dendrite array: observations from ground‐

29
ICSSP5: BHUBANESWAR (2012) PrimaryDendrite Array: Observations from GroundPrimary Dendrite Array: Observations from Ground based and Space Station Processed Samples Surendra N Tewari Cleveland State University Surendra N. Tewari Cleveland State University Ravi S. Rajamure – Cleveland State University* Richard N. Grugel – Marshall Space Flight Center Robert E. Erdman The University of Arizona David R. Poirier – The University of Arizona C ll b i Eff b NASA d E S A P MICAST Collaborative Effort between NASA and European Space Agency : Program MICAST (Microstructure Formation in Castings of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions) 1

Upload: others

Post on 16-Oct-2021

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dendrite Array: Observations from Ground‐

ICSSP5: BHUBANESWAR (2012)

Primary‐Dendrite Array: Observations from Ground‐Primary Dendrite Array: Observations from Groundbased and Space Station Processed Samples

Surendra N Tewari Cleveland State UniversitySurendra N. Tewari – Cleveland State UniversityRavi S. Rajamure – Cleveland State University*Richard N. Grugel – Marshall Space Flight CenterRobert E. Erdman – The University of ArizonaDavid R. Poirier – The University of Arizona

C ll b i Eff b NASA d E S A P MICASTCollaborative Effort between NASA and European Space Agency :  Program MICAST(Microstructure Formation in Castings of Technical Alloys under Diffusive and 

Magnetically Controlled Convective Conditions)

1

Page 2: Dendrite Array: Observations from Ground‐

I t d ti

Why “low gravity” DS

Introduction

Why  low gravity  DSMICAST6 and MICAST 7 processing detailsMicrostructure along DS lengthMicrostructure along DS lengthPrimary dendrite spacingPrimary dendrite trunk diameterPrimary dendrite trunk diameterSurprises 

Page 3: Dendrite Array: Observations from Ground‐

Dendritic array morphology depends upon DS processing parameters: Gl, R, Co (convection?)processing parameters:  Gl, R, Co (convection?)

1. Primary dendrite arm spacing (λ): Extensive literature (SCN/Metals)

2. Secondary/tertiary arm spacing: Primary dendrite y y p gExtensive‐SCN/Metals

3. Dendrite tip radius: SCN/ limited (Al‐Cu, Pb‐Au, Pb‐Pd) 

Primary dendrite spacing (λ)

4. Primary dendrite trunk diameter (Φ): Limited (Esaka:Thesis‐86, Grugel: 92/95) 

Natural convection Is Primary dendrite trunk diameter (Φ)

inevitable during DS on earthThermally stableSolutally stable (Hypoeutectic Al Cu)‐ Solutally stable  (Hypoeutectic Al‐Cu)

“dendrite steepling” (radial macrosegregation)‐ Solutally unstable  (Hypoeutectic Pb‐Sn)“axial macrosegregation and freckle”

3

axial macrosegregation and freckle

Dendritic array growth under diffusive solutal and thermal transport only possible in the absence of “g”

Page 4: Dendrite Array: Observations from Ground‐

PurposeMICAST:  A systematic analysis of the effect of convection on the microstructuralevolution in cast binary, ternary and commercial  Al‐Si based alloys.

p

MICAST6 MICAST 7

Re‐melt and DS terrestrially grown dendritic mono‐crystals of Al‐7 wt% Si (9 mm dia 25 cm long) in gwt% Si (9‐mm dia, 25 cm long) in μg.

Advantages: Minimize Thermo-Solutal ConvectionIntent: Produce Segregation Free Samples Grown UnderIntent: Produce Segregation Free Samples Grown Under

Diffusion-Controlled ConditionsPurpose: Better Understand the Relationship between

Processing and Microstructure-Development

4

Page 5: Dendrite Array: Observations from Ground‐

Microgravity Processing : Partially remelt and then DS from terrestrially grown dendritic mono‐crystal in μg.

