deformable models in medical image analysis- a survey

18
Deformable Models in Medical Image Analysis: A Survey Tim McInerney 1 and Demetri Terzopoulos 2,3 1 Department of Computer Science, Ryerson University, Toronto, ON, Canada M5B 2K3 2 Computer Science Department, University of California, Los Angeles, CA 90095, USA 3 Department of Computer Science, University of Toronto, Toronto, ON, Canada M5S 3H5 Abstract This article surveys deformable models, a promising and vigorously researched computer- assisted medical image analysis technique. Among model-based techniques, deformable models offer a unique and powerful approach to image analysis that combines geometry, physics, and approximation theory. They have proven to be effective in segmenting, matching, and tracking anatomic structures by exploiting (bottom-up) constraints derived from the image data together with (top-down) knowledge about the location, size, and shape of these structures. Deformable models are capable of accommodating the significant variability of biological structures over time and across different individuals. Furthermore, they support highly intuitive interaction mecha- nisms that, when necessary, allow medical scientists and practitioners to bring their expertise to bear on the model-based image interpretation task. This article reviews the rapidly expanding body of work on the development and application of deformable models to problems of fun- damental importance in medical image analysis, including segmentation, shape representation, matching, and motion tracking. Key Words: Deformable Models, Shape Modeling, Segmentation, Matching, Motion Tracking. Publication History This survey is an updated version of the article first published as “Deformable models in medical image analysis: A survey,” T. McInerney, D. Terzopoulos, Med- ical Image Analysis, 1(2), 1996, 91–108, which was reprinted in the volume Deformable Models in Medical Image Analysis, A. Singh, D. Goldgof, D. Terzopoulos (eds.), IEEE Computer Society Press, Los Alamitos, CA, 1998, 2–19, and as the chapter “Deformable Models,” T. McInerney, D. Terzopoulos, in Handbook of Medical Imaging: Pro- cessing and Analysis, I. Bankman (ed.), Academic Press, San Diego, 2000, Ch. 8, 127–145. The second edition of the chapter, “Deformable Models,” T. McInerney, D. Terzopoulos, in Handbook of Medical Image Processing and Analysis (2nd Edition), I. Bankman (ed.), Academic Press, San Diego, 2008, Ch. 8, 145–166, is close to the present form. 1 Contents Abstract 1 Contents 2 1 Introduction 3 2 Mathematical Foundations of Deformable Models 4 2.1 Energy-Minimizing Deformable Models .......................... 4 2.2 Dynamic Deformable Models ............................... 6 2.3 Discretization and Numerical Simulation ......................... 6 2.4 Probabilistic Deformable Models ............................. 7 3 Medical Image Analysis with Deformable Models 8 3.1 Image Segmentation with Deformable Curves ...................... 8 3.2 Volume Image Segmentation with Deformable Surfaces ................. 11 3.3 Incorporating Knowledge ................................. 12 3.4 Matching .......................................... 14 3.5 Motion Tracking and Analysis ............................... 16 4 Discussion 20 4.1 Autonomy vs Control ................................... 20 4.2 Generality vs Specificity .................................. 21 4.3 Compactness vs Geometric Coverage vs Topological Flexibility ............ 21 4.4 Curve vs Surface vs Solid Models ............................. 21 4.5 Accuracy and Quantitative Power ............................. 22 4.6 Robustness ......................................... 22 4.7 Lagrangian vs Eulerian Deformable Models ....................... 23 5 Conclusion 23 Acknowledgements 24 References 35 Index 35 2

Upload: anonymous-2jxvv5vs

Post on 14-Nov-2015

225 views

Category:

Documents


0 download

DESCRIPTION

Survey paper

TRANSCRIPT

  • Deform

    able

    Modelsin

    MedicalIm

    ageAnalysis:

    ASurvey

    Tim

    McInerney

    1an

    dDem

    etriTerzopou

    los2

    ,3

    1DepartmentofComputerScience,RyersonUniversity,Toronto,ON,CanadaM5B2K3

    2ComputerScience

    Department,University

    ofCalifornia,LosAngeles,CA

    90095,USA

    3DepartmentofComputerScience,University

    ofToronto,Toronto,ON,CanadaM5S3H5

    Abstract

    This

    article

    surveysdeform

    able

    models,

    apromisingandvigorouslyresearched

    computer-

    assistedmedicalim

    ageanalysistechnique.

    Amongmodel-basedtechniques,deform

    able

    models

    oer

    auniqueandpow

    erfulapproach

    toim

    ageanalysisthatcombines

    geometry,physics,and

    approxim

    ationtheory.They

    haveprovento

    beeective

    insegmenting,matching,andtracking

    anatomicstructuresbyexploiting(bottom-up)constraintsderived

    from

    theim

    agedata

    together

    with(top-dow

    n)know

    ledgeaboutthelocation,size,andshapeofthesestructures.

    Deform

    able

    modelsare

    capableofaccommodatingthesignicantvariabilityofbiologicalstructuresover

    time

    andacross

    dierentindividuals.Furthermore,they

    support

    highly

    intuitiveinteractionmecha-

    nismsthat,when

    necessary,allowmedicalscientistsandpractitionersto

    bringtheirexpertise

    tobearonthemodel-basedim

    ageinterpretationtask.Thisarticle

    reviewstherapidly

    expanding

    bodyofworkonthedevelopmentandapplicationofdeform

    able

    modelsto

    problemsoffun-

    damentalim

    portance

    inmedicalim

    ageanalysis,includingsegmentation,shaperepresentation,

    matching,andmotiontracking.

    KeyWords:

    Deform

    ableModels,ShapeModeling,Segmentation,Matching,MotionTracking.

    PublicationHistory

    Thissurvey

    isanupdatedversionofthearticle

    rstpublished

    as

    Deform

    ablemodelsin

    medicalim

    ageanalysis:

    Asurvey,

    T.McInerney,D.Terzopoulos,Med-

    icalIm

    age

    Analysis,1(2),1996,91108,

    whichwasreprintedin

    thevolume

    Deform

    ableModelsin

    MedicalIm

    age

    Analysis,

    A.Singh,D.Goldgof,D.Terzopoulos(eds.),

    IEEEComputerSocietyPress,LosAlamitos,CA,1998,219,

    andasthechapter

    Deform

    able

    Models,T.McInerney,D.Terzopoulos,

    inHandbookofMedicalIm

    aging:

    Pro-

    cessingandAnalysis,I.Bankman(ed.),Academ

    icPress,SanDiego,2000,Ch.8,127145.

    Thesecondeditionofthechapter,

    Deform

    ableModels,T.McInerney,D.Terzopoulos,in

    HandbookofMedicalIm

    age

    Processing

    andAnalysis(2ndEdition),I.Bankman(ed.),Academ

    icPress,SanDiego,2008,Ch.8,145166,

    isclose

    tothepresentform

    .

    1

    Contents

    Abstract

    1

    Contents

    2

    1Introduction

    3

    2MathematicalFoundationsofDeform

    able

    Models

    42.1

    Energy-M

    inim

    izingDeform

    able

    Models..........................

    42.2

    Dynamic

    Deform

    able

    Models

    ...............................

    62.3

    DiscretizationandNumericalSim

    ulation.........................

    62.4

    ProbabilisticDeform

    able

    Models

    .............................

    7

    3MedicalIm

    ageAnalysiswithDeform

    able

    Models

    83.1

    ImageSegmentationwithDeform

    able

    Curves

    ......................

    83.2

    VolumeIm

    ageSegmentationwithDeform

    able

    Surfaces.................

    11

    3.3

    IncorporatingKnow

    ledge

    .................................

    12

    3.4

    Matching

    ..........................................

    14

    3.5

    MotionTrackingandAnalysis...............................

    16

    4Discussion

    20

    4.1

    AutonomyvsControl

    ...................................

    20

    4.2

    Generality

    vsSpecicity

    ..................................

    21

    4.3

    CompactnessvsGeometricCoveragevsTopologicalFlexibility

    ............

    21

    4.4

    CurvevsSurface

    vsSolidModels.............................

    21

    4.5

    Accuracy

    andQuantitative

    Pow

    er.............................

    22

    4.6

    Robustness

    .........................................

    22

    4.7

    LagrangianvsEulerianDeform

    able

    Models

    .......................

    23

    5Conclusion

    23

    Acknowledgements

    24

    References

    35

    Index

    35

    2

  • 1Introduction

    Therapid

    developmentan

    dproliferationofmedicalimagingtechnologiesisrevolutionizingmedicine.

    Medicalim

    agingallow

    sscientistsandphysiciansto

    gleanpotentiallylife-savinginform

    ationby

    peeringnoninvasively

    into

    thehumanbody.

    Therole

    ofmedicalim

    aginghasexpanded

    beyond

    thesimple

    visualizationandinspectionofanatomic

    structures.

    Ithasbecomeatool

    forsurgical

    planningandsimulation,intra-operative

    navigation,radiotherapyplanning,andfortrackingthe

    progress

    ofdisease.Forexample,ascertainingthedetailed

    shapeandorganizationofanatomic

    structuresenablesasurgeonpreoperatively

    toplananoptimalapproach

    tosometarget

    structure.

    Inradiotherapy,medicalim

    agingallow

    sthedeliveryofanecroticdose

    ofradiationto

    atumorwith

    minim

    alcollateraldamageto

    healthytissue.

    Withmedicalim

    agingplayinganincreasingly

    prominentrolein

    thediagnosisandtreatm

    entof

    disease,themedicalim

    ageanalysiscommunityhasbecomepreoccupiedwiththechallengingprob-

    lem

    ofextracting,withtheassistance

    ofcomputers,clinicallyusefulinform

    ationaboutanatomic

    structuresim

    aged

    throughCT,MR,PET,andother

    modalities

    [Stytz

    etal.,1991;Robb,1994;

    Hohne&

    Kikinis,1996;Ayache,

    1995a;

    Bizaiset

    al.,1995;Duncan&

    Gindi,1997;Ayache,

    1995b;

    Troccazet

    al.,1997;Wellset

    al.,1998;Duncan&Ayache,2000].Althoughmodernim

    agingdevices

    provideexceptionalviewsofinternalanatomy,

    theuse

    ofcomputers

    toquantify

    andanalyze

    the

    embedded

    structureswithaccuracy

    ande

    ciency

    islimited.Accurate,repeatable,quantitative

    data

    must

    bee

    cientlyextracted

    inorder

    tosupport

    thespectrum

    ofbiomedicalinvestigations

    andclinicalactivitiesfrom

    diagnosis,to

    radiotherapy,

    tosurgery.

    For

    example,segmentingstructuresfrom

    medicalim

    ages

    andreconstructingacompact

    geo-

    metricrepresentationofthesestructuresis

    di

    cultdueto

    thesheersize

    ofthedatasets

    andthe

    complexityan

    dvariabilityof

    theanatomicshapes

    ofinterest.Furthermore,theshortcomingstypi-

    calofsampleddata,such

    assamplingartifacts,spatialaliasing,andnoise,may

    cause

    theboundaries

    ofstructuresto

    beindistinct

    anddisconnected.Thechallengeisto

    extract

    bou

    ndary

    elem

    ents

    be-

    longingto

    thesamestructure

    andintegrate

    theseelem

    ents

    into

    acoherentan

    dconsistentmodel

    ofthestructure.Traditionallow-level

    imageprocessingtechniques

    whichconsider

    only

    localin-

    form

    ationcanmake

    incorrectassumptionsduringthisintegrationprocess

    andgenerate

    infeasible

    object

    bou

    ndaries.Asaresult,thesemodel-freetechniques

    usuallyrequireconsiderable

    amounts

    ofexpertintervention.Furthermore,thesubsequentanalysisandinterpretationofthesegmented

    objectsishindered

    bythepixel-orvoxel-level

    structure

    representationsgeneratedbymost

    image

    processingoperations.

