deepqb: deep learning with player tracking to quantify

13
1 2019 Research Papers Competition Presented by: DeepQB: Deep Learning with Player Tracking to Quantify Quarterback Decision-Making & Performance Brian Burke, ESPN Analytics, [email protected] DeepQB is a proposed application of deep neural networks to player tracking data from over two full seasons of American professional football. This novel approach demonstrates the ability to successfully understand complex aspects of the passing game, most notably quarterback decision-making. It can assess and compare individual quarterback pass target selection based on a snapshot presented to the passer by the receivers and defenders. Assessments of quarterback decision-making are made by comparing actual target selection to that predicted by our model. The model performs well, correctly identifying the targeted receiver in 60% of cross-validated cases. When passers target the predicted receiver, passes are completed 74% of the time, compared to 55% when the QB targets any other receiver. This performance is surprisingly strong, given that the offense often conceals its intent by design, while defenses try not to allow any single receiver to be open. Further, quarterback passing skills separate and apart from his receivers and defense are isolated and assessed by comparing metrics of actual play success to the metrics of success predicted by the situation presented to the passer. This approach represents a new way for teams, media, and fans to understand and quantitatively assess quarterback decision-making, an aspect of the sport which has previously been opaque and inaccessible. 1. Introduction Perhaps the most enigmatic and yet most important player attribute in all of American football is the decision-making abilities of quarterbacks. Although mental abilities are important for every position, quarterback is unique in that psycho-cognitive abilities rival physical abilities in regards to successful performance. Measurable and physical attributes are easily observed through the scouting process, but a professional quarterback’s ability to process and exploit highly dynamic information during the course of a play is not well understood. Previously only relatively crude aggregate statistical methods - that cannot fully separate the quarterback’s individual impact from those of his teammates, play design, and opponents - have existed to quantify this skill. Early efforts to exploit football tracking data only scratched the surface of what is possible with such rich information. Typical applications of tracking data merely involved measuring the maximum speeds of the fastest players, or totaling the distance traveled by a player on a play. DeepQB is a deep learning approach to evaluate quarterback decision-making and performance. This approach provides a suite of models that predict and evaluate pass decisions and outcomes at the play level. These models are relatively straightforward neural networks that are capable of producing useful analysis and insights in near real-time during live games. This paper demonstrates that such an approach is a viable and promising way to analyze the passing game, the most critical aspect of professional football. Although there remain limitations with this approach, DeepQB proves that some of the most complex aspects of football can be understood though a deep learning approach to multi-agent features. It offers a fully quantitative

Upload: others

Post on 26-Apr-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DeepQB: Deep Learning with Player Tracking to Quantify

1

2019ResearchPapersCompetitionPresentedby:

DeepQB:DeepLearningwithPlayerTrackingtoQuantifyQuarterbackDecision-Making&Performance

BrianBurke,ESPNAnalytics,[email protected]

DeepQBisaproposedapplicationofdeepneuralnetworkstoplayertrackingdatafrom

overtwofullseasonsofAmericanprofessionalfootball.Thisnovelapproachdemonstratestheabilitytosuccessfullyunderstandcomplexaspectsofthepassinggame,mostnotablyquarterbackdecision-making.Itcanassessandcompareindividualquarterbackpasstargetselectionbasedonasnapshotpresentedtothepasserbythereceiversanddefenders.Assessmentsofquarterbackdecision-makingaremadebycomparingactualtargetselectiontothatpredictedbyourmodel.Themodelperformswell,correctlyidentifyingthetargetedreceiverin60%ofcross-validatedcases.Whenpasserstargetthepredictedreceiver,passesarecompleted74%ofthetime,comparedto55%whentheQBtargetsanyotherreceiver.Thisperformanceissurprisinglystrong,giventhattheoffenseoftenconcealsitsintentbydesign,whiledefensestrynottoallowanysinglereceivertobeopen.Further,quarterbackpassingskillsseparateandapartfromhisreceiversanddefenseareisolatedandassessedbycomparingmetricsofactualplaysuccesstothemetricsofsuccesspredictedbythesituationpresentedtothepasser.Thisapproachrepresentsanewwayforteams,media,andfanstounderstandandquantitativelyassessquarterbackdecision-making,anaspectofthesportwhichhaspreviouslybeenopaqueandinaccessible.

