debreceni egyetem egyetemi kenÉzy ÉlettudomÁnyi...

86
DEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRA 4032 Debrecen, Egyetem tér 1. e mail: [email protected] Iktatószám: DEENKÉTK /50/2012. Tételszám: Tárgy: Publikációs Lista-OTKA Pályázó: Matesz Klára Folyóiratcikkek (63) Magyar nyelvű közlemények (1) 1. Földes I., Kern M., Matesz K.: Különböző porcok makromolekuláris komponenseinek vizsgálata topooptikai reakciókkal. Biológia 23, 45-54, 1975. Idegen nyelvű ( Magyarországon megjelent ) közlemények (12) 2. Matesz, K., Bácskai, T., Székely, G.: Ascending and descending projections of the lateral vestibular nucleus in the rat. Acta Biol. Hung. 53 (1-2), 7-21, 2002. IF:0.416 Idézetek összesen: 8 Független idézetek: 7 1. Нагаева, Д., Ахмадеев, А.: Состояние Периферических И Проводниковых Центров Вестибулярного Анализатора При Конвульсивной Эпилепсии. М 45 Материалы II международной (IX итоговой) научно-практической конферен-ции молодых ученых.— (2011) Челябинск: Изд-во «Челябинская государст(TRUNCATED), , pp. 159. 2. Barmack, N.H.: Central vestibular system: Vestibular nuclei and posterior cerebellum. (2003) Brain Res Bull, 60 (5-6), pp. 511-541. 3. Tobias, C.A., Shumsky, J.S., Shibata, M., Tuszynski, M.H., Fischer, I., Tessler, A., Murray, M.: Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. (2003) Exp Neurol, 184 (1), pp. 97-113. 4. Deumens, R., Koopmans, G.C., Joosten, E.A.J.: Regeneration of descending axon tracts after spinal cord injury. (2005) Prog Neurobiol, 77 (1-2), pp. 57-89. 5. Chiocchetti, R., Bombardi, C., Grandis, A., Mazzuoli, G., Gentile, A., Pisoni, L., Joechler, M., Lucchi, M.L.: Cytoarchitecture, morphology, and lumbosacral spinal cord projections of the red nucleus in cattle. (2006) Am J Vet Res, 67 (10), pp. 1662-1669. 6. Grandis, A., Bombardi, C., Travostini, B., Gentile, A., Joechler, M., Pisoni, L., Chiocchetti, R.: Vestibular nuclear complex in cattle: Topography,

Upload: haque

Post on 12-Jul-2019

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

Iktatószám: DEENKÉTK /50/2012. Tételszám: Tárgy: Publikációs Lista-OTKA

Pályázó: Matesz Klára

Folyóiratcikkek (63)

Magyar nyelvű közlemények (1)

1. Földes I., Kern M., Matesz K.: Különböző porcok makromolekuláris komponenseinek vizsgálata

topooptikai reakciókkal.

Biológia 23, 45-54, 1975.

Idegen nyelvű ( Magyarországon megjelent ) közlemények (12)

2. Matesz, K., Bácskai, T., Székely, G.: Ascending and descending projections of the lateral vestibular

nucleus in the rat.

Acta Biol. Hung. 53 (1-2), 7-21, 2002.

IF:0.416

Idézetek összesen: 8

Független idézetek: 7 1. Нагаева, Д., Ахмадеев, А.: Состояние Периферических И Проводниковых

Центров Вестибулярного Анализатора При Конвульсивной Эпилепсии. М 45 Материалы II международной (IX итоговой) научно-практической конферен-ции молодых ученых.— (2011) Челябинск: Изд-во «Челябинская государст(TRUNCATED), , pp. 159.

2. Barmack, N.H.: Central vestibular system: Vestibular nuclei and posterior cerebellum. (2003) Brain Res Bull, 60 (5-6), pp. 511-541.

3. Tobias, C.A., Shumsky, J.S., Shibata, M., Tuszynski, M.H., Fischer, I., Tessler, A., Murray, M.: Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. (2003) Exp Neurol, 184 (1), pp. 97-113.

4. Deumens, R., Koopmans, G.C., Joosten, E.A.J.: Regeneration of descending axon tracts after spinal cord injury. (2005) Prog Neurobiol, 77 (1-2), pp. 57-89.

5. Chiocchetti, R., Bombardi, C., Grandis, A., Mazzuoli, G., Gentile, A., Pisoni, L., Joechler, M., Lucchi, M.L.: Cytoarchitecture, morphology, and lumbosacral spinal cord projections of the red nucleus in cattle. (2006) Am J Vet Res, 67 (10), pp. 1662-1669.

6. Grandis, A., Bombardi, C., Travostini, B., Gentile, A., Joechler, M., Pisoni, L., Chiocchetti, R.: Vestibular nuclear complex in cattle: Topography,

Page 2: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

morphology, cytoarchitecture and lumbo-sacral projections. (2007) Journal of Vestibular Research: Equilibrium and Orientation, 17 (1), pp. 9-24.

7. Shinder, M.E., Taube, J.S.: Differentiating ascending vestibular pathways to the cortex involved in spatial cognition. (2010) Journal of Vestibular Research: Equilibrium and Orientation, 20 (1-2), pp. 3-23.

Függő idézetek: 1 1. Deák, Á., Bácskai, T., Veress, G., Matesz, C.: Vestibular afferents to the

motoneurons of glossopharyngeal and vagus nerves in the frog, rana esculenta. (2009) Brain Res, 1286 , pp. 60-65.