    Thischaptersurveysdeform

    ablemodels,oneofthemostintensively

    researched

    model-basedap-

    proaches

    tocomputer-assistedmedicalim

    ageanalysis.

    Thewidelyrecognized

    potency

    ofdeform

    able

    modelsstem

    sfrom

    theirabilityto

    segment,

    match,andtrack

    images

    ofanatomic

    structuresby

    exploiting(bottom-up)constraints

    derived

    from

    theim

    agedata

    together

    with(top-dow

    n)know

    l-edgeaboutthelocation,size,andshapeofthesestructures.

    Deform

    able

    modelsare

    capable

    of

    accommodatingtheoften

    signicantvariabilityof

    biologicalstructuresover

    timeandacross

    dier-

    entindividuals.Furthermore,deform

    able

    modelssupport

    highly

    intuitiveinteractionmechanisms

    thatallow

    medicalscientistsandpractitionersto

    bringtheirexpertise

    tobearonthemodel-based

    imageinterpretationtask

    when

    necessary.

    Wewillreview

    thebasicform

    ulationofdeform

    able

    modelsandsurvey

    theirapplicationto

    fundamentalmedicalim

    ageanalysisproblems,

    including

    segmentation,shaperepresentation,matching,andmotiontracking.Thechapteris

    anupdated

    versionof

    [McInerney

    &Terzopoulos,1996](see

    alsothecompilation[Singhet

    al.,1998]).

    3

    2MathematicalFoundationsofDeform

    able

    Models

    Theclassicalmathem

    aticalfoundationsofdeform

    ablemodelsrepresenttheconuence

    ofgeometry,

    physics,andapproxim

    ationtheory.Geometry

    serves

    torepresentobject

    shape,

    physics

    imposes

    constraints

    onhow

    theshapemay

    vary

    over

    space

    andtime,

    andoptimalapproxim

    ationtheory

    provides

    theform

    alunderpinningsofmechanismsforttingthemodelsto

    measureddata.

    Deform

    ablemodelgeometry

    usuallypermitsbroadshapecoveragebyem

    ployinggeometricrep-

    resentationsthatinvolvemanydegrees

    offreedom,such

    assplines

    .Themodelremainsmanageable,

    how

    ever,because

    thedegrees

    offreedom

    are

    generallynotpermittedto

    evolveindependently,

    but

    are

    governed

    byphysicalprinciplesthatbestowintuitivelymeaningfulbehavioruponthegeometric

    substrate.Thenamedeform

    ablemodels

    stem

    sprimarily

    from

    theuse

    ofelasticitytheory

    atthe

    physicallevel,generallywithin

    aLagrangiandynamicssetting.Thephysicalinterpretationviews

    deform

    able

    modelsaselastic

    bodieswhichrespondnaturallyto

    applied

    forces

    andconstraints.

    Typically,

    deform

    ationenergyfunctionsdened

    interm

    softhegeometricdegrees

    offreedom

    are

    associated

    withthedeformab

    lemodel.Theenergygrowsmonotonicallyasthemodeldeform

    saw

    ayfrom

    aspecied

    naturalorrest

    shape

    andoften

    includes

    term

    sthatconstrain

    thesm

    oothness

    orsymmetry

    ofthemodel.In

    theLagrangiansetting,thedeform

    ationenergygives

    rise

    toelastic

    forces

    internalto

    themodel.Takingaphysics-basedview

    ofclassicaloptimalapproxim

    ation,ex-

    ternalpotentialenergyfunctionsare

    dened

    interm

    softhedata

    ofinterest

    towhichthemodelis

    tobetted.Thesepotentialenergiesgiverise

    toexternalforces

    whichdeform

    themodelsuch

    that

    itts

    thedata.

    Deform

    ablecurve,surface,andsolidmodelsgained

    popularity

    after

    they

    wereproposedforuse

    incomputervision[Terzopouloset

    al.,1988]andcomputergraphics[Terzopoulos&Fleischer,1988]

    inthemid

    1980s.Terzopoulosintroducedthetheory

    ofcontinuous(m

    ultidim

    ensional)deform

    able

    modelsin

    aLagrangian

    dynamicssetting[Terzopoulos,

    1986a],based

    on

    deform

    ation

    energies

    intheform

    of(controlled-continuity)generalizedsplines

    [Terzopoulos,

    1986b].

    Ancestors

    ofthe

    deform

    able

    modelsnow

    incommonuse

    includeFischlerandElshlagers

    spring-loaded

    templates

    [1973]

    andWidrowsrubber

    mask

    technique[1973].

    Thedeform

    able

    model

    thathasattracted

    themost

    attentionto

    date

    ispopularlyknow

    nas

    snakes[K

    ass

    etal.,1988].

    Snakesoractivecontourmodels

    representaspecialcase

    ofthe

    generalmultidim

    ensionaldeform

    able

    model

    theory

    [Terzopoulos,

    1986a].

    Wewillreview

    their

    simple

    form

    ulationin

    theremainder

    ofthissectionin

    order

    toillustrate

    withaconcreteexample

    thebasicmathem

    aticalmachinerythatispresentin

    manydeform

    able

    models.

    Snakesare

    planardeform

    ablecontours

    thatare

    usefulin

    severalim

    ageanalysistasks.

    They

    are

    often

    usedto

    approxim

    ate

    thelocationsandshapes

    ofobject

    boundaries

    inim

    ages

    basedonthe

    reasonable

    assumptionthatbou

    ndaries

    are

    piecewisecontinuousorsm

    ooth

    (Fig.1).

    Initsbasic

    form

    ,themathem

    aticalform

    ulationofsnakes

    drawsfrom

    thetheory

    ofoptimalapproxim

    ation

    involvingfunctionals.

    2.1

    Energy-M

    inim

    izingDeform

    able

    Models

    Geometrically,

    asnake

    isaparametriccontourem

    bedded

    intheim

    ageplane(x,y)

    2.The

    contouris

    representedasv(s)=

    (x(s),y(s)),wherexandyare

    thecoordinate

    functionsand

    s

    [0,1]is

    theparametricdomain.

    Theshapeofthecontoursubject

    toanim

    ageI(x,y)is

    dictatedbythefunctional

    E(v)=

    S(v)+P(

    v).

    (1)

    4

  • Figure

    1:Snake

    (white)

    attracted

    tocellmem

    branein

    anEM

    photomicrograph(from

    [Carlbom

    etal.,1994]).

    Thefunctionalcanbeviewed

    asarepresentationoftheenergyofthecontourandthenalshape

    ofthecontourcorrespondsto

    theminim

    um

    ofthisenergy.

    Therstterm

    ofthefunctional,

    S(v)=

    1 0w1(s)

    v s 2 +

    w2(s)

    2v

    s2

    2 ds,

    (2)

    istheinternaldeform

    ationenergy.

    Itcharacterizes

    thedeform

    ationofastretchy,

    exible

    contour.

    Twophysicalparameter

    functionsdictate

    thesimulatedphysicalcharacteristics

    ofthecontour:

    w1(s)controlsthetensionofthecontourwhilew2(s)controlsitsrigidity.1

    Thesecondterm

    in(1)couplesthesnake

    totheim

    age.

    Traditionally,

    P(v)=

    1 0P(v(s))ds,

    (3)

    whereP(x,y)denotesascalarpotentialfunctiondened

    ontheim

    ageplane.

    Toapply

    snakes

    toim

    ages,externalpotentials

    are

    designed

    whose

    localminim

    acoincidewithintensity

    extrem

    a,

    edges,andother

    imagefeaturesofinterest.Forexample,thecontourwillbeattracted

    tointensity

    edges

    inanim

    ageI(x,y)bychoosingapotentialP(x,y)=

    c|

    [GI

    (x,y)]|,whereccontrols

    themagnitudeofthepotential,

    isthegradientop

    erator,andG

    I

    denotestheim

    ageconvolved

    witha(G

    aussian)sm

    oothinglter

    whose

    characteristicwidth

    controlsthespatialextentofthe

    localminim

    aofP.

    Inaccordance

    withthecalculusofvariations,thecontourv(s)whichminim

    izes

    theenergyE(v)

    must

    satisfytheEuler-Lagrangeequation

    s

    ( w1v

    s

    ) +2

    s2

    ( w22v

    s2

    ) +P

    (v(s,t))

    =0.

    (4)

    Thisvector-valued

    partialdierentialequationexpresses

    thebalance

    ofinternalandexternalforces

    when

    thecontourrestsatequilibrium.Thersttw

    oterm

    srepresenttheinternalstretchingand

    bendingforces,respectively,whilethethirdterm

    represents

    theexternalforces

    thatcouple

    the

    snake

    totheim

    agedata.Theusualapproach

    tosolving(4)isthroughtheapplicationofnumerical

    algorithms(Sec.2.3).

    1Theva

    lues

    ofthenon-negativefunctionsw1(s)andw2(s)determinetheex

    tentto

    whichthesnakecanstretch

    orben

    datanypointsonthesnake.

    Forex

    ample,increasingthemagnitudeofw1(s)increasesthetensionand

    tendsto

    elim

    inate

    extraneousloopsandripplesbyreducingthelength

    ofthesnake.

    Increasingw2(s)increasesthe

    ben

    dingrigidityofthesnakeandtendsto

    makethesnakesm

    oother

    andless

    ex

    ible.Settingtheva

    lueofoneor

    both

    ofthesefunctionsto

    zero

    atapointspermitsdiscontinuitiesin

    thecontourats.

    5

    Figure

    2:Snake

    deform

    ingtowardshighgradientsin

    aprocessed

    cardiacim

    age,inuencedbypin

    points

    andaninteractivespringwhichpullsthecontourtowardsanedge(from

    [McInerney

    &Terzopoulos,1995a]).

    2.2

    Dynamic

    Deform

    able

    Models

    Whileitisnaturalto

    viewenergyminim

    izationasastaticproblem,apotentapproach

    tocomputing

    thelocalminim

    aofafunctionalsuch

    as(1)is

    toconstruct

    adynamicalsystem

    thatisgoverned

    bythefunctionalandallow

    thesystem

    toevolveto

    equilibrium.Thesystem

    may

    beconstructed

    byapplyingtheprinciplesofLagrangianmechanics.

    This

    leadsto

    dynamic

    deform

    able

    models

    thatunifythedescriptionofshapeandmotion,makingit

    possible

    toquantify

    notjust

    static

    shape,

    butalsoshapeevolutionthroughtime.

    Dynamic

    modelsare

    valuable

    formedicalim

    age

    analysis,since

    most

    anatomicalstructuresare

    deform

    ableandcontinuallyundergononrigid

    motion

    invivo.Moreover,dynamicmodelsexhibitintuitivelymeaningfulphysicalbehaviors,makingtheir

    evolutionamenable

    tointeractiveguidance

    from

    auser(Fig.2).

    Asimple

    example

    isadynamic

    snakewhichcanberepresentedbyintroducingatime-varying

    contourv(s,t)=

    (x(s,t),y(s,t))

    withamass

    density

    (s)andadampingdensity

    (s).

    The

    Lagrangeequationsofmotionforasnake

    withtheinternalenergygiven

    by(2)andexternalenergy

    given

    by(3)is

    2v

    t2

    +v t

    s

    ( w1v

    s

    ) +2

    s2

    ( w22v

    s2

    ) =

    P(v(s,t)).