1. IntroductionPerhapsthemostenigmaticandyetmostimportantplayerattributeinallofAmericanfootballisthedecision-makingabilitiesofquarterbacks.Althoughmentalabilitiesareimportantforeveryposition,quarterbackisuniqueinthatpsycho-cognitiveabilitiesrivalphysicalabilitiesinregardstosuccessfulperformance.Measurableandphysicalattributesareeasilyobservedthroughthescoutingprocess,butaprofessionalquarterback’sabilitytoprocessandexploithighlydynamicinformationduringthecourseofaplayisnotwellunderstood.Previouslyonlyrelativelycrudeaggregatestatisticalmethods-thatcannotfullyseparatethequarterback’sindividualimpactfromthoseofhisteammates,playdesign,andopponents-haveexistedtoquantifythisskill.Earlyeffortstoexploitfootballtrackingdataonlyscratchedthesurfaceofwhatispossiblewithsuchrichinformation.Typicalapplicationsoftrackingdatamerelyinvolvedmeasuringthemaximumspeedsofthefastestplayers,ortotalingthedistancetraveledbyaplayeronaplay.DeepQBisadeeplearningapproachtoevaluatequarterbackdecision-makingandperformance.Thisapproachprovidesasuiteofmodelsthatpredictandevaluatepassdecisionsandoutcomesattheplaylevel.Thesemodelsarerelativelystraightforwardneuralnetworksthatarecapableofproducingusefulanalysisandinsightsinnearreal-timeduringlivegames.Thispaperdemonstratesthatsuchanapproachisaviableandpromisingwaytoanalyzethepassinggame,themostcriticalaspectofprofessionalfootball.Althoughthereremainlimitationswiththisapproach,DeepQBprovesthatsomeofthemostcomplexaspectsoffootballcanbeunderstoodthoughadeeplearningapproachtomulti-agentfeatures.Itoffersafullyquantitative

Page 2: DeepQB: Deep Learning with Player Tracking to Quantify

2

2019ResearchPapersCompetitionPresentedby:

abilitytomeasureindividualperformanceforthemostimportantposition,andoffersfans,media,andteamsaninnovativenewwaytoevaluatethesport.

2. RelatedResearchDuetothecomparativelylateadventoftrackingdatainfootball,thisthefirstmajorprojecttodevelopmethodsofunderstandingfootballplayertrackingusingadvancedmachinelearningtechniques.However,several publicized research efforts that exploit player tracking have applied neural networks and other advanced techniques to data from basketball, soccer, and hockey. Cervoneetal[1]builtaframeworkbasedonaMarkovmodelusingplayer-trackingdatatoassignanexpectedpointvaluetoeachtimesegmentofabasketballpossession.Theycomparedaplayer’sexpectedcontributiontoactualoutcomestoassessplayerperformance.WangandZemel[2]usedbothafeed-forward(FFN)andarecurrentneuralnetwork(RNN)basedonopticaltrackingdataforplaytyperecognitionandclassificationinbasketball.Leetal[3]used“deepimitationlearning”basedonLongShortTermMemory(LSTM)networkstomimicsoccerdefenders’movementsbasedonthedynamicsoftheotherplayers.Theauthorsstressedtheimportanceofmeaningfulrolerepresentationsforeachplayerinthenetwork.Themodelallowedindividualteam-specificplayingstylestoberepresentedaswell.Harmonetal[4]transformedplayertrackingdatafrombasketballintomulti-channelpictorialrepresentationsthataconvolutionalneuralnetwork(CNN)couldclassify.TheauthorscombinedtheCNNwithafeed-forwardnetworktopredictshotmaking.Luceyetal[5]usedaconditionalrandomfieldmodelwithsoccerplayertrackingdatatoestimatetheprobabilityofashot’ssuccess.Thiswasusedtoassessteamperformanceatboththeseason-andgame-level.Mehrasaetal[6]appliedone-dimensionalconvolutionalnetworkstomodelplayertrajectoriesonbothbasketballandhockey,forplayrecognitionandteamclassification.Thesinglerelevantpaperonfootballattemptedtoassessquarterbackdecision-makingusingVoronoitessellation.Hochsteler’s[7]techniquepartitionedtheareaoftheplayingfieldaccordingtowhichplayerisclosesttoeachpointofthefieldandassignexclusiveownershipofeacharea.Thesizeofeachreceiver’sownedareaandproximitytothenearestdefenderwasusedtoassesstheopennessofareceiver.Althoughtheresearchhadonly224playstoanalyzeandusedrelativelyrudimentarytechniques,ithintedatthepotentialofmorepowerfulmethodstounderstandandassessquarterbackplay.

3. ApproachTheDeepQBsuiteofmodelstakesadvantageofacomprehensiverepresentationoftrackingdataaspresentedtoaquarterbacktopredictreceivertargetselection,completion-incompletion-interceptionoutcomeprobabilities,andyardageexpectation.Thesepredictionsarethencomparedtoactualoutcomestoassessquarterbacktargetselectionandoverallperformance.Modelinputisasnapshotofplayerconfigurationatthetimeofpassrelease,includingreceiverposition,velocity,acceleration,andorientation,aswellasthoseofthesecondary.Hand-builtfeatures,specificallyrelativepositionsandanglesofreceiverswithrespecttootherplayers,wereengineeredandusedasinputs.Additionally,playmetadata,(down,distance,andyardstotheendzone)werefedtothenetwork.Lastly,datafromESPN’sVideoAnalysisTracking(VAT)projectwasusedasinputs,specificallywhetherthequarterbackwasunderduressfromthepassrushandwhethertherewasaplay-actionfakefollowingthesnap.