3. Matesz, K., Nagy, E., Kulik, Á., Tönköl, A.: Projections of the medial and superior vestibular nuclei to

the brainstem and spinal cord in the rat.

Neurobiology. 5 (4), 489-493, 1997.

Idézetek összesen: 4

Függő idézetek: 4 1. Halasi, G., Bácskai, T., Matesz, C.: Connections of the superior vestibular

nucleus with the oculomotor and red nuclei in the rat: An electron microscopic study (2005) Brain Research Bulletin, 66 (4-6), pp. 532-535.

2. Bácskai, T., Székely, G., Matesz, C.: Ascending and descending projections of the lateral vestibular nucleus in the rat (2002) Acta Biologica Hungarica, 53 (1-2), pp. 7-21.

3. Matesz, C., Kulik, A., Bácskai, T.: Ascending and descending projections of the lateral vestibular nucleus in the frog Rana esculenta (2002) Journal of Comparative Neurology, 444 (2), pp. 115-128.

4. Matesz, C., Bácskai, T., Nagy, E., Halasi, G., Kulik, A.: Efferent connections of the vestibular nuclei in the rat: A neuromorphological study using PHA-L (2002) Brain Research Bulletin, 57 (3-4), pp. 313-315.

4. Kulik, Á., Polgár, E., Matesz, K., Kothalawala, D.S., Szűcs, P., Nagy, I.: Sub-population of capsaicin

sensitive primary afferent neurons in thoracic, lumbar and sacral dorsal root ganglion in young

rats revealed by stimulated cobalt uptake.

Acta Biol. Hung. 47 (1-4), 251-259, 1996.

IF:0.239

5. Matesz, K., Kulik, Á.: Connections of the torus semicircularis and oliva superior in the frog, Rana

esculenta: A Phaseolus vulgaris leucoagglutinin labeling study.

Acta Biol. Hung. 47, 287-301, 1996.

IF:0.239

Idézetek összesen: 6

Független idézetek: 6 1. González, M.J., Yáñez, J., Anadón, R.: Afferent and efferent connections of

the torus semicircularis in the sea lamprey: An experimental study. (1999) Brain Res, 826 (1), pp. 83-94.

2. Endepols, H., Walkowiak, W.: Integration of ascending and descending inputs in the auditory midbrain of anurans. (2000) Journal of Comparative Physiology - A Sensory, Neural, and Behavioral Physiology, 186 (12), pp. 1119-1133.

3. Sánchez-Camacho, C., Marín, O., Ten Donkelaar, H.J., González, A.: Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin. (2001) J Comp Neurol, 434 (2), pp. 186-208.

Page 3: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

4. Straka, H., Holler, S., Goto, F.: Patterns of canal and otolith afferent input convergence in frog second-order vestibular neurons. (2002) J Neurophysiol, 88 (5), pp. 2287-2301.

5. Straka, H., Dieringer, N.: Basic organization principles of the VOR: Lessons from frogs. (2004) Prog Neurobiol, 73 (4), pp. 259-309.

6. O'Connell, L.A., Ding, J.H., Ryan, M.J., Hofmann, H.A.: Neural distribution of the nuclear progesterone receptor in the túngara frog, physalaemus pustulosus. (2011) J Chem Neuroanat, 41 (3), pp. 137-147.

6. Kulik, Á., Matesz, K., Székely, G.: Mesencephalic projections of the cochlear nucleus in the frog,

Rana esculenta.

Acta Biol. Hung. 45 (2-4), 323-335, 1994.

Idézetek összesen: 12

Független idézetek: 9 1. Lowry, C., Richardson, C., Zoeller, T., Miller, L., Muske, L., Moore, F.:

Neuroanatomical distribution of vasotocin in a urodele amphibian (taricha granulosa) revealed by immunohistochemical and in situ hybridization techniques. (1997) J Comp Neurol, 385 (1), pp. 43-70.

2. Pollak, E., Lazar, G., Gabriel, R., Wang, S.: Localization and source of gamma aminobutyric acid immunoreactivity in the isthmic nucleus of the frog rana esculenta. (1999) Brain Res Bull, 48 (3), pp. 343-350.

3. Lazar, G.: Peptides in frog brain areas processing visual information. (2001) Microsc Res Tech, 54 (4), pp. 201-219.

4. Straka, H., Holler, S., Goto, F.: Patterns of canal and otolith afferent input convergence in frog second-order vestibular neurons RID C-6337-2011. (2002) J Neurophysiol, 88 (5), pp. 2287-2301.

5. Straka, H., Holler, S., Goto, F., Kolb, F., Gilland, E.: Differential spatial organization of otolith signals in frog vestibular nuclei RID C-6337-2011. (2003) J Neurophysiol, 90 (5), pp. 3501-3512.

6. Straka, H., Dieringer, N.: Basic organization principles of the VOR: Lessons from frogs. (2004) Prog Neurobiol, 73 (4), pp. 259-309.

7. Westhoff, G., Roth, G., Straka, H.: Topographic representation of vestibular and somatosensory signals in the anuran thalamus. (2004) Neuroscience, 124 (3), pp. 669-683.

8. Wilczynski, W., Endepols, H.: Central auditory pathways in anuran amphibians: The anatomical basis of hearing and sound communication. (2006) Hearing and sound communication in amphibians, , pp. 221-249.