    (5)

    Thersttw

    oterm

    sonthelefthandsideofthispartialdierentialequationrepresentinertialand

    dampingforces.Referringto

    (4),theremainingterm

    srepresenttheinternalstretchingandbending

    forces,whiletherighthandsiderepresents

    theexternalforces.Equilibrium

    isachievedwhen

    the

    internalandexternalforces

    balance

    andthecontourcomes

    torest

    (i.e.,v/t=

    2v/t2

    =0),

    whichyieldstheequilibrium

    condition(4).

    2.3

    DiscretizationandNumericalSim

    ulation

    Inorder

    tonumericallycompute

    aminim

    um

    energysolution,itisnecessary

    todiscretizetheen-

    ergyE(v).

    Theusualapproach

    isto

    representthecontinuousgeometricmodelvin

    term

    soflinear

    combinationsoflocal-support

    orglobal-support

    basisfunctions.

    Finiteelem

    ents

    [Zienkiewicz&

    6

  • Taylor,

    1989],nitedierences[Press

    etal.,1992],andgeometricsplines

    [Farin,1993]arelocal

    representationmethods,whereasFourier

    bases[Ballard

    &Brown,1982]areglobalrepresentation

    methods.

    Thecontinuousmodelv(s)isrepresentedin

    discreteform

    byavectoruofshapeparam-

    etersassociatedwiththebasisfunctions.

    Thediscreteform

    ofenergiessuch

    asE(v)forthesnake

    may

    bewritten

    as

    E(u)=

    1 2uKu+P(u)

    (6)

    whereK

    iscalled

    thestinessmatrix,an

    dP(u)is

    thediscreteversionoftheexternalpotential.

    Theminim

    um

    energysolutionresultsfrom

    settingthegradientof

    (6)to

    0,whichisequivalentto

    solvingthesetofalgebraic

    equations

    Ku=

    P=f

    (7)

    wherefisthegeneralizedexternalforcevector.

    Thediscretized

    versionoftheLagrangiandynamicsequation(5)may

    bewritten

    asasetof

    secondorder

    ordinary

    dierentialequationsforu(t):

    Mu+Cu+Ku=f,

    (8)

    whereM

    isthemass

    matrix

    andC

    isadampingmatrix.Thetimederivativesin

    (5)areapproxi-

    matedbynitedierencesandexplicitorim

    plicitnumericaltimeintegrationmethodsare

    applied

    tosimulate

    theresultingsystem

    ofordinary

    dierentialequationsin

    theshapeparametersu.

    2.4

    ProbabilisticDeform

    able

    Models

    Analternative

    view

    ofdeform

    able

    modelsem

    erges

    from

    castingthemodel

    ttingprocess

    ina

    probabilisticframew

    ork,often

    takingaBayesianapproach.Thispermitstheincorporationofprior

    model

    andsensormodel

    characteristics

    interm

    sofprobabilitydistributions.

    Theprobabilistic

    framew

    ork

    alsoprovides

    ameasure

    oftheuncertainty

    oftheestimatedshapeparametersafter

    the

    model

    istted

    totheim

    agedata

    [Szeliski,1990].

    Let

    urepresentthedeform

    able

    model

    shapeparameterswithapriorprobabilityp(u)on

    the

    parameters.

    Let

    p(I|u)betheim

    aging(sensor)

    modeltheprobabilityof

    producinganim

    ageI

    given

    amodelu.Bayestheorem

    p(u

    |I)=

    p(I|u)p(u)

    p(I)

    (9)

    expresses

    theposteriorprobabilityp(u

    |I)of

    amodelgiven

    theim

    age,in

    term

    softheim

    agingmodel

    andthepriorprobabilitiesofmodel

    andim

    age.

    Itis

    easy

    toconvert

    theinternalenergymeasure

    (2)of

    thedeform

    able

    model

    into

    aprior

    distributionover

    expectedshapes,withlower

    energyshapes

    beingthemore

    likely.Thisisachieved

    usingaBoltzm

    an(orGibbs)

    distributionoftheform

    p(u)=

    1 Zsexp(

    S(u)),

    (10)

    whereS(u)is

    thediscretized

    versionofS(v)in

    (2)an

    dZsis

    anorm

    alizingconstant(called

    the

    partitionfunction).

    Thispriormodelisthen

    combined

    withasimplesensormodelbasedonlinear

    measurements

    withGaussiannoise

    p(I|u)=

    1 ZIexp(

    P(u)),

    (11)

    whereP(u)is

    adiscreteversionofthepotentialP(

    v)in

    (3),

    whichis

    afunctionoftheim

    age

    I(x,y).

    7

    Modelsmay

    betted

    byndinguwhichlocallymaxim

    izep(u

    |I)in

    (9).

    Thisisknow

    nasthe

    maxim

    um

    aposteriori(M

    AP)solution.Withtheaboveconstruction,ityieldsthesameresultas

    minim

    izing(1),theenergycongurationofthedeform

    able

    model

    given

    theim

    age.

    Theprobabilisticframew

    ork

    canbeextended

    byassumingatime-varyingpriormodel,orsystem

    model,in

    conjunctionwiththesensormodel,resultingin

    aKalm

    anlter.

    Thesystem

    model

    describes

    theexpectedevolutionoftheshapeparametersuover

    time.

    Iftheequationsofmotion

    ofthephysicalsnakesmodel

    (8)areem

    ployed

    asthesystem

    model,theresult

    isasequential

    estimationalgorithm

    know

    nasKalm

    ansnakes[Terzopoulos&

    Szeliski,1992].

    3MedicalIm

    ageAnalysiswithDeform

    able

    Models

    Althoughoriginallydeveloped

    forapplicationto

    problemsin

    computervisionandcomputergraph-

    ics,thepotentialofdeform

    ablemodelsforuse

    inmedicalim

    ageanalysishasbeenquickly

    realized.

    They

    havebeenapplied

    toim

    ages

    generatedbyim

    agingmodalities

    asvaried

    asX-ray,computed

    tomography(C

    T),angiography,

    magnetic

    resonance

    (MR),andultrasound.Twodim

    ensionaland

    threedim

    ensionaldeform

    able

    modelshavebeenusedto

    segment,visualize,track,andquantify

    avarietyof

    anatomic

    structuresrangingin

    scale

    from

    themacroscopic

    tothemicroscopic.These

    includethebrain,heart,face,cerebral,coronary

    andretinalarteries,kidney,lungs,stomach,liver,

    skull,vertebra,objectssuch

    asbrain

    tumors,afetus,andeven

    cellularstructuressuch

    asneurons

    andchromosomes.Deform

    ablemodelshavebeenusedto

    track

    thenonrigid

    motionoftheheart,the

    growingtipofaneurite,andthemotionoferythrocytes.

    They

    havebeenusedto

    locate

    structures

    inthebrain,andto

    registerim

    ages

    oftheretina,vertebra

    andneuronaltissue.

    Inthefollow

    ingsections,wereviewanddiscuss

    theapplicationofdeform

    ablemodelsto

    medical

    imageinterpretationtasksincludingsegmentation,matching,andmotionanalysis.

    3.1

    ImageSegmentationwithDeform

    able

    Curves

    Thesegmentationofanatomic

    structures

    thepartitioningoftheoriginalsetofim

    agepoints

    into

    subsets

    correspondingto

    thestructures

    isanessentialrststageofmost

    medicalim

    age

    analysistasks,

    such

    asregistration,labeling,andmotiontracking.Thesetasksrequireanatomic

    structuresin

    theoriginalim

    ageto

    bereducedto

    acompact,analyticrepresentationoftheirshapes.

    Perform

    ingthissegmentationmanuallyisextrem

    elylaborintensive

    andtime-consuming.Aprimary

    example

    isthesegmentationoftheheart,especiallytheleftventricle

    (LV),from

    cardiacim

    agery.

    Segmentationoftheleft

    ventricle

    isaprerequisiteforcomputingdiagnostic

    inform

    ationsuch

    as

    ejection-fractionratio,ventricularvolumeratio,heart

    output,andforwallmotionanalysiswhich

    provides

    inform

    ationonwallthickening,etc.

    [Singhet

    al.,1993].

    Most

    clinicalsegmentationiscurrentlyperform

    edusingmanualsliceediting.In

    thisscenario,

    askilledoperator,usingacomputermouse

    ortrackball,manuallytracestheregionofinterest

    on

    each

    sliceofanim

    agevolume.

    Manualsliceeditingsuersfrom

    severaldrawbacks.

    Theseinclude

    thedi

    cultyin

    achievingreproducible

    results,

    operatorbias,

    forcingtheoperatorto

    view

    each

    2D

    sliceseparately

    todeduce

    andmeasure

    theshapeandvolumeof3D

    structures,

    andoperator

    fatigue.

    Segmentationusingtraditionallow-level

    imageprocessingtechniques,such

    asthresholding,

    regiongrowing,edgedetection,andmathem

    aticalmorphologyoperations,alsorequires

    considerable

    amounts

    ofexpertinteractiveguidance.Furthermore,automatingthesemodel-freeapproaches

    isdi

    cultbecause

    oftheshapecomplexityandvariabilitywithin

    andacross

    individuals.In

    general,

    theunderconstrained

    nature

    ofthesegmentationproblem

    limitsthee

    cacy

    ofapproaches

    that

    consider

    localinform

    ationonly.

    Noiseandother

    imageartifactscancause

    incorrectregionsor

    bou

    ndary

    discontinuitiesin

    objectsrecoveredbythesemethods.

    8

  • (a)

    (b)

    (c)

    (d)

    (e)

    (f)

    Figure

    3:(a)Intensity

    CT

    imagesliceofcanineLV.(b)Edgedetectedim

    age.

    (c)Initialsnake.

    (d)-(f)Snake

    deform

    ingtowardsLV

    bou

    ndary,drivenbyinationforce.

    (From

    [McInerney

    &Terzopoulos,1995a].)

    Adeform

    able

    model

    basedsegmentationschem

    e,usedin

    concert

    withim

    agepre-processing,

    canovercomemanyofthelimitationsofmanualsliceeditingandtraditionalim

    ageprocessing

    techniques.Theseconnectedandcontinuousgeometricmodelsconsider

    anobject

    bou

    ndary

    asa

    wholeandcanmake

    use

    ofpriorknow

    ledgeofobject

    shapeto

    constrain

    thesegmentationproblem.

    Theinherentcontinuityandsm

    oothnessofthemodelscancompensate

    fornoise,

    gapsandother

    irregularities

    inobject

    bou

    ndaries.

    Furthermore,theparametricrepresentationsofthemodels

    provideacompact,analyticaldescriptionofobject

    shape.

    Theseproperties

    leadto

    ane

    cient,

    robust,accurate

    andreproducible

    techniqueforlinkingsparseornoisylocalim

    agefeaturesinto

    acomplete

    andconsistentmodel

    oftheobject.

    Amongtherstandprimary

    usesofdeform

    able

    modelsin

    medicalim

    ageanalysiswas

    the

    applicationofdeform

    ablecontourmodels,such

    assnakes[K

    ass

    etal.,1988],to

    segmentstructures

    in2D

    images

    [Berger,1990;Cohen,1991;Ueda&

    Mase,1992;Rou

    gon&

    Preteux,1993;Cohen

    &Coh

    en,1993;Leitner

    &Cinquin,1993;Carlbom

    etal.,1994;Gupta

    etal.,1994;Lobregt&

    Viergever,1995;Davatzikos&

    Prince,1995;Pau

    luset

    al.,1999].

    Typicallyusers

    initializeda

    deform

    ablemodelneartheobject

    ofinterest(Fig.3)

    andallow

    editto

    deform

    into

    place.Userscould

    then

    exploittheinteractivecapabilitiesofthesemodelsandmanuallyne-tunethem

    .Furthermore,

    once

    theuseris

    satised

    withtheresult

    onaninitialim

    ageslice,

    thetted

    contourmodel

    may

    then

    beusedastheinitialbou

    ndary

    approxim

    ationforneighboringslices.Thesemodelsare

    then

    deform

    edinto

    place

    andagain

    propagateduntilallslices

    havebeenprocessed.