5

Page 6: Dendrite Array: Observations from Ground‐

Microgravity Processed Sample MICAST 7

X‐ray radiograph of MICAST7Eutectic Melt Back / Isotherm

Eutectic Melt Back 

6

Page 7: Dendrite Array: Observations from Ground‐

MICAST6: ESA‐Low Gradient Furnace (1‐hr heat‐up, 5‐hr hold Gl~ 20 K cm‐1): 3 8 cm at 5 μm s‐1 11 3 cm at 50 μm s‐1hold, Gl  20 K cm ): 3.8 cm at 5 μm s , 11.3 cm at 50 μm s

7

Page 8: Dendrite Array: Observations from Ground‐

MICAST6: ESA‐Low Gradient Furnace (1‐hr heat‐up, 5‐hr hold Gl~ 20 K cm‐1): 3 8 cm at 5 μm s‐1 11 3 cm at 50 μm s‐1hold, Gl  20 K cm ): 3.8 cm at 5 μm s , 11.3 cm at 50 μm s

MICAST6‐11

MICAST6‐9

MICAST6‐11MICAST6‐1

MICAST6‐7

8

Page 9: Dendrite Array: Observations from Ground‐

Comparison of microstructures: Al‐7% Si directionally solidified on ground and on ISS (MICAST6)

5 μm s‐1 50 μm s‐1MICAST6:  20 K cm‐1MICAST6 SEED 

41 K cm‐1, 22 μm s‐1

Terrestrial DS:  15 K cm‐115 K cm

Convection causes dendrite clustering (steepling) at low thermal gradient and growth

95 μm s‐1 50 μm s‐1

thermal gradient and growth speeds during terrestrial DS.

Page 10: Dendrite Array: Observations from Ground‐

MICAST7: ESA‐SQF (1‐hr heat‐up, 1‐hr hold (Gl ~ 26 K cm‐1): 8.4 cm at 20 μm s‐1,  6.5 cm at 11 μm s‐1

10

Page 11: Dendrite Array: Observations from Ground‐

MICAST7: ESA‐SQF (1‐hr heat‐up, 1‐hr hold (Gl ~ 26 K cm‐1): 8.4 cm at 20 μm s‐1,  6.5 cm at 11 μm s‐1

MICAST7‐3T

MICAST7‐4T MICAST7‐5TMICAST7‐1T

11

Page 12: Dendrite Array: Observations from Ground‐

Comparison of microstructures: Al‐7% Si directionally solidified on ground and on ISS (MICAST7)

MICAST7 SEED 41 K cm‐1, 22 μm s‐1 21 μm s‐1 11 μm s‐1

MICAST7: 26 K cm‐1

Terrestrial DS:  24 K cm‐1

1223 μm s‐1 10 μm s‐1

Page 13: Dendrite Array: Observations from Ground‐

Growth conditions for MICAST6 and MICAST 7 i i d

Sample ID Gl ,  K cm‐1 Gm, K cm‐1 R, μm s‐1

transverse microstructures examined

p

MICAST6-1 19 18 52

MICAST6-11 20 18.5 47

MICAST6-9 21 19.3 34

MICAST6-7 22 8 20 4 5MICAST6 7 22.8 20.4 5

MICAST7-3T 26 24 20

MICAST7 4T 26 24 11MICAST7-4T 26 24 11

MICAST7-5T 26 24 11

13

Page 14: Dendrite Array: Observations from Ground‐

Theoretical models : Primary dendrite arm spacing(NEAREST NEIGHBOR SPACING)( )(ml Gc

t‐Gt)/(4Π2 г Tm/rt2)=1 for small R rt/2Dl

21LG λ

Analytical Numerical

])1([24

1tr

RLGLD

ktCLm

L

+−

−=

Analytical NumericalTip radius: Trivedi (1980) Hunt‐Lu (1996 )

Primary spacing: Trivedi (1984) Hunt‐ Lu (1996)

Co 7 wt% Si

6 31 K/ t% Si M t l H db k l 8(1973)

Physical Properties for Al‐ 7 wt% Si

ml ‐6.31 K/ wt% Si Metals Handbook, vol 8(1973)

k 0.1

г 0.196 μm K Gunduz and Hunt (1985)

Dl 4.3X10‐9 m2/s (Poirier compilation)14

Page 15: Dendrite Array: Observations from Ground‐

Primary dendrite arm spacing compared with Trivedi calculations

rical

), μm

1600

1800Trivedi calculationsTerrestrialISSDendrite steepling

Trivedi calculationsac

ing

(em

par

1200

1400Dendrite steepling

drite

arm

spa

600

800

1000

Prim

ary

dend

200

400

600

ISS‐DS:  Good agreement  with predictions from Trivedi model .T i l DS (“N l d”) G d i h di i f T i di d l

Primary dendrite arm spacing (no convection), μm

200 400 600 800 1000 1200 1400 1600 1800200

15

Terrestrial  DS (“Not steepled”) :  Good agreement with predictions from Trivedi model. Terrestrial DS (“steepled”):   Convection decreases  primary  dendrite arm spacing.