9. Morona, R., Gonzalez, A.: Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians. (2009) J Comp Neurol, 515 (5), pp. 503-537.

Függő idézetek: 3 1. Matesz, C., Kulik, A.: Connections of the torus semicircularis and oliva

superior in the frog, rana esculenta: A phaseolus vulgaris leucoagglutinin labeling study. (1996) Acta Biol Hung, 47 (1-4), pp. 287-301.

2. Kulik, A., Matesz, C.: Projections from the nucleus isthmi to the visual and auditory centres in the frog, rana esculenta. (1997) Journal of Brain Research-Journal Fur Hirnforschung, 38 (3), pp. 299-307.

3. Matesz, C., Kulik, A., Bacskai, T.: Ascending and descending projections of the lateral vestibular nucleus in the frog rana esculenta. (2002) J Comp Neurol, 444 (2), pp. 115-128.

Page 4: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

7. Matesz, K.: Fine structure of the primary afferent vestibulocochlear terminals in the frog.

Acta Biol. Hung. 39 (2-3), 267-277, 1988.

IF:0.132

Idézetek összesen: 10

Független idézetek: 6 1. Fanardjian, V., Manvelyan, L., Zakarian, V., Pogossian, V., Nasoyan, A.:

Electrophysiological properties of the somatotopic organization of the vestibulospinal system in the frog. (1999) Neuroscience, 94 (3), pp. 845-857.

2. Birinyi, A., Straka, H., Matesz, C., Dieringer, N.: Location of dye-coupled second order and of efferent vestibular neurons labeled from individual semicircular canal or otolith organs in the frog. (2001) Brain Res, 921 (1-2), pp. 44-59.

3. Fanardjian, V., Manvelyan, L., Nasoyan, A.: Spatial distribution of the vestibulospinal neurons in the frog vestibular nuclei. (2001) Neuroscience, 104 (3), pp. 853-862.

4. Straka, H., Holler, S., Goto, F.: Patterns of canal and otolith afferent input convergence in frog second-order vestibular neurons RID C-6337-2011. (2002) J Neurophysiol, 88 (5), pp. 2287-2301.

5. Straka, H., Holler, S., Goto, F., Kolb, F., Gilland, E.: Differential spatial organization of otolith signals in frog vestibular nuclei RID C-6337-2011. (2003) J Neurophysiol, 90 (5), pp. 3501-3512.

6. Straka, H., Dieringer, N.: Basic organization principles of the VOR: Lessons from frogs. (2004) Prog Neurobiol, 73 (4), pp. 259-309.

Függő idézetek: 4 1. Bacskai, T., Matesz, C.: Primary afferent fibers establish dye-coupled

connections in the frog central nervous system. (2002) Brain Res Bull, 57 (3-4), pp. 317-319.

2. Matesz, C., Kulik, A., Bacskai, T.: Ascending and descending projections of the lateral vestibular nucleus in the frog rana esculenta. (2002) J Comp Neurol, 444 (2), pp. 115-128.

3. Racz, E., Bacskai, T., Halasi, G., Kovacs, E., Matesz, C.: Organization of dye-coupled cerebellar granule cells labeled from afferent vestibular and dorsal root fibers in the frog rana esculenta. (2006) J Comp Neurol, 496 (3), pp. 382-394.

4. Deak, A., Bacskai, T., Veress, G., Matesz, C.: Vestibular afferents to the motoneurons of glossopharyngeal and vagus nerves in the frog, rana esculenta RID C-9714-2009. (2009) Brain Res, 1286 , pp. 60-65.

8. Matesz, K., Székely, G.: The motor nuclei of the glossopharyngeal-vagal and the accessorius nerves

in the rat.

Acta Biol. Hung. 34 (2-3), 215-230, 1983.

IF:0.267

Idézetek összesen: 20

Független idézetek: 17 1. Bieger, D., Hopkins, D.: Viscerotopic Representation Of The Upper

Alimentary-Tract In The Medulla-Oblongata In The Rat - The Nucleus Ambiguus. (1987) J Comp Neurol, 262 (4), Pp. 546-562.

2. Oka, Y., Satou, M., Ueda, K.: Morphology And Distribution Of The Motor Neurons Of The Accessory Nerve (Nxi) In The Japanese Toad - A Cobaltic Lysine Study. (1987) Brain Res, 400 (2), Pp. 383-388.

3. Oka, Y., Takeuchi, H., Satou, M., Ueda, K.: Cobaltic Lysine Study Of The Morphology And Distribution Of The Cranial Nerve Efferent Neurons (Motoneurons And Preganglionic Parasympathetic Neurons) And Rostral

Page 5: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

Spinal motoneurons in the japanese toad. (1987) J Comp Neurol, 259 (3), pp. 400-423.

4. Wake, D., Nishikawa, K., Dicke, U., Roth, G.: Organization of the motor nuclei in the cervical spinal-cord of salamanders. (1988) J Comp Neurol, 278 (2), pp. 195-208.

5. Rethelyi, M., Metz, C., Lund, P.: Distribution of neurons expressing calcitonin gene-related peptide mRNAs in the brain stem, spinal cord and dorsal root ganglia of rat and guinea-pig. (1989) Neuroscience, 29 (1), pp. 225-239.

6. Yajima, Y., Hayashi, Y.: Electrophysiological evidence for axonal branching of ambiguous laryngeal motoneurons. (1989) Brain Res, 478 (2), pp. 309-314.