    Theresulting

    sequence

    of2D

    contours

    canthen

    beconnectedto

    form

    acontinuous3D

    surface

    model

    [Lin

    &Chen,1989;Changet

    al.,1991;Cohen,1991;Cohen

    &Cohen,1993].

    Theapplicationofsnakesandother

    similardeform

    able

    contourmodelsto

    extract

    regionsof

    interest

    is,how

    ever,notwithoutlimitations.

    Forexample,snakesweredesigned

    asinteractive

    models.

    Innon-interactiveapplications,they

    must

    beinitializedclose

    tothestructure

    ofinterest

    toguaranteegoodperform

    ance.Theinternalenergyconstraints

    ofsnakescanlimittheirgeometric

    exibilityan

    dpreventasnake

    from

    representinglongtube-like

    shapes

    andshapes

    withsignicant

    protrusionsorbifurcations.

    Furthermore,thetopologyofthestructure

    ofinterestmustbeknow

    nin

    advance

    since

    classicaldeform

    able

    contourmodelsare

    parametricandare

    incapable

    oftopological

    transform

    ationswithoutadditionalmachinery(such

    asthatin

    T-snakes[M

    cInerney

    &Terzopoulos,

    2000]).

    Variousmethodshavebeenproposedto

    improve

    andfurther

    automate

    thedeform

    ablecontour

    segmentationprocess.Cohen

    andCohen

    [1993]usedaninternalinationforceto

    expandasnakes

    model

    past

    spuriousedges

    towardstherealedges

    ofthestructure,makingthesnake

    less

    sensitive

    toinitialconditions(inationforces

    werealsoem

    ployedin

    [Terzopouloset

    al.,1988]).Aminiet

    al.

    [1990]

    use

    dynamic

    programmingto

    carryoutamore

    extensive

    searchforglobalminim

    a.

    9

    Figure

    4:Im

    agesequence

    ofclipped

    angiogram

    ofretinashow

    inganautomaticallysubdividing

    snake

    ow

    ingandbranchingalongavessel(from

    [McInerney

    &Terzopoulos,1995b]).

    (a)

    (b)

    (c)

    (d)

    Figure

    5:Segmentationofacrosssectionalim

    ageofahumanvertebra

    phantom

    withatopologically

    adaptablesnake(from

    [McInerney

    &Terzopoulos,1995b]).Thesnake

    beginsasasingleclosedcurve

    andbecomes

    threeclosedcurves.

    Poon

    etal.[1994]

    andGrzeszczukandLevin

    [1997]

    minim

    izetheenergyofactivecontourmodels

    usingsimulatedannealingwhichisknow

    nto

    giveglobalsolutionsandallow

    stheincorporationof

    non-dierentiable

    constraints.

    Other

    researchers[Rou

    gon&

    Preteux,1991;

    Ivins&

    Porrill,1994;

    Chakraborty&

    Duncan,

    1999;Herlinet

    al.,1992;Gauch

    etal.,1994;

    Mangin

    etal.,1995;

    Gunn&

    Nixon,1997;

    Jones

    &Metaxas,

    1997]haveintegratedregion-basedinform

    ationinto

    deform

    able

    contourmodelsor

    usedother

    techniques

    inanattem

    ptto

    decrease

    sensitivityto

    insignicantedges

    andinitialmodel

    placement.

    For

    example,Poonet

    al.[1994]

    use

    adiscrim

    inantfunctionto

    incorporate

    regionbased

    imagefeaturesinto

    theim

    ageforces

    oftheiractivecontourmodel.Thediscrim

    inantfunctionallow

    stheinclusionofadditionalim

    agefeaturesin

    thesegmentationandserves

    asaconstraintforglobal

    segmentationconsistency

    (i.e.everyim

    agepixel

    contributesto

    thediscrim

    inantfunction).

    Severalresearchers[Leitner

    &Cinquin,1991;

    Malladiet

    al.,1995;

    Whitaker,

    1994;

    Caselles

    etal.,1995;Sapiroet

    al.,1995;Malladiet

    al.,1996;

    Caselles

    etal.,1997;

    Yezziet

    al.,1997;

    Niessen

    etal.,1998;Lachaud&

    Montanvert,1999;

    McInerney

    &Terzopoulos,2000]

    havebeendeveloping

    topologicallyadaptive

    shapemodelingschem

    esthatare

    notonly

    less

    sensitive

    toinitialconditions,

    butalsoallow

    adeform

    able

    contourorsurface

    model

    torepresentlongtube-likeshapes

    orshapes

    withbifurcations(Fig.4),andto

    dynamicallysense

    andchangeitstopology(Fig.5).

    Finally,an

    other

    developmentisasnake-liketechniqueknow

    naslive-w

    ire

    [Falcaoet

    al.,1998;

    Barrett&

    Mortensen,1996-7].

    This

    semiautomaticboundary

    tracingtechniquecomputesand

    selectsoptimalbou

    ndaries

    atinteractiveratesastheusermoves

    amouse,startingfrom

    auser-

    specied

    seed

    point.

    When

    themouse

    ismoved

    close

    toanobject

    edge,alive-w

    ireboundary

    snaps

    to,andwrapsaroundtheobject

    ofinterest.Thelive-w

    iremethodhasalsobeencombined

    with

    snakes,

    yieldingasegmentationtoolthatexploitsthebestproperties

    ofboth

    techniques

    [Liang

    etal.,2006,1999].

    10

  • (a)

    (b)

    Figure

    6:(a)Deform

    ableballoonmodelem

    bedded

    involumeim

    agedeform

    ingtowardsLVedges

    ofcanineheart

    (b)ReconstructionofLV.(From

    [McInerney

    &Terzopoulos,1995a].)

    3.2

    VolumeIm

    ageSegmentationwithDeform

    able

    Surfaces

    Segmenting3D

    imagevolumes

    slicebysliceusingmanualsliceediting(orim

    ageprocessingtech-

    niques)is

    alaboriousprocess

    andrequires

    apost-processingstep

    toconnectthesequence

    of2D

    contours

    into

    acontinuoussurface.Furthermore,theresultingsurface

    reconstructioncancontain

    inconsistencies

    orshow

    ringsorbands.

    Asdescribed

    intheprevioussection,theapplicationofa2D

    activecontourmodelto

    aninitialsliceandthepropagationofthemodelto

    neighboringslices

    can

    signicantlyim

    prove

    thevolumesegmentationprocess.How

    ever,theuse

    ofatrue3D

    deform

    able

    surface

    modelcanpotentiallyresultin

    even

    greaterim

    provements

    ine

    ciency

    androbustnessand

    italsoensuresthatagloballysm

    ooth

    andcoherentsurface

    isproducedbetweenim

    ageslices.

    Deform

    able

    surface

    modelsin

    3D

    wererstusedin

    computervision[Terzopouloset

    al.,1988].

    Manyresearchershavesince

    exploredtheuse

    ofdeform

    ablesurface

    modelsforsegmentingstructures

    inmedicalim

    agevolumes.Miller[1991]

    constructsapolygonalapproxim

    ationto

    asphereand

    geometricallydeform

    sthisballoonmodeluntiltheballoonsurface

    conform

    sto

    theobject

    surface

    in3DCTdata.Thesegmentationprocessisform

    ulatedastheminim

    izationofacostfunctionwhere

    thedesired

    behavioroftheballoonmodel

    isdetermined

    byalocalcost

    functionassociatedwith

    each

    modelvertex.Thecostfunctionisaweightedsum

    ofthreeterm

    s:adeform

    ationpotentialthat

    expands

    themodel

    vertices

    towardstheobject

    bou

    ndary,an

    imageterm

    thatidenties

    features

    such

    asedges

    andopposestheballoonexpansion,andaterm

    thatmaintainsthetopologyofthe

    model

    byconstrainingeach

    vertex

    toremain

    close

    tothecentroid

    ofitsneighbors.

    Cohen

    andCohen

    [1992b

    ;1993]an

    dMcInerney

    andTerzopoulos[1995a]use

    niteelem

    entan

    dphysics-basedtechniques

    toim

    plementan

    elasticallydeform

    able

    cylinder

    andsphere,

    respectively.

    Themodelsare

    usedto

    segmenttheinner

    walloftheleft

    ventricle

    oftheheart

    from

    MR

    orCT

    imagevolumes

    (Fig.6).Thesedeform

    ablesurfacesare

    basedonathin-plate

    under

    tensionsurface

    spline,

    thehigher

    dim

    ensionalgeneralizationofequation(2),

    whichcontrols

    andconstrainsthe

    stretchingandbendingofthesurface.Themodelsare

    tted

    todata

    dynamicallybyintegrating

    Lagrangian

    equationsofmotion

    through

    timein

    order

    toadjust

    thedeform

    ationaldegrees

    of

    freedom.Furthermore,theniteelem

    entmethodisusedto

    representthemodelsasacontinuous

    surface

    intheform

    ofweightedsumsoflocalpolynomialbasisfunctions.

    Unlike

    Millers[1991]

    polygonalmodel,theniteelem

    entmethodprovides

    ananalyticsurface

    representationandtheuse

    11

    ofhigh-order

    polynomialsmeansthatfewer

    elem

    entsare

    required

    toaccurately

    representanobject.

    PentlandandSclaro[1991]

    andNastarandAyache[1996]

    alsodevelopphysics-basedmodelsbut

    use

    areducedmodalbasisfortheniteelem

    ents

    (see

    Section3.5).

    Staib

    andDuncan[1992b

    ]describea3D

    surface

    model

    usedforgeometricsurface

    matchingto

    3D

    medicalim

    agedata.ThemodelusesaFourier

    parameterizationwhichdecomposesthesurface

    into

    aweightedsum

    ofsinusoidalbasisfunctions.

    Severaldierentsurface

    types

    are

    developed

    such

    astori,open

    surfaces,closedsurfacesandtubes.Surface

    ndingisform

    ulatedasanoptimization

    problem

    usinggradientascentwhichattractsthesurface

    tostrongim

    agegradientsin

    thevicinityof

    themodel.AnadvantageoftheFourier

    parameterizationisthatitallow

    sawidevarietyofsm

    ooth

    surfacesto

    bedescribed

    withasm

    allnumber

    ofparameters.

    Thatis,aFourier

    representation

    expresses

    afunctionin

    term

    sofanorthonorm

    albasisandhigher

    indexed

    basisfunctionsin

    the

    sum

    representhigher

    spatialvariation.Therefore,theseries

    canbetruncatedandstillrepresent

    relatively

    smooth

    objectsaccurately.

    Inadierentap

    proach,Szeliskiet

    al.

    [1993]

    use

    adynamic,self-organizingorientedparticle

    system

    tomodel

    surfacesofobjects.

    Theorientedparticles,whichcanbevisualizedassm

    all,at

    disks,

    evolveaccordingto

    New

    tonianmechanicsandinteract

    throughexternalandinterparticle

    forces.

    Theexternalforces

    attract

    theparticlesto

    thedata

    whileinterparticle

    forces

    attem

    pt

    togrouptheparticlesinto

    acoherentsurface.Theparticlescanreconstruct

    objectswithcomplex

    shapes

    andtopologiesbyow

    ingover

    thedata,extractingandconform

    ingto

    meaningfulsurfaces.

    Atriangulationisthen

    perform

    edwhichconnects

    theparticlesinto

    acontinuousglobalmodelthat

    isconsistentwiththeinferred

    object

    surface.

