85.37. Ensrud KE, Thompson DE, Cauley JA, et al. Prevalent vertebral deformities predict mortality and hospitalization in older women with low bone mass. Fracture Intervention Trial Research Group. J Am Geriatr Soc 2000;48(3):241-9.38. O'Neill TW, Cockerill W, Matthis C, et al. Back pain, disability, and radiographic vertebral fracture in European women: a prospective study. Osteoporos Int 2004;15(9):760-5.39. Ismail AA, Cockerill W, Cooper C, et al. Prevalent vertebral deformity predicts incident hip though not distal forearm fracture: results from the European Prospective Osteoporosis Study. Osteoporos Int 2001;12(2):85-90.40. Lindsay R, Silverman SL, Cooper C, et al. Risk of new vertebral fracture in the year following a fracture. Jama 2001;285(3):320-3.41. Hasserius R, Karlsson MK, Nilsson BE, Redlund-Johnell I, Johnell O. Prevalent vertebral deformities predict increased mortality and increased fracture rate in both men and women: a 10-year population-based study of 598 individuals from the Swedish cohort in the European Vertebral Osteoporosis Study. Osteoporos Int 2003;14(1):61-8.42. Lewiecki EM. Review of guidelines for bone mineral density testing and treatment of osteoporosis. Curr Osteoporos Rep 2005;3(3):75-83.

14

Page 15: Densitometric vertebral fracture assessment in healthy ... VFA in healthy me…  · Web viewVertebral fractures were identified using VFA in 64 (29.6%); this group of men had a statistically

Table 1: comparison between patients with and without vertebral fractures.

Patients without vertebral fractures

N=152

Patients with grade 1 vertebral

fracturesN=34

Patients with grade 2 or 3

vertebral fracturesN=30

P

Age: yrs 63.2 (8.1) 66.3 (9.3) 64.4 (7.7) NSWeight: Kgs 74.4 (11.9) 72.4 (11.5) 68.8 (14.2) 0.028Height: m 1.69 (0.06) 1.67 (0.05) 1.66 (0.06) NSBMI: m/Kg2 25.9 (3.8) 25.9 (4.1) 24.6 (4.0) NSCurrent tobacco consumption 63 (41.2) 1 (3.0) 6 (20.0) NSLow calcium consumption 106 (69.7) 28 (82.4) 25 (83.3) 0.047High coffee consumption 42 (27.5) 9 (26.5) 10 (33.3) NSHigh soda consumption 80 (52.3) 12 (35.3) 16 (53.3) NSLow physical activity 117 (76.5) 9 (26.5) 8 (26.7) NSLumbar spine BMD: g/cm2 1.120 (0.15) 1.033 (0.19) 1.031 (0.15) 0.026Lumbar spine T-score -0.5 (1.0) -1.0 (1.3) -1.1 (0.9) 0.028Total hip BMD: g/cm2 0.905 (0.14) 0.845 (0.12) 0.706 (0.65) 0.001Total hip T-score -1.3 (0.7) -1.7 (0.9) -1.7 (0.8) 0.005

Data as mean (SD) or number (percent)

Figure 1: Vertebral visualization using VFA.

15

Page 16: Densitometric vertebral fracture assessment in healthy ... VFA in healthy me…  · Web viewVertebral fractures were identified using VFA in 64 (29.6%); this group of men had a statistically

Figure 2: VFA-identified fracture distribution.

Figure 3: Vertebral fracture prevalence by age and by Genant grade.

16

Page 17: Densitometric vertebral fracture assessment in healthy ... VFA in healthy me…  · Web viewVertebral fractures were identified using VFA in 64 (29.6%); this group of men had a statistically

Figure 4: Vertebral fracture prevalence by BMD diagnostic category and Genant grade.

17