7. Leong, S., Ling, E.: Vagus nerve and spinal-cord projecting neurons demonstrated by horseradish-peroxidase and different fluorescent dyes. (1991) Int J Neurosci, 57 (1-2), pp. 61-72.

8. Yoshida, Y., Tanaka, Y., Saito, T., Shimazaki, T., Hirano, M.: Peripheral nervous-system in the larynx - an anatomical study of the motor, sensory and autonomic nerve-fibers. (1992) Folia Phoniatr, 44 (5), pp. 194-219.

9. Brining, S.K., Smith, D.V.: Distribution and synaptology of glossopharyngeal afferent nerve terminals in the nucleus of the solitary tract of the hamster. (1996) J Comp Neurol, 365 (4), pp. 556-574.

10. Liinamaa, T.L., Keane, J., Richmond, F.J.R.: Distribution of motoneurons supplying feline neck muscles taking origin from the shoulder girdle. (1997) J Comp Neurol, 377 (2), pp. 298-312.

11. Yoshida, Y.: Central nervous system participation in phonation and deglutition - focus on the nucleus ambiguus. (2000) Japan Journal of Logopedics and Phoniatrics, 41 (2), pp. 95-110.

12. Hayakawa, T., Takanaga, A., Tanaka, K., Maeda, S., Seki, M.: Organization and distribution of the upper and lower esophageal motoneurons in the medulla and the spinal cord of the rat. (2002) Okajimas Folia Anat Jpn, 78 (6), pp. 263-280.

13. Hayakawa, T., Takanaga, A., Tanaka, K., Maeda, S., Seki, M.: Ultrastructure and synaptic organization of the spinal accessory nucleus of the rat. (2002) Anat Embryol, 205 (3), pp. 193-201.

14. Tsukamoto, K., Hayakawa, T., Maeda, S., Tanaka, K., Seki, M., Yamamura, T.: Projections to the alimentary canal from the dopaminergic neurons in the dorsal motor nucleus of the vagus of the rat. (2005) Autonomic Neuroscience: Basic and Clinical, 123 (1-2), pp. 12-18.

15. Ullah, M., Mansor, O., Ismail, Z.I.M., Kapitonova, M.Y., Sirajudeen, K.N.S.: Localization of the spinal nucleus of accessory nerve in rat: A horseradish peroxidase study. (2007) J Anat, 210 (4), pp. 428-438.

16. Cerimagic, D., Ivkic, G., Bilic, E.: Neuroanatomical basis of sandifer's syndrome: A new vagal reflex? (2008) Med Hypotheses, 70 (5), pp. 957-961.

17. Sienkiewicz, W., Dudek, A.: Sources of the motor and somatic sensory innervation of the trapezius muscle in the rat. (2010) Vet Med, 55 (5), pp. 242-252.

Függő idézetek: 3 1. Szekely, G., Matesz, C.: Topography And Organization Of Cranial Nerve

Nuclei In The Sand Lizard, Lacerta-Agilis. (1988) J Comp Neurol, 267 (4), Pp. 525-544.

2. Matesz, C., Birinyi, A., Kothalawala, D., Szekely, G.: Investigation Of The Dendritic Geometry Of Brain-Stem Motoneurons With Different Functions Using Multivariant Statistical Techniques In The Frog. (1995) Neuroscience, 65 (4), Pp. 1129-1144.

3. Matesz, C., Székely, G.: Organization Of The Ambiguus Nucleus In The Frog (Rana Esculenta). (1996) J Comp Neurol, 371 (2), Pp. 258-269.

Page 6: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

9. Matesz, K.: Termination areas of primary afferent fibers of the trigeminal nerve in the rat.

Acta Biol. Hung. 34 (1), 31-43, 1983.

IF:0.267

Idézetek összesen: 16

Független idézetek: 15 1. Arvidsson, J., Pfaller, K.: Central projections of C4–C8 dorsal root ganglia in

the rat studied by anterograde transport of WGA‐HRP. (1990) J Comp Neurol, 292 (3), pp. 349-362.

2. Dallel, R., Raboisson, P., Woda, A., Sessle, B.: Properties of nociceptive and non-nociceptive neurons in trigeminal subnucleus oralis of the rat. (1990) Brain Res, 521 (1-2), pp. 95-106.

3. Marfurt, C.F., Rajchert, D.M.: Trigeminal primary afferent projections to “non‐trigeminal” areas of the rat central nervous system. (1991) J Comp Neurol, 303 (3), pp. 489-511.

4. Ter Horst, G., Copray, J., Liem, R., Van Willigen, J.: Projections from the rostral parvocellular reticular formation to pontine and medullary nuclei in the rat: Involvement in autonomic regulation and orofacial motor control. (1991) Neuroscience, 40 (3), pp. 735-758.

5. Raappana, P., Arvidsson, J.: Location, morphology, and central projections of mesencephalic trigeminal neurons innervating rat masticatory muscles studied by axonal transport of choleragenoid‐horseradish peroxidase. (1993) J Comp Neurol, 328 (1), pp. 103-114.

6. Usunoff, K.G., Marani, E., Schoen, J.H.: The trigeminal system in man. (1997) Adv Anat Embryol Cell Biol, 136 , pp. I-X, 1-126.