    Wehavegeneralizedthetopologicallyadaptivesnakes

    (T-snakes)[M

    cInerney

    &Terzopoulos,

    2000]thatwerecitedearlier(Fig.5),to

    higher-dim

    ensionalsurfaces.

    Know

    nasT-surfaces[M

    cIn-

    erney

    &Terzopoulos,1999,1997],thesedeform

    able

    surface

    modelsare

    form

    ulatedin

    term

    sofan

    AneCellIm

    ageDecomposition(A

    CID

    ),whichsignicantlyextendsstandard

    deform

    ablesurfaces

    whileretainingtheirinteractivityan

    dother

    desirable

    properties.In

    particular,theACID

    induces

    ane

    cientreparameterizationmechanism

    thatenablesparametricdeform

    able

    surfacesto

    evolve

    into

    complexgeometries

    andeven

    modifytheirtopologyasnecessary

    inorder

    tosegmentcomplex

    anatomic

    structuresfrom

    medicalvolumeim

    ages.

    Other

    notable

    workinvolving3D

    deform

    able

    surface

    modelsandmedicalim

    ageapplications

    canbefoundin

    [Delingette

    etal.,1992;

    Whitaker,1994;

    Tek

    &Kim

    ia,1997;

    Davatzikos&

    Bryan,

    1995;Neuenschwander

    etal.,1997;Caselles

    etal.,1997;

    Delibasiset

    al.,1997;

    Xu&

    Prince,1998;

    Zenget

    al.,1998]as

    wellasseveralmodelsdescribed

    inthefollow

    ingsections.

    3.3

    IncorporatingKnowledge

    Inmedicalim

    ages,thegeneralshape,locationandorientationofananatomicalstructure

    isknow

    nandthisknow

    ledgemay

    beincorporatedinto

    thedeform

    ablemodelin

    theform

    ofinitialconditions,

    data

    constraints,constraints

    onthemodel

    shapeparameters,orinto

    themodel

    ttingprocedure.

    Theuse

    ofim

    plicitorexplicitanatomicalknow

    ledgeto

    guideshaperecovery

    isespeciallyim

    portant

    forrobust

    automaticinterpretationofmedicalim

    ages.Forautomaticinterpretation,itisessential

    tohaveamodelthatnotonly

    describes

    thesize,shape,locationandorientationofthetarget

    object

    butthatalsopermitsexpectedvariationsin

    thesecharacteristics.

    Automaticinterpretationof

    medicalim

    ages

    canrelievecliniciansfrom

    thelaborintensive

    aspects

    oftheirwork

    whileincreasing

    theaccuracy,consistency,an

    dreproducibilityoftheinterpretations.

    Inthis

    section,andin

    the

    follow

    ingsectionsonmatchingandmotiontracking,wewilldescribeseveraldeform

    able

    model

    techniques

    thatincorporate

    prioranatomicalknow

    ledgein

    dierentways.

    Anumber

    ofresearchershaveincorporatedknow

    ledgeofobject

    shapeinto

    deform

    able

    models

    byusingdeform

    able

    shapetemplates.

    Thesemodelsusuallyuse

    hand-craftedglobalshapepa-

    12

  • rametersto

    embodyaprioriknow

    ledgeofexpectedshapean

    dshapevariationofthestructuresand

    havebeenusedsuccessfullyformanyapplicationsofautomaticim

    ageinterpretation.Theidea

    of

    deform

    abletemplatescanbetracedback

    totheearlyworkonspringloaded

    templatesbyFischler

    andElshlager

    [1973].Anexcellentexample

    incomputervisionistheworkofYuille

    etal.

    [1992]

    whoconstruct

    deform

    abletemplatesfordetectinganddescribingfeaturesoffaces,such

    astheeye.

    Inanearlyexamplefrom

    medicalim

    ageanalysis,Lipsonet

    al.[1990]note

    thataxialcross

    sectional

    images

    ofthespineyield

    approxim

    ately

    ellipticalvertebralcontours

    andconsequentlyextract

    the

    contours

    usingadeform

    able

    ellipsoidaltemplate.Subsequently,

    MontagnatandDelingette

    [1997]

    usedadeform

    able

    surface

    template

    oftheliverto

    segmentit

    from

    abdominalCT

    scans,

    anda

    ventricle

    template

    tosegmenttheventriclesofthebrain

    from

    MR

    images.

    Deform

    ablemodelsbasedonsuperquadrics

    are

    another

    exampleofdeform

    ableshapetemplates

    thatare

    gainingin

    pop

    ularity

    inmedicalim

    ageresearch.Superquadrics

    contain

    asm

    allnumber

    of

    intuitiveglobalshapeparametersthatcanbetailoredto

    theaverageshapeof

    atarget

    anatomic

    structure.Furthermore,theglobalparameterscanoften

    becoupledwithlocalshapeparameters

    such

    assplines

    resultingin

    apow

    erfulhybridshaperepresentationschem

    e.For

    example,Metaxas

    andTerzopoulos[1993]em

    ployadynamicdeform

    ablesuperquadricmodel[Terzopoulos&Metaxas,

    1991]to

    reconstruct

    andtrack

    humanlimbsfrom

    3Dbiokineticdata.Theirpriormodelscandeform

    bothlocallyandgloballybyincorporatingtheglobalshapeparametersofasuperellipsoid

    withthe

    localdegrees

    offreedom

    ofamem

    branesplinein

    aLagrangiandynamicsform

    ulation.Theglobal

    parameterse

    cientlycapture

    thegross

    shapefeaturesofthedata,whilethelocaldeform

    ation

    parametersreconstruct

    thenedetailsofcomplexshapes.UsingKalm

    anlteringtheory,they

    developanddem

    onstrate

    abiokineticmotiontracker

    basedontheirdeform

    ablesuperquadricmodel.

    Vem

    uri

    andRadisavljevic

    [1993;

    1994]construct

    adeform

    able

    superquadricmodel

    inanor-

    thonorm

    alwavelet

    basis.

    Thismulti-resolutionbasisprovides

    themodelwiththeabilityto

    contin-

    uouslytransform

    from

    localto

    globalshapedeform

    ationstherebyallow

    ingacontinuum

    ofshape

    modelsto

    becreatedandto

    berepresentedwithrelatively

    fewparameters.

    They

    apply

    themodel

    tosegmentan

    dreconstruct

    anatomicalstructuresin

    thehumanbrain

    from

    MRIdata.

    Asanalexample,Bardinet

    etal.[1996]tadeform

    ablesuperquadricto

    segmented3Dcardiac

    images

    andthen

    renethesuperquadrictusingavolumetricdeform

    ationtechniqueknow

    nasfree

    form

    deform

    ations(FFDs).

    FFDsare

    dened

    bytensorproduct

    trivariate

    splines

    andcanbe

    visualizedasarubber-likebox

    inwhichtheobject

    tobedeform

    ed(inthiscase

    thesuperquadric)

    isem

    bedded.Deform

    ationsofthebox

    are

    automaticallytransm

    ittedto

    embedded

    objects.

    This

    volumetricaspectofFFDsallow

    stw

    osuperquadricsurface

    modelsto

    besimultaneouslydeform

    edin

    order

    toreconstruct

    theinner

    andoutersurfacesoftheleftventricleoftheheart

    andthevolume

    inbetweenthesesurfaces.

    Further

    examplesofdeform

    ablesuperquadrics

    canbefoundin

    [Pentlan

    d&

    Horowitz,

    1991;Chen

    etal.,1994](see

    Section3.5).

    Further

    examplesofFFD-based(orFFD-

    like)deform

    able

    modelsformedicalim

    agesegmentationcanbefoundin

    [McInerney

    &Kikinis,

    1998;Lotjonen

    etal.,1999].

    Severalresearcherscast

    thedeform

    able

    model

    ttingprocess

    inaprobabilisticframew

    ork

    (see

    Section2.4)an

    dincludepriorknow

    ledgeofobject

    shapebyincorporatingpriorprobabilitydistri-

    butionsontheshapevariablesto

    beestimated[Vem

    uri

    &Radisavljevic,1994;Staib

    &Duncan,

    1992a;

    Worringet

    al.,1996;Gee,1999].For

    example,Staib

    andDuncan[1992a]use

    adeform

    able

    contourmodelon2DechocardiogramsandMRim

    ages

    toextract

    theLVoftheheartandthecorpus

    callosum

    ofthebrain,respectively.This

    closedcontourmodel

    isparameterized

    usinganelliptic

    Fou

    rier

    decompositionandapriorishapeinform

    ationisincluded

    asaspatialprobabilityexpressed

    throughthelikelihoodofeach

    model

    parameter.Themodel

    parameter

    probabilitydistributions

    are

    derived

    from

    asetofexample

    object

    bou

    ndaries

    andserveto

    biasthecontourmodel

    towards

    expectedormore

    likely

    shapes.

    Szekely

    etal.[1996]havealso

    developed

    Fou

    rier

    parameterized

    models.

    Furthermore,they

    have

    13

    added

    elasticityto

    theirmodelsto

    create

    Fourier

    snakes

    in2Dandelasticallydeform

    ableFourier

    surface

    modelsin

    3D.ByusingtheFourier

    parameterizationfollow

    edbyastatisticalanalysisof

    atrainingset,they

    denemeanorganmodelsandtheireigen-deform

    ations.

    Anelastic

    tofthe

    meanmodel

    inthesubspace

    ofeigenmodes

    restrictspossible

    deform

    ationsandndsanoptimal

    matchbetweenthemodel

    surface

    andboundary

    candidates.

    Cooteset

    al.

    [1994]

    andHillet

    al.

    [1993]

    presentastatisticallybasedtechniqueforbuilding

    deform

    able

    shapetemplatesanduse

    thesemodelsto

    segmentvariousorgansfrom

    2D

    and3D

    medicalim

    ages.Thestatisticalparameterizationprovides

    globalshapeconstraints

    andallow

    sthe

    model

    todeform

    only

    inwaysim

    plied

    bythetrainingset.

    Theshapemodelsrepresentobjects

    bysets

    oflandmark

    points

    whichare

    placedin

    thesameway

    onanobject

    boundary

    ineach

    inputim

    age.

    Forexample,to

    extract

    theLV

    from

    echocardiograms,

    they

    choose

    points

    around

    theventricle

    bou

    ndary,thenearbyedgeoftherightventricle,andthetopoftheleftatrium.The

    points

    canbeconnectedto

    form

    adeform

    ablecontour.

    Byexaminingthestatisticsoftrainingsets

    ofhand-labeled

    medicalim

    ages,andusingprincipalcomponents

    analysis(P

    CA),

    ashapemodel

    isderived

    thatdescribes

    theaveragepositionsandthemajormodes

    ofvariationoftheobject

    points.New

    shapes

    are

    generatedusingthemeanshapeandaweightedsum

    ofthemajormodes

    ofvariation.Object

    bou

    ndaries

    are

    then

    segmentedusingthis

    activeshape

    model

    byexamining

    aregionaroundeach

    model

    pointto

    calculate

    thedisplacementrequired

    tomoveit

    towardsthe

    bou

    ndary.Thesedisplacements

    are

    then

    usedto

    update

    theshapeparameter

    weights.Anexample

    oftheuse

    ofthistechniqueforsegmentingMRbrain

    images

    canbefoundin

    [Duta

    &Sonka,1998].

    Anextrem

    eexample

    ofincorporatingpriorknow

    ledge,

    aspiringtoward

    fullyautomatedmedi-

    calim

    agesegmentation,isdeform

    ableorganisms[M

    cInerney

    etal.,2002;

    Hamarneh

    etal.,2001].