Page 3: DeepQB: Deep Learning with Player Tracking to Quantify

3

2019ResearchPapersCompetitionPresentedby:

TheheartofDeepQBisamodularfeed-forwardartificialneuralnetwork(FFN)architecture.Itismodularinthattheinputsandthearchitectureofthehiddenlayerscanremainidenticalregardlessofwhattypeoftargetvariablethemodelisbeingaskedtopredict.Thefinaloutputlayerismodifiedtoaccommodatewhetherweareaskingthemodeltoestimateprobabilitiesfordiscreteoutcomes(suchaswhichreceivershouldbetargetedorwhatthepassoutcomewouldbe),orweareaskingthemodeltoestimateacontinuousvalue(suchastheexpectedyardagegainedbyapassplay).Therearefourvariantsofthegeneralmodeldiscussedinthispaper:

• Variant1estimatestheprobabilitythequarterbackwilltargeteachofthefiveeligiblereceiversgiveneachplay’sconfigurationofthereceiversanddefense.

• Variant2estimatestheexpectedyardsgainedforeachofthefiveeligiblereceiversoneachplay.

• Variant3estimatestheprobabilitiesofthethreetypesofoutcomesontheplay:complete,incomplete,orinterception.

• Variant4isanexperimentalmodelthatproducestargetpredictionslikeVariant1,butusestransferlearningtocapturethedecision-makingofindividualquarterbacks.

3.1. DataTrainingandvalidationdataconsistsofeverytargetedpassattemptwithfromthe2016and2017NFLregularandpost-seasons.PlayertrackinginformationcomesfromtheNFL’sNextGenStatssystem,whichusestwoelectronicRFIDchipsineachoftheplayers’shoulderpads.Comparedtotheopticalmethodoftrackingcurrentlyusedforbasketball,hockey,andsoccer,theRFID-basedmethodhastheadvantageofrecordingplayershoulderorientation,whichishelpfulforunderstandingthedynamicsofapassplay.Playerposition,velocity,acceleration,andorientationisprovidedat10Hz,andisavailableinnear-realtimeviaanAPI.Overall,45,501passattemptswereusedtotrain,andvalidatethemodels.Thedatawassplitbetweentraining,validation,andtestsetstoaccuratelymeasuremodelperformanceandminimizeoverfitting.Training(n=24,414)andvalidation(n=10,464)datawerebuiltasa70%/30%splitofpassesfromthe2016and2017NFLregularandpost-seasons.Thetestdatawasbuiltfromthe2018regularseasonthroughweek12(n=10,623).Allresultsstatedherearefromthe2018testsetunlessotherwisespecified.

Figure1ExampleofhowDeepQB"sees"apassplayandtherelationshipsamongreceivers(blue)anddefenders(red).Arrowsindicatevelocity.Theblackbarsindicateshoulderorientation.

Page 4: DeepQB: Deep Learning with Player Tracking to Quantify

4

2019ResearchPapersCompetitionPresentedby:

3.2. ArchitectureThegeneralmodelconsistsofafour-layernetworkasdepictedinfigure2:-Aninputlayerof230nodes-Adensehiddenlayerof256neurons.-Aseconddensehiddenlayerof128neurons.-Adenseoutputlayer,withactivationdependentonthetypeoftargetvariablethemodelisbeingaskedtoestimate.

Eachdenselayer,asidefromtheoutputlayer,usesrectilinearunits(relu)fornonlinearactivation.Batchnormalizationanddropoutareemployedbetweeneachdenselayertopreventoverfittingandimproveperformancewhengeneralizingwithout-of-sampledata.Basedontheinsightsof[5],theorderofinputstothemodelweregivenmeaningandkeptconsistent.Foreachplay,thethesetoffeaturesassociatedwitheachofthefivepotentialtargetreceivers(position,velocity,acceleration),wereorderedfromshallowesttodeepestdownfield.Withineachsetoffeaturesforeachreceiver,thefeaturesassociatedwiththetwonearestdefenderswereincluded.1Withinthesetoffeaturesforeachreceiver,thefeaturesofthenearestdefenderto

1NotethatDeepQBisintendedtoanalyzeplaysprimarilyfromtheperspectiveofthequarterback.Passesclassifiedas“drops”byESPN’sVATanalysisarecountedassuccessfulcompletionsfromthepasser’spointofview.Additionally,allinputsareasofthetimeofpassrelease,sofactorssuchas

Figure2DeepQB'smodular,feed-forward,artificialneuralnetworkarchitecture.