7. Malick, A., Burstein, R.: Cells of origin of the trigeminohypothalamic tract in the rat. (1998) J Comp Neurol, 400 (1), pp. 125-144.

8. May, P.J., Porter, J.D.: The distribution of primary afferent terminals from the eyelids of macaque monkeys. (1998) Experimental Brain Research, 123 (4), pp. 368-381.

9. Ndiaye, A., Pinganaud, G., Buisseret-Delmas, C., Buisseret, P., Vanderwerf, F.: Organization of trigeminocollicular connections and their relations to the sensory innervation of the eyelids in the rat. (2002) J Comp Neurol, 448 (4), pp. 373-387.

10. Monzani, D., Guidetti, G., Chiarini, L., Setti, G.: Combined effect of vestibular and craniomandibular disorders on postural behaviour. (2003) Acta otorhinolaryngologica italica, 23 (1), pp. 4-9.

11. Haenggeli, C.-., Pongstaporn, T., Doucet, J.R., Ryugo, D.K.: Projections from the spinal trigeminal nucleus to the cochlear nucleus in the rat. (2005) J Comp Neurol, 484 (2), pp. 191-205.

12. Panneton, W.M., Gan, Q., Juric, R.: Brainstem projections from recipient zones of the anterior ethmoidal nerve in the medullary dorsal horn. (2006) Neuroscience, 141 (2), pp. 889-906.

13. Satoh, Y., Ishizuka, K., Murakami, T.: Modulation of the jaw-opening reflex by stimulation of the vestibular nuclear complex in rats. (2009) Neurosci Lett, 457 (1), pp. 21-26.

14. Satoh, Y., Ishizuka, K., Murakami, T.: Modulation of cortically induced rhythmic jaw movements in rats by stimulation of the vestibular nuclear complex. (2010) Neurosci Res, 68 (4), pp. 307-314.

15. Novío Mallón S. Estudio experimental de las vías del dolor de la región de las vibrisas en el cobaya tricolor (cavia porcellus). Univ Santiago de Compostela; 2011.

Függő idézetek: 1 1. Székely, G., Matesz, C.: Topography and organization of cranial nerve nuclei

in the sand lizard, lacerta agilis. (1988) J Comp Neurol, 267 (4), pp. 525-544.

Page 7: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

10. Lévai, G., Matesz, K., Székely, G.: Fine structure of dorsal root terminals in the dorsal horn of the

frog spinal cord.

Acta Biol. Acad. Sci. Hung. 33 (2-3), 231-246, 1982.

IF:0.208

Idézetek összesen: 12

Független idézetek: 4 1. Antal, M.: The Application Of Cobalt Labeling To Electron-Microscopic

Investigations Of Serial Sections. (1984) J Neurosci Methods, 12 (1), Pp. 69-77.

2. Oka, Y., Satou, M., Ueda, K.: An Improved Method For Correlative Light And Electron-Microscopic Examination Of Cobaltic-Lysine-Labeled Neurons. (1987) Neurosci Lett, 73 (2), Pp. 187-191.

3. Nagy, I., Sik, A., Polgar, E., Petko, M., Antal, M.: Combination Of Cobalt Labeling With Immunocytochemical Reactions For Electron-Microscopic Investigations On Frog Spinal-Cord. (1994) Microsc Res Tech, 28 (1), Pp. 60-66.

4. Jovanovic, K., Burke, R.E.: Morphology Of Brachial Segments In Mudpuppy (Necturus Maculosus) Spinal Cord Studied With Confocal And Electron Microscopy. (2004) J Comp Neurol, 471 (3), Pp. 361-385.

Függő idézetek: 8 1. Szekely, G., Levai, G., Matesz, K.: Primary Afferent Terminals In The Nucleus

Of The Solitary Tract Of The Frog - An Electron-Microscopic Study. (1983) Experimental Brain Research, 53 (1), Pp. 109-117.

2. Antal, M., Kraftsik, R., Szekely, G., Vanderloos, H.: Distal Dendrites Of Frog Motor Neurons - A Computer-Aided Electron-Microscopic Study Of Cobalt-Filled Cells. (1986) J Neurocytol, 15 (3), Pp. 303-310.

3. Matesz, C.: Fine Structure Of The Primary Afferent Vestibulocochlear Terminals In The Frog. (1988) Acta Biol Hung, 39 (2-3), Pp. 267.

4. Matesz, C.: Fine-Structure Of The Primary Afferent Vestibulocochlear Terminals In The Frog. (1988) Acta Biol Hung, 39 (2-3), Pp. 267-277.

5. Szekely, G., Nagy, I., Wolf, E., Nagy, P.: Spatial-Distribution Of Presynaptic And Postsynaptic Sites Of Axon Terminals In The Dorsal Horn Of The Frog Spinal-Cord. (1989) Neuroscience, 29 (1), Pp. 175-188.

6. Antal, M., Kraftsik, R., Szekely, G., Vanderloos, H.: Synapses On Motoneuron Dendrites In The Brachial Section Of The Frog Spinal-Cord - A Computer-Aided Electron-Microscopic Study Of Cobalt-Filled Cells. (1992) J Neurocytol, 21 (1), Pp. 34-49.

7. Matesz, C.: Synaptic Relations Of The Trigeminal Motoneurons In A Frog (Rana-Esculenta). (1994) Eur J Morphol, 32 (2-4), Pp. 117-121.