Page 16: Dendrite Array: Observations from Ground‐

Primary dendrite arm spacing compared with Hunt‐Lu calculations

rical

), μm

1600

1800Hunt-Lu calculationsTerrestrialISS

acin

g (e

mpa

r

1200

1400Dendrite steepling

drite

arm

spa

800

1000

Prim

ary

dend

200

400

600

ISS‐DS:  Good agreement  with predictions from Hunt‐Lu model. 

Primary dendrite arm spacing (no convection), μm

200 400 600 800 1000 1200 1400 1600 1800

P 200

16

Terrestrial  DS (“Not steepled”) :  Good agreement with predictions from Hunt‐Lu model. Terrestrial DS (“steepled”):   Convection decreases primary  dendrite arm spacing.

Page 17: Dendrite Array: Observations from Ground‐

Esaka Thesis (1986): Trunk diameter increases rapidly near the

No theoretical model for Primary dendrite trunk diameter (

Esaka Thesis (1986): Trunk diameter increases rapidly near the tip till ~ 10 side‐branch formations.  He measured this initial trunk diameter ( o).  Eighty  DS experiments (four SCN‐Acetone alloys grown with various R and Gl)

dius 10

120.5Ac 1.3Ac 3.6Ac 9.2Ac

eter

/Tip

Rad

8

DlGl k/(ml R Co (k‐1)) ]: More branched dendritic Tr

unk

Dia

me

4

6

morphologies will  be located towards  the left,  and  less‐branched/cellular towards the right side of the X‐axis.  Dl Gl k/(ml R Co (k-1))

1e-5 1e-4 1e-3 1e-2 1e-1

T

2

(Initial trunk diameter ( o /tip radius) = 6.59±1.3 Dl Gl k/(ml R Co (k 1))

17

Page 18: Dendrite Array: Observations from Ground‐

Primary dendrite trunk diameter ( model 

1. The trunk diameter (   increases rapidly near theincreases rapidly  near the tip till time, to= 22*rt/R), when    o =  6.59 rt

b l id l lparaboloidal envelope near tip).

oo

18

Page 19: Dendrite Array: Observations from Ground‐

Primary dendrite trunk diameter ( model 2. After to the trunk diameter 

increases via remelting of  4‐side arms (r) and deposition of melted ( ) parm material on “trunk surface “over length h” =  .

Assumptions:1. Kirkwood model (1985) of 

ripening applies.

(1)

C = C +R G t/m

2. Secondary arm melts back because of its curvature.

3. Mass of the melted arm 

(2)

(3)Cl= Co+R Gm t/mldeposits on trunk surface where there is negative curvature.

( )

(4)(4)

19

Page 20: Dendrite Array: Observations from Ground‐

Primary dendrite trunk diameter ( modelPrimary dendrite trunk diameter ( model 

Mushy zone freezing time  ~ ml(CE‐Co)/RGm

Use tip radius (rt) predicted from Trivedi (1980) or Hunt‐Lu t

(1996 ) models to get  the initial trunk diameter  o =  6.59 rtin order to predict the processing parameter dependence of “Primary dendrite trunk diameter” from above relationshipPrimary dendrite trunk diameter  from above relationship.

20

Page 21: Dendrite Array: Observations from Ground‐

Primary dendrite trunk diameter as compared to trunk diameter model calculations using r (Trivedi)trunk diameter model calculations, using rt (Trivedi)

ical

), μm 300

met

er (e

mpa

ri

200

250

rite

trun

k di

am

100

150

rimar

y de

ndr

0

50

Trunk dia model calculations usingTrivedi tip radiusTerrestrialISSDendrite steepling

ISS‐DS:  Good agreement with predictions from the trunk‐diameter model.i l S (“ l d”) G d i h di i f d l

Primary dendrite trunk diameter (no convection), μm

0 50 100 150 200 250 300P 0

21

Terrestrial  DS (“Not steepled”) :  Good agreement  with predictions from model. Terrestrial DS (“steepled”):  Convection increases trunk diameter.