Page 5: DeepQB: Deep Learning with Player Tracking to Quantify

5

2019ResearchPapersCompetitionPresentedby:

thatreceiverappearsfirstintheinputvector,andthefeaturesofthenext-nearestdefenderappearssecond.Anadditionalsetoffeaturesspecifictothequarterbackwasconcatenatedtotheinputs.Thesefeaturesincludepositionandvelocityinformation.Theorientationofthequarterbackwasdeliberatelyexcludedfromtheinputs.Theorientationofthepasser’sshouldersatthetimeofpassreleasewouldbe“cheating”forthismodel’spurposes,asitwouldveryoftencorrelatestronglywiththedirectionoftheintendedtarget.Lastly,playinformationwasconcatenatedtotheinputvector.Thisinformationincludeddown,distancetogain,andyardlineoftheplay.Thetrainingsetwasaugmentedwithitsmirrorimageplays,rotatedaboutthelongitudinalaxisofthefieldofplay,effectivelyincreasingsamplesize.Theassumptionisthattargetselectionandotheroutcomesofapassplayareinvariantwithrespecttolateralsymmetry.Areceiveropenontheleftsideofthefieldwouldbejustasopenifhewereontherightside.Thedrawbackisquarterbackhandedness,especiallyifhethrowswhileontherun.Despitethislimitation,augmentationimprovedout-of-sampleperformance.3.3. LearningEachvariantofthemodelwastrainedusingKeras[8]withaTensorFlowbackend.Trainingwasstoppedattheoptimumperformanceonthevalidationset.Modelhyper-parameterswereselectedusingagridsearchprocedure.

4. ResultsResultsfromeachvariantofthemodelarepresentedhere,alongwithgeneralinsights.4.1. Variant1:TargetProbabilityTheprimarypurposeofthisvariantistoverifythatthistypeofmodelcantrulymakesenseofthetrackingdataofapassplay.Inessence,themodelanswersthequestion,“Giventhepicturepresentedtoatypicalquarterback,whowouldhechoosetotarget?”Themodelpredictstheactualtheproximityofdefendersatthetimeofpassarrivalareintentionallyexcluded,eveniftheywouldimprovepredictionaccuracy.

Figure3Thefeaturevectorusedasinputforthegeneralmodel.

Page 6: DeepQB: Deep Learning with Player Tracking to Quantify

6

2019ResearchPapersCompetitionPresentedby:

targetwithanaccuracyof59.8%–threetimesthenaïveestimateforaone-in-fiveproposition.Thisperformanceshouldbeconsideredinlightofactualfootballtactics.Offensesgotogreatlengthstoconcealtheintentoftheirplaydesigns,whiledefensesendeavortonotallowanysinglereceiverfrombeingadisproportionatelyrewardingpasstarget.

Figure4Actualplaysfrom2018withassociatedreceivertargetprobability.Thewhitevectorsshoworientation.Actualtargetsareindicatedbygreendiamonds.Play(1)illustratesanobvioustargetwithahighprobability.Play(2)showsacheck-down,althoughDeepQBrecommendsthedeeperemergingtargetwithp=.50.Play(3)demonstratesthemodel’sabilitytoseethepropertargetongoal-lineplays.Play(4)suggestsanothertargetingerrorbytheQB.Play(5)showsalogicalcheck-down,asallotherreceiversaresmothered.Play(6)illustratesthatdefenderproximityalonedoesnotdetermineifareceiveris“open.”Relativepositionandvelocityarekeyfactors.

Further,whenquarterbackstargetthereceiveraspredictedbyDeepQB,thecompletionrateis74%.Thiscomparestoacompletionrateof55%whenquarterbackstargetanyotherreceiver.Theseresultsindicatethatthemodelcansuccessfullymakeinferencesusingthetrackingdata,andiscapturingsomedegreeofunderstandingofeachpassplay.However,theYardsPerAttempt(YPA)whenquarterbackstargetthepredictedreceiverissignificantlylowerthanwhenhetargetsanotherreceiver(7.8vs8.0YPA).Thisisasurprisingandcounterintuitiveresult.Ifcompletionpercentagesarehigher,howcouldYPAbelower?Thisleads