8. Székely, G.: An Approach To The Complexity Of The Brain. (2001) Brain Res Bull, 55 (1), Pp. 11-28.

11. Székely, G., Matesz, K., Antal, M.: Different dendritic arborization patterns of motoneurons in

various places of the rat's lumbosacral spinal cord.

Acta Biol. Acad. Sci. Hung. 31 (1-3), 305-319, 1980.

IF:0.239

Idézetek összesen: 3

Független idézetek: 2 1. Kitzman, P.: Alteration in axial motoneuronal morphology in the spinal cord

injured spastic rat. (2005) Exp Neurol, 192 (1), pp. 100-108. 2. Vrieseling, E., Arber, S.: Target-induced transcriptional control of dendritic

patterning and connectivity in motor neurons by the ETS gene Pea3. (2006) Cell, 127 (7), pp. 1439-1452.

Page 8: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

Függő idézetek: 1 1. Nagy, I., Sik, A., Polgár, E., Petko, M., Antal, M.: Combination of cobalt

labelling with immunocytochemical reactions for electron microscopic investigations on frog spinal cord. (1994) Microsc Res Tech, 28 (1), pp. 60-66

12. Matesz, K., Székely, G.: The dorsomedial nuclear group of cranial nerve in the frog.

Acta Biol. Acad. Sci. Hung. 28 (4), 461-474, 1977.

IF:0.149

Idézetek összesen: 51

Független idézetek: 40 1. Lázár, G.: Long-term persistence, after eye-removal, of unmyelinated fibres in

the frog visual pathway. (1980) Brain Res, 199 (1), pp. 219-224. 2. Destombes, J., Durand, J., Gogan, P., Gueritaud, J., Horcholle-Bossavit, G.,

Tyc-Dumont, S.: Ultrastructural and electrophysiological properties of accessory abducens nucleus motoneurones: An intracellular horseradish peroxidase study in the cat. (1983) Neuroscience, 10 (4), pp. 1317-1332.

3. Lazar, G., Toth, P., Csank, G., Kicliter, E.: Morphology and location of tectal projection neurons in frogs: A study with hrp and cobalt‐filling. (1983) J Comp Neurol, 215 (1), pp. 108-120.

4. Schönenberger, N., Escher, G., Van Der Loos, H.: Axon number in oculomotor nerves in xenopus: Removal of one eye primordium affects both sides. (1983) Neurosci Lett, 41 (3), pp. 239-245.

5. Cochran, S., Dieringer, N., Precht, W.: Basic optokinetic-ocular reflex pathways in the frog. (1984) The Journal of neuroscience, 4 (1), pp. 43-57.

6. Knöpfel, T., Hess, B., Precht, W.: Responses of frog trochlear motoneurons to linear acceleration. (1984) Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 154 (2), pp. 233-240.

7. Donkelaar, H., Bangma, G., Boer-van Huizen, R.: The fasciculus longitudinalis medialis in the lizard varanus exanthematicus. (1985) Anat Embryol, 172 (2), pp. 205-215.

8. Roth, G., Wake, D.B.: The structure of the brainstem and cervical spinal cord in lungless salamanders (family plethodontidae) and its relation to feeding. (1985) J Comp Neurol, 241 (1), pp. 99-110.

9. Satou, M., Matsushima, T., Takeuchi, H., Ueda, K.: Tongue-muscle-controlling motoneurons in the japanese toad: Topography, morphology and neuronal pathways from the ‘snapping-evoking area’in the optic tectum. (1985) Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 157 (6), pp. 717-737.

10. Dieringer, N., Precht, W.: Functional organization of eye velocity and eye position signals in abducens motoneurons of the frog. (1986) Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 158 (2), pp. 179-194.

11. Naujoks‐Manteuffel, C., Manteuffel, G., Himstedt, W.: Localization of motoneurons innervating the extraocular muscles in salamandra salamandra L.(amphibia, urodela). (1986) J Comp Neurol, 254 (1), pp. 133-141.

12. Fritzsch, B., Sonntag, R.: The trochlear nerve of amphibians and its relation to proprioceptive fibers: A qualitative and quantitative HRP study. (1987) Anat Embryol, 177 (2), pp. 105-114.

13. Gonzalez, A., Munoz, M.: Distribution and morphology of abducens motoneurons innervating the lateral rectus and retractor bulbi muscles in the frog rana ridibunda. (1987) Neurosci Lett, 79 (1-2), pp. 29-34.

14. Oka, Y., Satou, M., Ueda, K.: An improved method for correlative light and electron microscopic examination of cobaltic-lysine-labelled neurons. (1987) Neurosci Lett, 73 (2), pp. 187-191.

15. Oka, Y., Takeuchi, H., Satou, M., Ueda, K.: Morphology and distribution of the preganglionic parasympathetic neurons of the facial, glossopharyngeal

Page 9: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

and vagus nerves in the japanese toad: A cobaltic lysine study. (1987) Brain Res, 400 (2), pp. 389-395.

16. Szabo, T., Lazar, G., Libouban, S., Toth, P., Ravaille, M.: Oculomotor system of the weakly electric fish gnathonemus petersii. (1987) J Comp Neurol, 264 (4), pp. 480-493.

17. Takei, K., Oka, Y., Satou, M., Ueda, K.: Distribution of motoneurons involved in the prey-catching behavior in the japanese toad, bufo japonicus. (1987) Brain Res, 410 (2), pp. 395-400.