    Thisrecentparadigm

    forautomaticim

    ageanalysiscombines

    deform

    ablemodelsandconcepts

    from

    articiallife

    modeling.Thegoalis

    toincorporate

    andexploit

    alltheavailable

    priorknow

    ledge

    andglobalcontextualinform

    ationin

    anyspecicmedicalim

    ageanalysistask.Analogousto

    nat-

    uralorganismscapable

    ofvoluntary

    movem

    ent,

    deform

    able

    organismspossessdeform

    able

    bodies

    withdistributedsensors,aswellas(rudim

    entary)brainswithmotor,

    perception,behavior,

    and

    cognitioncenters.

    Deform

    able

    organismsare

    perceptuallyaw

    are

    oftheim

    ageanalysisprocess.

    Theirbehaviors,whichmanifestthem

    selves

    involuntary

    movem

    entandbodyshapealteration,

    are

    baseduponsensedim

    agefeatures,

    storedstructuralknow

    ledge,

    andacognitiveplan.

    The

    organism

    framew

    ork

    separatesglobaltop-dow

    n,model-ttingcontrolfunctionality

    from

    thelocal,

    bottom-up,feature

    integrationfunctionality.Thisseparationenablesthedenitionofmodel-tting

    controllersorbrainsin

    term

    softhehigh-levelstructuralfeaturesofobjectsofinterest,rather

    than

    thelow-level

    imagefeatures.

    Theresultisanintelligentagentthatiscontinuouslyawareofthe

    progress

    ofthesegmentationprocess,allow

    ingitto

    apply

    priorknow

    ledgeabouttarget

    objectsin

    adeliberative

    manner

    (Fig.7).3Dphysics-baseddeform

    ableorganismshaverecentlybeendeveloped

    [McIntosh

    &Hamarneh,2006b]an

    dsoftware

    isavailable

    [McIntosh

    &Hamarneh,2006a].

    3.4

    Matching

    Matchingofregionsin

    images

    canbeperform

    edbetweentherepresentationofaregionandamodel

    (labeling)orbetweentherepresentationoftw

    odistinct

    regions(registration).

    Nonrigid

    registration

    of2D

    and3D

    medicalim

    ages

    isnecessary

    inorder

    tostudytheevolutionofapathologyin

    an

    individual,orto

    take

    fulladvantageofthecomplementary

    inform

    ationcomingfrom

    multim

    odality

    imagery[M

    aintz

    &Viergever,1998;Goshtasbyet

    al.,2003].Examplesoftheuse

    ofdeform

    able

    modelsto

    perform

    medicalim

    ageregistrationare

    foundin

    [Moshfeghi,1991;

    Moshfeghiet

    al.,

    1994;Gueziec&

    Ayache,

    1994;Feldmar&

    Ayache,

    1994;

    Bookstein,1989;

    Hamadeh

    etal.,1995;

    Lavallee&

    Szeliski,1995;Thirion,1994].Thesetechniques

    primarily

    consist

    ofconstructinghighly

    structureddescriptionsformatching.This

    operationis

    usuallycarriedoutbyextractingregions

    14

  • (1)

    (2)

    (3)

    (4)

    (5)

    (6)

    (7)

    (8)

    (9)

    (10)

    (11)

    (12)

    (13)

    (14)

    (15)

    (16)

    Figure

    7:Automaticbrain

    MRim

    agesegmentationbymultipledeform

    ableorganisms(from

    [McIn-

    erney

    etal.,2002]).Thesequence

    ofim

    ages

    illustratesthetemporalprogressionofthesegmentation

    process.Deform

    able

    lateralventricle

    (17),caudate

    nucleus(810),andputamen

    (1116)organ-

    ismsare

    spaw

    ned

    insuccessionandprogress

    throughaseries

    ofbehaviors

    todetect,localize,and

    segmentthecorrespondingstructuresin

    theMR

    image.

    15

    ofinterest

    withanedgedetectionalgorithm,follow

    edbytheextractionoflandmark

    points

    or

    characteristiccontours

    (orcurves

    onextracted

    boundary

    surfacesin

    thecase

    of3D

    data).

    In3D,

    thesecurves

    usuallydescribedierentialstructuressuch

    asridges,ortopologicalsingularities.An

    elastic

    matchingalgorithm

    canthen

    beapplied

    betweencorrespondingpairsofcurves

    orcontours

    wherethestartcontourisiteratively

    deform

    edto

    thegoal

    contourusingforces

    derived

    from

    localpatternmatches

    withthegoalcontour[M

    oshfeghi,1991].

    Anexample

    ofmatchingwheretheuse

    ofexplicitpriorknow

    ledgehasbeenem

    bedded

    into

    deform

    able

    modelsis

    theautomaticextractionandlabelingofanatomic

    structuresin

    thebrain

    from

    MR

    images,ortheregistrationofmultim

    odality

    brain

    images.Theanatomicalknow

    ledge

    ismadeexplicitin

    theform

    ofa3D

    brain

    atlas.

    Theatlasis

    modeled

    asaphysicalobject

    and

    isgiven

    elastic

    properties.After

    aninitialglobalalignment,theatlasdeform

    sandmatches

    itself

    onto

    correspondingregionsin

    thebrain

    imagevolumein

    response

    toforces

    derived

    from

    image

    features.

    Theassumptionunderlyingthisapproach

    isthatatsomerepresentationallevel,norm

    al

    brainshavethesametopologicalstructure

    anddier

    only

    inshapedetails.

    Theidea

    ofmodeling

    theatlasasanelasticobject

    was

    originatedbyBroit[1981],whoform

    ulatedthematchingprocess

    asaminim

    izationofacost

    function.

    Subsequently,

    Bajcsy

    andKovacic[1989]

    implementeda

    multiresolutionversionofBroitssystem

    wherethedeform

    ationoftheatlasproceedsstep-by-step

    inacoarseto

    nestrategy,increasingthelocalsimilarity

    andglobalcoherence.Anearlierwork

    with

    similarobjectives,albeitnotapplied

    tomedicalim

    ageanalysis,wasthatbyWitkin

    etal.[W

    itkin

    etal.,1987],

    whoform

    ulatedthegeneralnonrigid

    registrationproblemi.e.,thatofmatching

    anynumber

    ofarbitrary-dim

    ensionalim

    ages

    orsignalsasoneofminim

    izinganonconvex

    energy

    functionalcombiningacontrolled-continuitygeneralizedsplinedeform

    ationenergywithnorm

    alized

    cross-correlationande

    cientlysolved

    itusinganinnovative

    scale-space

    continuationmethod.The

    elasticallydeform

    ableatlastechniqueisvery

    promisingandconsequentlyhasbecomeavery

    active

    areaofresearchthatisbeingexploredbyseveralgroups[Evanset

    al.,1991;

    Gee,1999;

    Sandor&

    Leahy,1995;Christensenet

    al.,1995;Bookstein,1991;

    Bozm

    a&

    Duncan,1992;

    Declercket

    al.,

    1995;McD

    onald

    etal.,1994;Delibasis&

    Undrill,1994;

    Subsolet

    al.,1995;

    Davatzikoset

    al.,1996;

    Snellet

    al.,1995;Thompson&

    Toga,

    1996-7;Vaillant&

    Davatzikos,1997;

    Wang&

    Staib,1998].

    Theautomaticbrain

    imagematchingproblem

    isextrem

    elychallengingandthereare

    many

    hurdlesthatmust

    beovercomebefore

    thedeform

    able

    atlastechniquecanbeadoptedforclinical

    use.For

    example,thetechniqueis

    sensitive

    totheinitialpositioningoftheatlas

    iftheinitial

    rigid

    alignmentis

    obytoomuch,then

    theelastic

    matchmay

    perform

    poorly.

    Thepresence

    ofneighboringfeaturesmay

    alsocause

    matchingproblems

    theatlasmay

    warp

    toanincorrect

    bou

    ndary.Finally,withoutuserinteraction,theatlascanhavedi

    cultyconvergingto

    complicated

    object

    bou

    ndaries.A

    proposedsolutionto

    theseproblemsis

    touse

    imagepreprocessingin

    con-

    junctionwiththedeform

    able

    atlas.

    SandorandLeahy[1995]

    use

    thisapproach

    toautomatically

    label

    regionsofthecorticalsurface

    thatappearin

    3D

    MR

    images

    ofhumanbrains(Fig.8).

    They

    automaticallymatchalabeled

    deform

    able

    atlasmodel

    topreprocessed

    brain

    images,wherepre-

    processingconsistsof3D

    edgedetectionandmorphologicaloperations.

    Theselteringoperations

    automaticallyextract

    thebrain

    andsulci(deepgrooves

    inthecorticalsurface)from

    anMR

    image

    andprovideasm

    oothed

    representationofthebrain

    surface

    towhichtheir3D

    B-splinedeform

    able

    surface

    model

    canrapidly

    converge.

    3.5

    MotionTrackingandAnalysis

    Theidea

    oftrackingobjectsin

    time-varyingim

    ages

    usingdeform

    ablemodelswasoriginallyproposed

    inthecontextofcomputervision[K

    ass

    etal.,1988;

    Terzopouloset

    al.,1988].Deform

    able

    models

    havebeenusedto

    track

    nonrigid

    microscopicandmacroscopicstructuresin

    motion,such

    asblood

    cells[Leymarie&

    Levine,1993]an

    dneurite

    growth

    cones

    [Gwydiret

    al.,1994]

    incine-microscopy,

    16

  • Figure

    8:Theresultofmatchingalabeled

    deform

    ableatlasto

    amorphologicallypreprocessed

    MR

    imageofthebrain

    (from

    [Sandor&

    Leahy,1995]).

    aswellascoronary

    arteriesin

    cine-angiography[Lengyelet

    al.,1995].

    How

    ever,theprimary

    use

    ofdeform

    ablemodelsfortrackingin

    medicalim

    ageanalysisisto

    measure

    thedynamicbehaviorof

    thehumanheart,especiallytheleftventricle.Regionalcharacterizationoftheheart

    wallmotionis

    necessary

    toisolate

    theseverity

    andextentof

    diseasessuch

    asischem

    ia.Magnetic

    resonance

    and

    other

    imagingtechnologiescannow

    providetimevaryingthreedim

    ensionalim

    ages

    oftheheart

    withexcellentspatialresolutionandreasonable

    temporalresolutions.

    Deform

    able

    modelsare

    well

    suited

    forthisim

    ageanalysistask.

    Inthesimplest

    approach,a2D

    deform

    ablecontourmodelisusedto

    segmenttheLV

    boundary

    ineach

    sliceofaninitialim

    agevolume.

    Thesecontours

    are

    then

    usedastheinitialapproxim

    ation

    oftheLV

    boundaries

    incorrespondingslices

    oftheim

    agevolumeatthenexttimeinstantandare

    then

    deform

    edto

    extract

    thenew

    setofLV

    boundaries

    [Singhet

    al.,1993;Ueda&

    Mase,1992;

    Ayacheet

    al.,1992;Herlin&

    Ayache,1992;Geiger

    etal.,1995].Thistemporalpropagationofthe

    deform

    able

    contours

    dramaticallydecreasesthetimetakento

    segmenttheLV

    from

    asequence

    of

    imagevolumes

    over

    acardiaccycle.

    Singhet

    al.[1993]

    report

    atimeof15minutesto

    perform

    the

    segmentation,considerably

    less

    thanthe1.5-2

    hours

    thatahumanexperttakesformanualseg-

    mentation.Deform

    ablecontourmodelshavealsobeensuccessfullyusedto

    track

    theLV

    bou

    ndary

    innoisyechocardiographic

    imagesequences[Jacobet

    al.,1999;Chalanaet

    al.,1996].

    McInerney

    andTerzopoulos[1995a]haveap

    plied

    thetemporalpropagationapproach

    in3D

    using

    a3D

    dynamic

    deform

    able

    balloonmodel

    totrack

    thecontractilemotionoftheLV

    (Fig.9,10).