Page 7: DeepQB: Deep Learning with Player Tracking to Quantify

7

2019ResearchPapersCompetitionPresentedby:

tothefirstmajorinsight:thetypical(leagueaverage)quarterbackismostlikelytoocautiousinhisreads.Thetheorythatexplainsbothresultsisthatthetypicalquarterbackfavorsasaferchoiceattheexpenseofoptimumefficiency.4.2. Variant2:ExpectedYardsThesecondvariantoftheDeepQBmodeldirectlyestimatestheexpectedyardsgiventheoverallpicturethatispresentedtothequarterback.Inadditionitestimatestheexpectedyardsgiventhatthequarterbacktargetseachofthefiveeligiblereceivers.Thisallowsustoevaluateindividualquarterbacks,aswellastheirteam’sreceivingcorpsandpassingschemes.OverallquarterbackperformancecanbeassessedbymeasuringthedifferencebetweentheiractualYPAandtheexpectedYPAproducedbytheoverallpictureofreceiversanddefenderspresentedtothequarterbackoneachpassplay.Thisrevealsanestimateofthevalueaddedbythequarterback,overandabovethecapabilitiesthathisreceivingcorpsandschemeprovide.Forexample,aquarterbackmayhavealowYPA,buthisbindingconstraintmaybeschemeorreceivers.Foreachplay,quarterbackdecision-makingcanbeassessedbydeterminingwhetherthequarterbacktargetedthereceiverwiththemaximumexpectedyardage.Perhapsabetterwaytomeasurethesameideainaggregateistocalculatetheproportionofthemaximumavailableexpectedyardagerepresentedbytheexpectedyardageofthereceiverthequarterbackactuallytargeted.(Forexample,ifthemaximumavailableexpectedyardageonaplaywas9.0yards,andthequarterbacktargetedareceiverwith7.5expectedyards,theproportionwouldbe7.5/9.0=83%.)Table1liststheresultsforallquarterbacksin2018(throughweek12)withatleast80passattempts,alongwiththeexpectedYPApredictedbythemodel.TheYPAabove/belowexpectedcolumnisthedifferencebetweenactualandexpectedYPA.TheproportionofmaximumexpectedYPAtargetedforeachquarterbackisalsolisted.Table1ComparisonofExpectedYPAtoactualYPAfor2018quarterbackswithatleast80targetedpassattemptsthroughweek12.Thetopandbottom5passersarelisted.

Rank QB ExpectedYPA

YPAabove/belowexpected

Propor-tionofmaxYPAavailable

Rank QB ExpectedYPA

YPAabove/belowexpected

Propor-tionofmaxYPAavailable

1 Goff 7.8 +2.1 70.3% 33 Smith,A 7.6 -0.4 66.7

2 Mahomes 7.9 +2.0 65.6 34 Allen 7.0 -0.5 65.53 Brees 7.1 +1.9 66.7 35 Darnold 7.1 -0.5 63.0

4 Fitzpatrick 7.6 +1.8 70.1 36 Flacco 7.7 -0.6 69.55 Watson 7.2 +1.7 69.8 37 Taylor 7.6 -1.5 70.4

Page 8: DeepQB: Deep Learning with Player Tracking to Quantify

8

2019ResearchPapersCompetitionPresentedby:

Figure5plotstheYPAAboveExpectedmetricagainstthepredictabilityofeachquarterback,whichismeasuredbyhowoftenvariant1(targetprediction)iscorrect.Thisisessentiallyameasureofhow“typical”aquarterbackisinhistargetingdecisions.Noticethatmanyoftherookies(Allen,Darnold,Rosen)aretowardtherightofthechart(highlytypical),withMayfieldastheexception.Someofthemoreaggressivepassers,suchasAaronRodgers,aretowardtheleft.AsdiscussedwithVariant1,thereisaweaknegativecorrelationbetweenthe“typicality”ofaquarterback’stargetingdecisionsandthevalueheaddsabovethepotentialprovidedbyhisreceivers(r=-0.30).Unfortunately,wecannotescapethepossibilityofselectionbias.Forexample,AaronRodgersmayattemptmoreunorthodox,aggressivetargetingbecausehecan,whileotherquarterbacksmaynothavetheskillstodosoreliably.4.3. Variant3:PassOutcomesThethirdvariantofourmodelestimatestheprobabilitiesofcompletion,incompletion,andinterceptionforeachplay.Consideringjustcompletionsandincompletions,themodelappearswell-calibrated(figure6),althoughitrarelyconsiderspasscompletionsashighlyimprobable.Thisissubstantiallyduetotheexclusionofdeliberate“throw-away”passesfromthedata,whicharetechnicallyattemptsbutdidnothaveatargetedreceiver.

Figure5AscatterplotofqualifiedQBsfrom2018throughweek12.TheverticalaxisindicatesthevalueaddedbytheQBaboveorbelowexpectedgivenhisreceiversandopposingdefenses.(Notethat2018isan“up”yearforoffense,sothemeanhereisabovezero.)Thehorizontalaxisindicateshowwellthemodelwasabletopredictthetargetingdecisionsofeachpasser.More“typical”QBsaretotheright.

Table2Modeledoutcomeprobabilitiesbyactualoutcometypes.