18. Fritzsch, B., Sonntag, R.: The trochlear motoneurons of lampreys (lampetra fluviatilis): Location, morphology and numbers as revealed with horseradish peroxidase. (1988) Cell Tissue Res, 252 (2), pp. 223-229.

19. Roth, G., Nishikawa, K., Dicke, U., Wake, D.B.: Topography and cytoarchitecture of the motor nuclei in the brainstem of salamanders. (1988) J Comp Neurol, 278 (2), pp. 181-194.

20. Wake, D.B., Nishikawa, K.C., Dicke, U., Roth, G.: Organization of the motor nuclei in the cervical spinal cord of salamanders. (1988) J Comp Neurol, 278 (2), pp. 195-208.

21. Lazar, G., Bennani, S., Toth, P.: Neuronal pathways involved in the optokinetic head nystagmus of the frog. (1989) Acta Biol Hung, 40 (1-2), pp. 107-120.

22. Montgomery, N.M.: Somatomotor connectivity in the midbrain of< i> rana pipiens</i>(part 1 of 2). (1989) Brain Behav Evol, 34 (2), pp. 96-102.

23. Fritzsch, B., Sonntag, R.: Oculomotor (N III) motoneurons can innervate the superior oblique muscle of xenopus after larval trochlear (N IV) nerve surgery. (1990) Neurosci Lett, 114 (2), pp. 129-134.

24. Sokoloff, A.J.: Musculotopic organization of the hypoglossal nucleus in the grass frog, rana pipiens. (1991) J Comp Neurol, 308 (4), pp. 505-512.

25. Straka, H., Dieringer, N.: Internuclear neurons in the ocular motor system of frogs. (1991) J Comp Neurol, 312 (4), pp. 537-548.

26. Weerasuriya, A. In: Motor pattern generators in anuran prey capture. Visual structures and integrated functions; Springer-Verlag New York, Inc., (1991) pp. 255-70.

27. Straka, H., Dieringer, N.: Electrophysiological and pharmacological characterization of vestibular inputs to identified frog abducens motoneurons and internuclear neurons in vitro. (1993) Eur J Neurosci, 5 (3), pp. 251-260.

28. Puzdrowski, R., Leonard, R.: Vestibulo‐oculomotor connections in an elasmobranch fish, the atlantic stingray, dasyatis sabina. (1994) J Comp Neurol, 339 (4), pp. 587-597.

29. Muñoz, M., González, A.: The trochlear nucleus of the frog rana ridibunda: Localization, morphology and ultrastructure of identified motoneurons. (1995) Brain Res Bull, 36 (5), pp. 433-441.

30. Lázár, G., Pál, E.: Removal of cobalt-labeled neurons and nerve fibers by microglia from the frog's brain and spinal cord. (1996) Glia, 16 (2), pp. 101-107.

31. Schmidt, A., Wake, D.B., Wake, M.H.: Motor nuclei of nerves innervating the tongue and hypoglossal musculature in a caecilian (amphibia: Gymnophiona), as revealed by HRP transport. (1996) J Comp Neurol, 370 (3), pp. 342-349.

32. Marín, O., Smeets, W.J.A.J., González, A.: Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (rana perezi, xenopus laevis) and urodele (pleurodeles waltl) amphibians. (1997) J Comp Neurol, 382 (4), pp. 499-534.

33. González, M.J., Pombal, M.A., Rodicio, M.C., Anadón, R.: Internuclear neurons of the ocular motor system of the larval sea lamprey. (1998) J Comp Neurol, 401 (1), pp. 1-15.

34. Puzdrowski, R.L.: Innervation of the medial rectus muscle in the ratfish, hydrolagus colliei. (1998) J Comp Neurol, 400 (4), pp. 571-579.

35. El Hassni, M., Bennis, M., Rio, J.P., Repérant, J.: Localization of motoneurons innervating the extraocular muscles in the chameleon (chamaeleo chameleon). (2000) Anat Embryol, 201 (1), pp. 63-74.

Page 10: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

36. Hassni, M.E., Bennis, M., Rio, J., Reperant, J.: Localization of motoneurons innervating the extraocular muscles in the chameleon (chamaeleo chameleon). (2000) Brain Structure and Function, 201 (1), pp. 63-74.

37. Sánchez-Camacho, C., Marín, O., Ten Donkelaar, H.J., González, A.: Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin. (2001) J Comp Neurol, 434 (2), pp. 186-208.

38. Straka, H., Dieringer, N.: Basic organization principles of the VOR: Lessons from frogs. (2004) Prog Neurobiol, 73 (4), pp. 259-309.

39. Morona, R., González, A.: Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians. (2009) J Comp Neurol, 515 (5), pp. 503-537.

40. Neuhuber, W., Schrödl, F.: Autonomic control of the eye and the iris. (2011) Autonomic Neuroscience: Basic and Clinical, 165 (1), pp. 67-79.

Függő idézetek: 11 1. Matesz, C.: Central projection of the VIIIth cranial nerve in the frog. (1979)

Neuroscience, 4 (12), pp. 2061-2071. 2. Szekely, G.: Order and plasticity in the nervous system. (1979) Trends

Neurosci, 2 , pp. 245-248. 3. Székely, G., Matesz, C.: The accessory motor nuclei of the trigeminal, facial,

and abducens nerves in the rat. (1982) J Comp Neurol, 210 (3), pp. 258-264. 4. Székely, G., Matesz, C.: Trigeminal motoneurons with disparate dendritic

geometry innervate different muscle groups in the frog. (1987) Neurosci Lett, 77 (2), pp. 161-165.