Page 22: Dendrite Array: Observations from Ground‐

Primary dendrite trunk diameter as compared to trunk diameter model calculations using r (Hunt‐Lu)trunk diameter model calculations, using rt (Hunt Lu)

cal),

μm 300

met

er (e

mpa

ri

200

250dr

ite tr

unk

diam

100

150

0 50 100 150 200 250 300Prim

ary

dend

0

50

Trunk dia model calculations usingHunt-Lu tip radiusTerrestrialISSDendrite steepling

ISS‐DS:  Good agreement with predictions from the trunk‐diameter model. 

Primary dendrite trunk diameter (no convection), μm

0 50 100 150 200 250 300

22

Terrestrial  DS (“Not steepled”) :  Good agreement  with predictions from model. Terrestrial DS (“steepled”):  Convection increases trunk diameter.

Page 23: Dendrite Array: Observations from Ground‐

ISS samples show better agreement with calculations from the models than terrestrial samplesp

(primary spacing and trunk diameter (Observed/Predicted) 

TrivediISS‐samples Terrestrial 

(no steepling)Terrestrial (steepling)

Primary dendrite arm  spacing/calculated 

from model

0.945± 0.0833

(σ/μ=0.09)0.791± 0.0931(σ/μ= 0.12)

0.695± 0.223

(σ/μ=0.32)

Primary dendrite trunk 

diameter/calculated 

1.069± 0.0361

(σ/μ= 0.05)1.113± 0.0890(σ/μ=0.08)

1.513± 0.560

(σ/μ=0.37)/

from model

23

Page 24: Dendrite Array: Observations from Ground‐

MICAST‐6: Grains elimination and formation along DS lengthSURPRISES??

5 μm s‐1 5 ‐> 50 μm s‐1

SEED

50 μm s‐1 End of 50 μm s‐1

24SPURIOUS GRAINS DURING DS IN THE ABSENCE OF CONVECTION ??

Page 25: Dendrite Array: Observations from Ground‐

MICAST7‐1T (Ground processed seed crystal)Al – 7wt % Si V = 22 μm s‐1  Gl = 41 K cm‐1Al  7wt. % Si, V = 22 μm s , Gl = 41 K cm

Transverse optical microstructure Composite EBSD Scan

Very good [100] alignment, some spurious grains/arms25

Page 26: Dendrite Array: Observations from Ground‐

Microgravity Processed MICAST 7MICAST7 – 3T (20 μm s‐1, Gl = 26 K cm‐1)

Very good (better) alignment, less spurious grains

26

Page 27: Dendrite Array: Observations from Ground‐

MICAST7 5T (10 1 G 28 K 1)Microgravity Processed MICAST 7

MICAST7 – 5T (10 μm s‐1, G = 28 K cm‐1)

Very poor alignment, very many spurious grains

27

Page 28: Dendrite Array: Observations from Ground‐

Conclusionsd d f l % ll• Primary dendrite arm spacings of Al‐7 wt% Si alloy 

directionally solidified in low gravity environment of space (MICAST‐6 and MICAST‐7: Thermal gradient ~ 19 to 26 K cm‐1, Growth(MICAST 6 and MICAST 7: Thermal gradient   19 to 26 K cm , Growth 

speeds varying from 5 to 50 μm s‐1) show a good agreement with predictions from Hunt‐Lu and Trivedi models.

• Primary dendrite trunk diameters of the ISS processed samples show a good fit with a simple analytical model  based on Kirkwood’s approach proposed herebased on Kirkwood s approach, proposed here. 

• Natural convection,

decreases primary dendrite arm spacing– decreases primary dendrite arm spacing.

– appears to increase primary dendrite trunk diameter.

• Spurious grains formed during DS in “low‐g<10‐4 g”??Spurious grains formed during DS in  low‐g<10 g ??

28

Page 29: Dendrite Array: Observations from Ground‐

AcknowledgementsAcknowledgements

• NASA• NASA• ESA• DLR‐MUSC

• ALCOA 

29