Page 9: DeepQB: Deep Learning with Player Tracking to Quantify

9

2019ResearchPapersCompetitionPresentedby:

Passingaccuracyisawidelymisunderstood

attribute,primarilybecausecompletionpercentageisusedubiquitouslyasaproxyforaccuracy.Completionpercentagedoesnotaccountforthedifficultyofthethrow,nordoesitexclude“throw-away”passattemptsandreceiverdrops.ThisvariantofDeepQBcanbetterisolateandassesstheaccuracycomponentofpassingbycalculatingaquarterback’sexpectedcompletionratebasedoneachplay’sdynamicsandwhichreceiverwastargeted,andthencomparingthattohisactualcompletionrate.Notethatthesenumbersareontargetedpassesonly,sothey

willbehigherthancommoncompletionpercentagestatistics.Ofparticularinterestareinterceptions,whichhavelargeimpactsonthegame,anddoubtlesslyconveyagooddealofinformationaboutquarterbackdecision-making.Interceptionsareeventswithaverylowbaserateandofteninvolvetippedballsorotherrandomfactors.Theabsolutenumberofinterceptions,oreveninterceptionsperpass,willthereforebeverynoisymeasuresofaquarterback’struepropensitytothrowthem.Anaccurateestimateofinterceptionprobabilitywouldbeatruermeasure.Theplaysnapshotsinfigure7portrayexamplesofhowthemodelassessesinterceptionprobability.Noticethatthefirsttwoexamplesshowariskyconfigurationofdefenders,andtheinterceptionprobabilitiesareaccordinglyveryhigh.Thethirdexampleshowsasafeandopenpass,withacorrespondinglylowerprobabilityofinterception.Table3Passingaccuracyasassessedbyeachquarterback’sactualcompletionrateabovetheexpectedrateestimated.Thetop5andbottom5qualifiedpassersof2018throughweek12arelistedhere.

Rank QBExpectedComplRate

ComplRateAbvExp

Rank QBExpectedComplRate

ComplRateAbvExp

1 Brees 67.0% 15.0% 33 Bortles 67.6% -0.2%2 Watson 63.0 8.9 34 Rosen 68.1 -0.83 Cousins 67.8 8.6 35 Beathard 71.2 -2.14 Winston 66.8 8.2 36 Darnold 68.1 -5.75 Mahomes 68.4 7.6 37 Taylor 69.3 -10.5

Meaninterceptionprobabilityforthetopandbottomfiveindividualquarterbacksarelistedintable4.Keepinmindthatgamesituation,primarilytimeandscore,hasalargeinfluenceontheoptimum

Figure6Calibrationplotofobservedvs.predictedbinsofcompletionprobability.

Page 10: DeepQB: Deep Learning with Player Tracking to Quantify

10

2019ResearchPapersCompetitionPresentedby:

risklevel,andthatisnotaccountedforintheaggregaterates.However,themodel’sestimatescanprovideevenmorevaluableinsightonapass-by-passbasis.

Table4Meaninterceptionprobabilities,alongwithactualrates,forthetop5andbottom5qualifiedpassersof2018throughweek12.

Rank QB MeanIntProbActualIntrate

Rank QB MeanIntProbActualIntRate

1 Foles 1.23% 1.2% 33 Mayfield 1.97% 2.3%

2 Trubisky 1.31 2.8 34 Stafford 1.99 2.53 Beathard 1.34 4.1 35 Fitzpatrick 2.00 4.9

4 Keenum 1.37 2.6 36 Watson 2.03 2.75 Wentz 1.38 1.8 37 Winston 2.28 5.4

Assumingthepassoutcomeestimatesfromthemodelarereasonable,animportantinsightisrevealed.Becauseexpectedinterceptionrates,basedonthegeometriesofthereceiversanddefense,arelowerthantheactualinterceptionratesofhigh-interceptionquarterbacks,itfollowsthatinterceptionsintheNFLareprimarilyaresultofinaccuratethrowsandrandomsampleerrorratherthanbadtargetingdecisions.4.4. Variant4:IndividualQuarterbackModelsThefinalvariantoftheDeepQBsuiteisahighlyexperimentalversionintendedtocapturethedecision-makingtendenciesofindividualquarterbacks.Thesamplesizeofpassattemptsforindividualquarterbacksisnotsufficienttoadequatelytrainamodeltoaccuratelygeneralizeonout-of-samplecases.However,itispossibletocaptureindividualdecision-makingusingtransferlearning.Transferlearningisatechniquethattrainslowerlayersofaneuralnetworkonabroadtrainingset,buttrainsthehigherlevelsofthenetworkonamorespecificsetofcases.Inthiscontext,the

Figure7Exampleplaysillustratingthemodel'sinterceptionestimates.Onlythetargetedreceiverisshown.Fromlefttoright:ThefirstplayshowsaJameisWinstonpasson2ndand12intotightcoverage.Thesecondshowsa2ndand2attemptfromDerekCarrtowardareceiversurroundedbyfourdefenders.Thethirdshowsanexampleofapasswithaverylowprobabilityofinterception,apasstotheflatbyBenRoethlisberger.