    Inamore

    involved

    approach,AminiandDuncan[1992]use

    bendingenergyandsurface

    curvature

    totrack

    andanalyze

    LV

    motion.For

    each

    timeinstant,

    twosparsesubsets

    ofsurface

    points

    are

    createdbychoosinggeometricallysignicantlandmark

    points,onefortheendocardialsurface,and

    theother

    fortheepicardialsurface

    oftheLV.Surface

    patches

    surroundingthesepoints

    are

    then

    modeled

    asthin,exible

    plates.

    Makingtheassumptionthateach

    surface

    patchdeform

    sonly

    slightlyandlocallywithin

    asm

    alltimeinterval,foreach

    sampledpointontherstsurface

    they

    construct

    asearchareaontheLV

    surface

    intheim

    agevolumeatthenexttimeinstant.

    Thebest

    matched

    (i.e.minim

    um

    bendingenergy)pointwithin

    thesearchwindow

    onthesecondsurface

    istakento

    correspondto

    thepointontherstsurface.Thismatchingprocess

    yieldsasetofinitial

    17

    (1)

    (2)

    (3)

    (4)

    (5)

    (6)

    (7)

    (8)

    (9)

    (10)

    (11)

    (12)

    (13)

    (14)

    (15)

    (16)

    Figure

    9:Sagittalsliceofsuccessive

    CT

    volumes

    over

    onecardiaccycle(116)show

    ingmotionof

    canineLV

    (from

    [McInerney

    &Terzopoulos,1995a]).

    motionvectors

    forpairsofLV

    surfacesderived

    from

    a3D

    imagesequence.A

    smoothingprocedure

    isthen

    perform

    edusingtheinitialmotionvectors

    togenerate

    adense

    motionvectoreldover

    the

    LV

    surfaces.

    Cohen

    etal.[1992a]also

    employabendingenergytechniquein

    2D

    andattem

    ptto

    improve

    on

    thismethodbyaddingaterm

    tothebendingenergyfunctionthattendsto

    preservethematching

    ofhighcurvature

    points.Goldgofet

    al.

    [Goldgofet

    al.,1988;

    Kambhamettu

    &Goldgof,1994;

    Huang&

    Goldgof,1993;Mishra

    etal.,1991]

    havealsobeenpursuingsurface

    shapematchingideas

    primarily

    basedonchanges

    inGaussiancurvature

    andassumeaconform

    almotionmodel

    (i.e.

    motionwhichpreserves

    anglesbetweencurves

    onasurface

    butnotdistances).

    Analternative

    approach

    isthatofChen

    etal.

    [1994],whouse

    ahierarchicalmotionmodel

    oftheLV

    constructed

    bycombiningagloballydeform

    able

    superquadricwithalocallydeform

    able

    surface

    usingsphericalharm

    onic

    shapemodelingprimitives.Usingthismodel,they

    estimate

    the

    LVmotionfrom

    angiographicdata

    andproduce

    ahierarchicaldecompositionthatcharacterizes

    the

    LV

    motionin

    acoarse-to-nefashion.

    PentlandandHorowitz[1991]an

    dNastarandAyache[1996]are

    alsoableto

    produce

    acoarse-to-

    18

  • (1)

    (2)

    (3)

    (4)

    (5)

    (6)

    (7)

    (8)

    (9)

    (10)

    (11)

    (12)

    (13)

    (14)

    (15)

    (16)

    Figure

    10:TrackingoftheLV

    motionofcanineheart

    duringonecardiaccycle(116)usingde-

    form

    able

    balloonmodel

    (from

    [McInerney

    &Terzopoulos,1995a]).

    19

    necharacterizationoftheLV

    motion.They

    use

    dynamicdeform

    ablemodelsto

    track

    andrecover

    theLV

    motionandmake

    use

    ofmodalanalysis,

    awell-know

    nmechanicalengineeringtechnique,

    toparameterizetheirmodels.

    Thisparameterizationisobtained

    from

    theeigenvectors

    ofanite

    elem

    entform

    ulationofthemodels.

    Theseeigenvectors

    are

    often

    referred

    toasthefree

    vibration

    modes

    andvariable

    detailofLV

    motionrepresentationresultsfrom

    varyingthenumber

    ofmodes

    used. Theheart

    isarelatively

    smooth

    organandconsequentlythereare

    fewreliablelandmark

    points.

    Theheart

    alsoundergoes

    complexnonrigid

    motionthatincludes

    atw

    isting(tangential)component

    aswellasthenorm

    alcomponentofmotion.Themotionrecoverymethodsdescribed

    aboveare,

    ingeneral,notable

    tocapture

    this

    tangentialmotionwithoutadditionalinform

    ation.Magnetic

    resonance

    techniques,basedonmagnetictagging[Axel&

    Dougherty,1989]

    havebeendeveloped

    totrack

    materialpoints

    onthemyocardium

    inanon-invasiveway.Thetemporalcorrespondence

    of

    materialpoints

    thatthesetechniques

    provideallow

    forquantitative

    measurementoftissuemotion

    anddeform

    ationincludingthetw

    istingcomponentoftheLV

    motion.

    Severalresearchershave

    applied

    deform

    able

    modelsto

    imagesequencesofMR

    tagged

    data

    [Younget

    al.,1993,

    1995;

    Park

    etal.,1996;Duncanet

    al.,1994;Kumar&

    Goldgof,1994;

    Kraitchmanet

    al.,1995;

    Aminiet

    al.,

    1998].

    For

    example,Aminiet.al[1998]

    andKumarandGoldgof[1994]

    use

    a2D

    deformab

    legrid

    tolocalize

    andtrack

    SPAMM

    (SpatialModulationofMagnetization)tagpoints

    ontheLV

    tissue.

    Parket

    al.[1995;

    1996]tavolumetricphysics-baseddeform

    able

    model

    toMRI-SPAMM

    data

    of

    theLV.Theparametersofthemodelare

    functionswhichcancapture

    regionalshapevariationsof

    theLVsuch

    asbending,tw

    isting,andcontraction.Basedonthismodel,theauthors

    quantitatively

    compare

    norm

    alheartsandheartswithhypertrophic

    cardiomyopathy.

    Another

    problem

    withmost

    ofthemethodsdescribed

    aboveisthatthey

    modeltheendocardial

    andepicardialsurfacesoftheLVseparately.In

    reality

    theheartisathick-walled

    structure.Duncan

    etal.[1994]an

    dParket

    al.[1995;1996]developmodelswhichconsider

    thevolumetricnature

    ofthe

    heart

    wall.Thesemodelsuse

    theshapeproperties

    oftheendocardialandepicardialsurfacesand

    incorporate

    mid-walldisplacementinform

    ationoftagged

    MR

    images.Byconstructing3D

    nite

    elem

    entmodelsoftheLV

    withnodes

    inthemid-wallregionaswellasnodes

    ontheendocardial

    andepicardialsurfaces,

    more

    accurate

    measurements

    oftheLV

    motioncanbeobtained.Young

    andAxel[1992;

    1995],an

    dCresw

    ell[1992]

    havealsoconstructed

    3D

    niteelem

    entmodelsfrom

    the

    bou

    ndary

    representationsoftheendocardialandepicardialsurfaces.

    4Discussion

    Intheprevioussectionswehavesurveyed

    theconsiderableandstillrapidly

    expandingbodyofwork

    ondeform

    able

    modelsin

    medicalim

    ageanalysis.

    Thesurvey

    hasrevealedseveralissues

    thatare

    relevantto

    thecontinued

    developmentofthedeform

    ablemodelapproach.Thissectionsummarizes

    keyissues

    andindicatessomepromisingresearchdirections.

    4.1

    AutonomyvsControl

    Interactive(sem

    i-automatic)

    algorithmsandfullyautomaticalgorithmsrepresenttw

    oalternative

    approaches

    tocomputerizedmedicalim

    ageanalysis.

    Certainly

    automaticinterpretationofmedi-

    calim

    ages

    isadesirable,albeitvery

    di

    cult,long-term

    goal,since

    itcanpotentiallyincrease

    the

    speed,accuracy,consistency,an

    dreproducibilityoftheanalysis.

    How

    ever,theinteractiveorsemi-

    automaticmethodologyislikely

    toremain

    dominantin

    practiceforsometimeto

    come,

    especially

    inapplicationswhereerroneousinterpretationsare

    unacceptable.Consequently,themost

    immedi-

    ately

    successfuldeform

    ablemodelbasedtechniques

    willlikely

    bethose

    thatdrasticallydecrease

    the

    laborintensivenessofmedicalim

    ageprocessingtasksthroughpartialautomationandsignicantly

    20

  • increase

    theirreproducibility,whilestillallow

    ingforinteractiveguidance

    oreditingbythemedical

    expert.

    Althoughfullyautomatictechniques

    basedondeform

    ablemodelswilllikely

    notreach

    their

    fullpotentialforsometimeto

    come,they

    canbeofim

    mediate

    valuein

    specicapplicationdomains

    such

    asthesegmentationofhealthytissuesurroundingapathologyforenhancedvisualization.

    4.2

    Generality

    vsSpecicity

    Ideallyadeform

    ablemodelshould

    becapableofrepresentingabroadrangeofshapes

    andbeuseful

    inawidearray

    ofmedicalapplications.

    Generality

    isthebasisofdeform

    able

    model

    form

    ulations

    withlocalshapeparameterssuch

    assnakes.

    Alternatively,highly

    specic,

    hand-craftedorcon-

    strained

    deform

    ablemodelsappearto

    beusefulin

    applicationssuch

    astrackingthenonrigid

    motion

    oftheheart(Section3.5),automaticallymatchingandlabelingstructuresin

    thebrain

    from

    3DMR

    images

    (Section3.4),orsegmentingvery

    noisyim

    ages

    such

    asechocardiograms.

    Certainly

    attem

    pts

    tocompletely

    automate

    theprocessingofmedicalim

    ages

    would

    requireahighdegreeofapplication

    andmodelspecicity.A

    promisingdirectionforfuture

    studyappears

    tobetechniques

    forlearning

    tailoredmodelsfrom

    simple

    generalpurpose

    models.

    Thework

    ofCooteset

    al.

    [1994]

    may

    be

    viewed

    asanexample

    ofsuch

    astrategy.

    4.3

    Compactness

    vsGeometric

    CoveragevsTopologicalFlexibility

    Ageometricmodel

    ofshapemay

    beevaluatedbasedontheparsim

    onyof

    itsform

    ulation,its

    representationalpow

    er,anditstopologicalexibility.

    Generally,

    parameterized

    modelsoer

    the

    greatest

    parsim

    ony,

    free-form

    (spline)

    modelsfeature

    thebroadestcoverage,

    andim

    plicitmodels

    havethegreatest

    topologicalexibility.

    Deform

    able

    modelshavebeendeveloped

    basedoneach

    ofthesegeometricclasses.

    Increasingly,researchersare

    turningto

    thedevelopmentofhybrid

    deform

    ablemodelsthatcombinecomplementary

    features.

    Forobjectswithasimple,xed

    topology

    andwithoutsignicantprotrusions,parameterized

    modelscoupledwithlocal(spline)

    and/orglobal

    deform

    ationsschem

    esappearto

    provideagoodcompactness-descriptivenesstradeo[Terzopoulos

    &Metaxas,

    1991;Pentland&

    Horowitz,

    1991;Vem

    uri

    &Radisavljevic,1994;Chen

    etal.,1994].

    Ontheother

    hand,thesegmentationandmodelingofcomplex,multipart

    objectssuch

    asarterial

    orbronchialtreestructures,ortopologicallycomplexstructuressuch

    asvertebrae,

    isadi

    cult

    task

    withthesetypes

    ofmodels[M

    cInerney

    &Terzopoulos,1999].Polygonbasedorparticlebased

    deform

    able

    modelingschem

    esseem

    promisingin

    segmentingandreconstructingsuch

    structures.

    Polygonbasedmodelsmay

    becompacted

    byremovingandretiling[Turk,1992;Gourdon,1995;

    Delingette,1997]polygonsin

    regionsoflow

    shapevariation,orbyreplacingaregionofpolygons

    withasingle,high-order

    niteelem

    entor

    splinepatch[Q

    inet

    al.,1998].

    Apossible

    research

    directionis

    todevelopalternative

    modelsthatblendorcombinedescriptive

    primitiveelem

    ents

    (rather

    thansimple

    particles),such

    asexible

    cylinders,into

    aglobalstructure.

    4.4

    CurvevsSurface

    vsSolidModels

    Theearliest

    deform

    ablemodelswerecurves

    andsurfaces.

    Anatomicstructuresin

    thehumanbody,

    how

    ever,are

    either

    solidorthick-walled.Tosupport

    theexpandingrole

    ofmedicalim

    ages

    into

    taskssuch

    assurgicalplanningandsimulation,andthefunctionalmodelingofstructuressuch

    asbon

    es,muscles,

    skin,orarterialbloodow

    ,may

    requirevolumetricorsoliddeform

    able

    models

    rather

    thansurface

    models.

    For

    example,theplanningoffacialreconstructivesurgeryrequires

    the

    extractionandreconstructionoftheskin,muscles,andbones

    from

    3D

    images

    usingaccurate

    solid

    models.

    Italsorequires

    theabilityto

    simulate

    themovem

    entandinteractionsofthesestructuresin

    response

    toforces,theabilityto

    move,cutandfuse

    piecesofthemodelin

    arealisticfashion,andthe

    abilityto

    stim

    ulate

    thesimulatedmusclesofthemodelto

    predicttheeectofthesurgery.

    Several

    21

    researchershavebegunto

    explore

    theuse

    ofvolumetricorsoliddeform

    able

    modelsofthehuman

    face

    andheadforcomputergraphicsapplications[Lee

    etal.,1995;Essaet

    al.,1993]andformedical

    applications[W

    aters,1992;Delingette

    etal.,1994;

    Pieper

    etal.,1992;

    Geiger,1992;

    Keeve

    etal.,

    1998;Gibsonet

    al.,1998;Wells

    etal.,1998],particularlyreconstructivesurgerysimulation,and

    thereismuch

    room

    forfurther

    research.Researchershavealsobegunto

    use

    volumetricdeform

    able

    modelsto

    more

    accurately

    track

    andanalyze

    LVmotion[Young&

    Axel,1992;

    Cresw

    ellet

    al.,1992;

    Duncanet

    al.,1994;Parket

    al.,1996].

    4.5

    Accuracy

    andQuantitativePower

    Ideallyitshould

    bepossibleto

    measure

    andcontroltheaccuracy

    ofadeform

    ablemodel.Themost

    commonaccuracy

    controlmechanismsare

    theglobalorlocalsubdivisionofmodel

    basisfunctions

    [Milleret

    al.,1991],ortherepositioningofmodel

    points

    toincrease

    theirdensity

    inregionsofthe

    data

    exhibitingrapid

    shapevariations[Vasilescu&

    Terzopoulos,

    1992].Other

    mechanismsthat

    warrantfurther

    researcharethelocalcontrolandadaptationofmodelcontinuity,parameter

    evolu-

    tion(includingtherate

    andschedulingoftheevolution),andtheautomationofallaccuracy

    control

    mechanisms.

    Theparametricform

    ulationofadeform

    ablemodelshould

    notonly

    yield

    anaccurate

    descriptionoftheobject,butitshould

    alsoprovidequantitative

    inform

    ationabouttheobject

    inanintuitive,

    convenientform

    .Thatis,themodel

    parametersshould

    beusefulforoperationssuch

    asmeasuring,matching,modication,rendering,andhigher-level

    analysisorgeometricreasoning.

    Thisparameter

    descriptiveness

    criterionmay

    beachievedin

    apostprocessingstep

    byadaptingor

    optimizingtheparameterizationto

    more

    ecientlyormore

    descriptively

    matchthedata.How

    ever,

    itispreferableto

    incorporate

    thedescriptiveparameterizationdirectlyinto

    themodelform

    ulation.

    Anexample

    ofthisstrategyisthedeform

    able

    model

    ofPark

    etal.[1996].

    4.6

    Robustness

    Ideally,

    adeform

    able

    model

    should

    beinsensitive

    toinitialconditionsandnoisydata.Deform

    able

    modelsare

    ableto

    exploitmultipleim

    ageattributesandhighlevelorglobalinform

    ationto

    increase

    therobustnessofshaperecovery.Forexample,manysnakes

    modelsnow

    incorporate

    regionbased

    imagefeaturesaswellasthetraditionaledgebasedfeatures(Section3.1).

    Strategiesworthyof

    further

    researchincludetheincorporationofshapeconstraints

    into

    thedeform

    ablemodelthatare

    derived

    from

    lowlevelim

    ageprocessingoperationssuch

    asthinning,medialaxistransform

    s[Fritsch

    etal.,1997],ormathem

    aticalmorphology.

    Aclassicalapproach

    toim

    provetherobustnessofmodel

    ttingistheuse

    ofmultiscaleim

    agepreprocessingtechniques

    [Kass

    etal.,1988;

    Terzopouloset

    al.,

    1988],

    perhapscoupledwithamultiresolutiondeform

    able

    model

    [Bajcsy

    &Kovacic,

    1989].

    Amultiresolutiontechniquethatmeritsfurther

    researchin

    thecontextofdeform

    able

    models,isthe

    use

    ofwavelet

    bases[Strang&

    Nguyen,1996]

    fordeform

    ations[Vem

    uri

    etal.,1993;

    Vem

    uri

    &Radisavljevic,1994].

    Adeform

    able

    model

    should

    beable

    toeasily

    incorporate

    added

    constraints

    andanyother

    apriori

    anatomic

    know

    ledgeofobject

    shapeandmotion.

    Section3.3

    reviewed

    severalofthemost

    promisingtechniques

    toincorporate

    apriori

    know

    ledge.

    Forexample,forLV

    motiontracking,apromisingresearchdirectionistheincorporationofbiomechanicalproperties

    of

    theheart

    andtheinclusionofthetemporalperiodic

    characteristics

    oftheheart

    motion.Future

    directionsincludemodelingschem

    esthatincorporate

    reasoningandrecognitionmechanismsusing

    techniques

    from

    articialintelligence,such

    asrule-basedsystem

    sorneuralnetworks,andtechniques

    from

    articiallife

    [McInerney

    etal.,2002].

    22

  • 4.7

    LagrangianvsEulerianDeform

    able

    Models

    Analternative

    totheLagrangianform

    ulationofdeform

    able

    modelsuponwhichthis

    survey

    has

    focused,is

    theEulerianform

    ulation.Thelatter

    leadsto

    socalled

    levelsetmethods,

    whichhave

    attracted

    much

    attentionin

    themedicalim

    ageanalysisliterature.Coveringthenow

    voluminous

    literature

    isbeyondthescopeof

    thissurvey,butwepointthereader

    totherecentvolumebyOsher

    andParagios[2003]

    andrecentsurvey

    articles[Suriet

    al.,2002;Tsai&

    Osher,2003;Cremerset

    al.,

    2007]forrelevantbackgroundmaterialandreferences.

    Theim

    portantpointis

    thatthetw

    oap-

    proaches

    are

    complementary

    inprecisely

    thesamesense

    thatLagrangiansolidmodelscomplement

    Eulerianuid

    modelsin

    continuum

    mechanicsandthatparametricandim

    plicitgeometricmodels

    complementoneanother

    incomputer-aided

    geometricdesign.Thesubstantialmedicalim

    ageanal-

    ysisliterature

    onLagrangianandEuleriandeform

    able

    modelsisatestamentto

    thefact

    thateach

    approach

    isusefulin

    particularapplications.

    TheinitialmotivationfortheEulerianform

    ulationofdeform

    ablemodelswasto

    introduce

    topo-

    logicalexibilityinto

    themodel-basedim

    agesegmentationproblem

    throughtheadaptationofthe

    Osher-Sethianlevelsetevolutiontechnique[Caselles

    etal.,1993;Malladiet

    al.,1995;Whitaker,

    1994;Caselles

    etal.,1995;Sapiroet

    al.,1995].

    Formulatedasevolvingcontours

    (surfacesin

    3D)

    orfrontswhichdenethelevelsetofsomehigher-dim

    ensional(hyper-)

    surface

    over

    theim

    -agedomain,themain

    feature

    ofthis

    approach

    isthattopologicalchanges

    are

    handlednaturally,

    since

    thelevelsetneednotbesimply

    connected;thehigher-dim

    ensionalsurface

    remainsasimple

    functioneven

    asthelevelsetchanges

    topology.

    Whilethelevelsettechniqueisanattractivemath-

    ematicalframew

    ork,partialdierentialequationsgoverningcurvature-dependentfrontevolution,

    implicitform

    ulationsare

    generallynotasconvenientas

    theexplicit,parametricform

    ulationswhen

    itcomes

    toincorporatingadditionalcontrolmechanismsincludinginternaldeform

    ationenergies

    andexternalinteractiveguidance

    byexpertusers.Furthermore,thehigher-dim

    ensionalim

    plicit

    surface

    form

    ulationmakesitdi

    cultto

    impose

    arbitrary

    geometricortopologicalconstraints

    on

    thelevelsetindirectlythroughthehigher

    dim

    ensionalrepresentation.Therefore,theim

    plicitfor-

    mulationmay

    potentiallylimittheease

    ofuse,e

    ciency

    anddegreeofautomationachievable

    inthesegmentationtask.

    Amongnew

    erapproaches

    thataddress

    thesedi

    cultiesare

    T-snakesandT-surfaces[M

    cInerney

    &Terzopoulos,

    2000,1999],whichcanbeviewed

    ashybridmodelsthatcombineaspects

    ofthe

    LagrangianandEulerianapproaches

    (withtheACID

    introducingaspects

    ofthelatter

    toinduce

    topologicalexibility).

    Arecent,

    purely

    Lagrangianapproach

    thatmaintainstheadvantages

    of

    levelsetmethodswhileavoidingtheirdrawbacksis

    theDelaunay

    Deform

    able

    Models[Pon

    s&

    Boissonnat,

    2007].

    This

    reference

    provides

    additionaldiscussionoftheshortcomingsofthelevel

    setmethodan

    dcitesseveralother

    recentalternativesto

    theT-snakesapproach.

    5Conclusion

    Theincreasingly

    importantrole

    ofmedicalim

    agingin

    thediagnosisandtreatm

    entofdisease

    has

    opened

    anarray

    ofchallengingproblemscenteredonthecomputationofaccurate

    geometricmod-

    elsofanatomic

    structuresfrom

    medicalim

    ages.Deform

    able

    modelsoer

    anattractiveapproach

    totacklingsuch

    problems,

    because

    thesemodelsare

    able

    torepresentthecomplexshapes

    and

    broadshapevariabilityof

    anatomicalstructures.

    Deform

    able

    modelsovercomemanyofthelimi-

    tationsoftraditionallow-level

    imageprocessingtechniques,byprovidingcompact

    andanalytical

    representationsofobject

    shape,

    byincorporatinganatomic

    know

    ledge,

    andbyprovidinginterac-

    tive

    capabilities.

    Thecontinued

    developmentan

    drenem

    entofthesemodelsshould

    remain

    an

    importantarea

    ofresearchinto

    thefores