Page 11: DeepQB: Deep Learning with Player Tracking to Quantify

11

2019ResearchPapersCompetitionPresentedby:

weightsofthelowerlevelsoftheneuralnetworkaretrainedonplaysfromthefullsetofquarterbacks.Thebaselevelofthenetworkrepresentthefundamentalrelationshipsamongpositionsandvelocities—understandingandprojectingthegeometriesoftheplayersonthefield,whilethehigherlevelsofthenetworkrepresenttheexecutivefunctions—choosingthepassingtarget.Thisisanalogoustoabiologicalbraininthatmostathletessharesimilarunderstandingsofinstinctive,intuitivephysics—basicslikegravity,distance,andmotion.Butindividualsmaydifferintheirdispositionstowardvariousdecisionsdespitehavingcommonintuitivephysics.Thisvariantofthemodelexploitssuchinstinctivecommonalitiesbytrainingitslowesthiddenlayerusingaverylargesampleofpassesbyallquarterbacks,andthenfreezingtheresultingweightsofthatlayer.Then,thenetwork’shigherdecision-levellayersweretrainedonthesmallersampleofpassattemptsofasinglequarterback.Theresultingnetworkisamodelthatcombinescommonintuitivephysicssharedbyallquarterbackswiththeexecutive-leveldecision-makingofanindividualpasser.Justoneexampleofsuchamodelispresentedhere,thatofSaints’quarterbackDrewBrees.ThetwohigherlayersofVariant1oftheDeepQBmodel(targetselection&prediction)wereretrainedusingjustBrees’passes.OverallaccuracyspecifictoBrees’2018passattemptsroseto64%.Itisinterestingtoseehowotherquarterbacksmightcomparetoacyber-Brees.Table5liststhepassersof2018whosetargetselectionsalignthebestandworstwiththeBreesmodel.

Table5Howpassers’targetingtendenciesalignwith"cyber-Brees"basedonmodelvariant4.

Rank QuarterbackTarget

PredictionAccuracy

Rank QuarterbackTarget

PredictionAccuracy

1 Brees 64.3% 33 Goff 49.7%

2 Smith,A 57.5 34 Mahomes 49.23 Allen 57.3 35 Wilson 48.7

4 Carr 57.1 36 Ryan 47.75 Darnold 56.3 37 Brady 46.1

SomeoftheworstperformingquarterbacksoftheseasonaremostalignedwiththeBreesmodel,whilemostofthebestquarterbacksoftheseasonaretheleastaligned.Thisshouldmakeoneskepticaloftheseresults.Thisisanadmittedlyexperimentalapplication,butoneplausibleinterpretationoftheresultsisthatBreeshasfrequentlytargetedhisrunningbacks,similartohowpooroffensesrelyoftenonshallowcheck-downroutestocompletepasses.InBrees’case,thisislikelybydesignduetotheexceptionalreceivingskillsofhisbacks,butformanyothersthistactictendstobealastresort.

5. LimitationsandFutureDevelopmentAllvariantsofthemodelcurrentlyrelysolelyonabinary“QBduress”variabletoaccountfortheconstraintsontheQBduetothepassrush.Thismodelingdecisionwasmadeattheoutsetoftheprojecttoensuretractabilityofthemodel,butsincethenitbecameclearthemodelcanacceptalargersetofinputswithoutcausingaprohibitivelylongtrainingtime.Futureiterationsofthe

Page 12: DeepQB: Deep Learning with Player Tracking to Quantify

12

2019ResearchPapersCompetitionPresentedby:

modelwilluseamorecompletepictureofpassprotectionbasedonadvancesinmodelingpassprotection[9].Thisshouldenhanceaccuracy,asquarterbacksaresometimesnotabletotargetopenreceiversduetobeingobscuredbypassrushers.Limitingthepicturetothetwonearestdefenderstoeachreceiverwasanothermodelingdecisionmadeforthesamereason.Reviewofhundredsofoutputplaysindicatedthemodelcouldstillpiecetogetherarelativelycompletepicturefromthisstructure—understandingthepresenceofalldefenderstoallreceiversinthefeaturevector.However,futureversionsofthemodelcanincludeuptoallelevendefendersandtheirrelationshipstoeachreceiver.Receivertalentsandskillsarenotfullyaccountedfor.Althoughaspectsofreceivingsuchasrouterunningandspeedcanbecapturedbythemodel,otheraspectssuchasthesizeandstrengthofreceiversisafactorintheprobabilityofreceptionandtheyardageestimateofeachplay.Interceptionsareacriticalaspecttodecision-making.AlthoughVariant3addressesinterceptionprobabilitydirectly,Variant2addresseseachpassplay’sexpectedyardsseparatelyfrominterceptionchances.Thismaymakesomepassingtargetsappearmorelucrativeonnetthanisthecaseduetoapossiblyhighchanceofinterception.FutureversionsofthisapproachwillincorporateconceptssuchasExpectedPointsAdded(EPA)[10],whichaccuratelymeasuresthecomplexinteractionsofdown,distance,fieldposition,andpossession,andistheconsensusutilityfunctionoffootballevents.Thegeneralmodelisbasedonasnapshotoftheplayatthetimeofpassrelease.Openreceiversearlierinthedevelopmentofaplaymaylaterbecomecoveredbythetimeofreleaseifthequarterbackfailstorecognizethem.Indeed,thisisanaturalconsequenceofhowthepositionistaught.Quarterbacksaretypicallyinstructedtomaketheirreadsinaprogression,fromoneprimaryreceivertoasecondary,andthentoanalternate.Thismodelmaybepenalizingaquarterbackwhomakesthecorrectreadintheplannedprogression,butbecauseareadbecomesopenafterhisstepintheprogression,itappearsthatthequarterbackhasmissedanopenreceiver.FuturevariantsoftheDeepQBmodelmayusetechniquessuchasanLSTMnetworktoassesspassingoutcomesonacontinuousbasisthroughouttheplay.

6. SummaryThispaperproposesanewapproachtoexaminingpassinginprofessionalfootball.Despitethechaosanddeceptionintrinsictothesport,aneuralnetworkapproachtoplayertrackingdataperformssurprisinglywell,andhasbeendemonstratedasaneffectivetoolforanalysis.Themodeldemonstrateshowquarterbackeffectivenessanddecision-makingcanbeassessedbothforindividualplaysandinaggregate.VariantsoftheDeepQBsuiteofmodelsfocusontargetselection,expectedyardage,andpassoutcomes.Afourthexperimentalvariantexploresthepossibilityoftailoringthemodeltoindividualquarterbacksusingtransferlearning.Thisoverallapproachoffersthepromiseofmakingapreviouslyopaqueaspectofthesportaccessibletoteams,media,andfans.

Page 13: DeepQB: Deep Learning with Player Tracking to Quantify

13

2019ResearchPapersCompetitionPresentedby:

References[1]Cervone,D.,D’Amour,A.,Bornn,L.,Goldsberry,K.POINTWISE:PredictingPointsandValuingDecisionsinRealTimewithNBAOpticalTrackingData.MITSloanSportsAnalyticsConference2014.2014.[2]Kuan-ChiehWang,RichardZemel.ClassifyingNBAOffensivePlaysUsingNeuralNetworks.MITSloanSportsAnalyticsConference2016.2016.[3]Le,H.,Carr,P.,Yue,Y.,Lucey,P.Data-DrivenGhostingusingDeepImitationLearning.MITSloanSportsAnalyticsConference2017.2017.[4]Harmon,M.,Lucey,P.,Klabjan,D.PredictingShotMakinginBasketballusingConvolutionalNeuralNetworksLearntfromAdversarialMultiagentTrajectories.AssociationfortheAdvancementofArtificialIntelligence,2016.[5]Lucey,P.,Bialkowski,A.,Monfort,M.,Carr,P.,Matthews,I.“QualityvsQuantity”:ImprovedShotPredictioninSoccerusingStrategicFeaturesfromSpatiotemporalData.MITSloanSportsAnalyticsConference2015.2015.[6]Mehrasa,M.,Zhong,Y.,Tung,F.,Bornn,L.,Mori,G.“DeepLearningofPlayerTrajectoryRepresentationsforTeamActivityAnalysis.MITSloanSportsAnalyticsConference2017.2017.[7]Hochstedler,Jeremy.FindingtheOpenReceiver:QuantitativeGeospatialAnalysisofQuarterbackDecision-Making.MITSloanSportsAnalyticsConference2016.2016.[8]Chollet,F.(2015)Keras,GitHub.https://github.com/fchollet/keras[9]Burke,Brian.“Wecreatedbetterpass-rusherandpass-blockerstats:Howtheywork.”espn.com/nfl/story/_/id/24892208/creating-better-nfl-pass-blocking-pass-rushing-stats-analytics-explainer-faq-how-work.2018.[10]Burke,Brian.“ExpectedPointsandExpectedPointsAdded.”AdvancedFootballAnalytics.archive.advancedfootballanalytics.com/2010/01/expected-points-ep-and-expected-points.html.2010.