5. Matesz, C.: Development of the oculomotor and trochlear nuclei in the xenopus toad. (1990) Neurosci Lett, 116 (1-2), pp. 1-6.

6. Matesz, C., Birinyi, A., Kothalawala, D., Szekely, G.: Investigation of the dendritic geometry of brain stem motoneurons with different functions using multivariant statistical techniques in the frog. (1995) Neuroscience, 65 (4), pp. 1129-1144.

7. Matesz, C., Székely, G.: Organization of the ambiguus nucleus in the frog (rana esculenta). (1996) J Comp Neurol, 371 (2), pp. 258-269.

8. Birinyi, A., Szekely, G., Csapó, K., Matesz, C.: Quantitative morphological analysis of the motoneurons innervating muscles involved in tongue movements of the frog rana esculenta. (2004) J Comp Neurol, 470 (4), pp. 409-421.

9. Bacskai, T., Veress, G., Halasi, G., Deak, A., Racz, E., Szekely, G., Matesz, C.: Dendrodendritic and dendrosomatic contacts between oculomotor and trochlear motoneurons of the frog, rana esculenta. (2008) Brain Res Bull, 75 (2-4), pp. 419-423.

10. Bácskai, T., Veress, G., Halasi, G., Matesz, C.: Crossing dendrites of the hypoglossal motoneurons: Possible morphological substrate of coordinated and synchronized tongue movements of the frog, rana esculenta. (2010) Brain Res, 1313 , pp. 89-96.

11. Szabó, Z., Bácskai, T., Deák, Á., Matesz, K., Veress, G., Sziklai, I.: Dendrodendritic connections between the cochlear efferent neurons in guinea pig. (2011) Neurosci Lett, 504 (3), pp. 195-198.

13. Matesz, K., Földes, I., Módis, L.: Structure of the osteocyte capsule in rats with hypervitaminosis-D

and rickets.

Acta Morphol. Acad. Sci. Hung. 23 (3), 217-225, 1975.

IF:0.344

Idézetek összesen: 1

Független idézetek: 1 1. Bone, C.I.C.: (1981) Chondroid Bone, Secondary Cartilage, And Metaplasia.

ISBN 0-8067-0261-3 Baltimore & ISBN 3-541-70261-3 Munich (Book)

Page 11: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

Idegen nyelvű ( külföldön megjelent ) közlemények (50)

14. Deák, Á., Bácskai, T., Gaál, B., Rácz, É., Matesz, K.: Effect of unilateral labyrinthectomy on the

molecular composition of perineuronal nets in the lateral vestibular nucleus of the rat.

Neurosci. Lett. [Epub ahead of Print], 2012.

IF:2.055 (2010)

15. Ghassemi-Najad, S., Kobezda, T., Rauch, T.A., Matesz, K., Glant, T.T., Mikecz, K.: Osteoarthritis-

like damage of cartilage in the temporomandibular joints in mice with autoimmune inflammatory

arthritis.

Osteoarthritis Cartilage. 19 (4), 458-465, 2011.

DOI: http://dx.doi.org/10.1016/j.joca.2011.01.012

IF:3.953 (2010)

16. Szabó, Z., Bácskai, T., Deák, Á., Matesz, K., Veress, G., Sziklai, I.: Dendrodendritic connections

between the cochlear efferent neurons in guinea pig.

Neurosci. Lett. 504 (3), 195-198, 2011.

DOI: http://dx.doi.org/10.1016/j.neulet.2011.09.012

IF:2.055 (2010)

17. White, J.P.M., Ko, C.W., Fidalgo, A.R., Cibelli, M., Paule, C.C., Anderson, P.J., Cruz, C., Gomba, S.,

Matesz, K., Veress, G., Avelino, A., Nagy, I.: Severe burn injury induces a characteristic

activation of extracellular signal-regulated kinase 1/2 in spinal dorsal horn neurons.

Eur. J. Pain. 15 (7), 683-690, 2011.

DOI: http://dx.doi.org/10.1016/j.ejpain.2010.12.006

IF:3.819 (2010)

18. Bácskai, T., Veress, G., Halasi, G., Matesz, K.: Crossing dendrites of the hypoglossal motoneurons:

Possible morphological substrate of coordinated and synchronized tongue movements of the

frog, Rana esculenta.

Brain Res. 1313, 89-96, 2010.

DOI: http://dx.doi.org/10.1016/j.brainres.2009.11.071

IF:2.623

Idézetek összesen: 2

Független idézetek: 1 1. Lanciego, J.L., Wouterlood, F.G.: A half century of experimental

neuroanatomical tracing (2011) Journal of Chemical Neuroanatomy, 42 (3), pp. 157-183.

Függő idézetek: 1 1. Szabó, Z., Bácskai, T., Deák, Á., Matesz, K., Veress, G., Sziklai, I.:

Dendrodendritic connections between the cochlear efferent neurons in guinea pig (2011) Neuroscience Letters, 504 (3), pp. 195-198.

Page 12: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

19. Kelentey, B., Deák, Á., Zelles, T., Matesz, K., Földes, I., Veress, G., Bácskai, T.: Modification of

innervation pattern by fluoroquinolone treatment in the rat salivary glands.

Anat. Rec. 293 (2), 271-279, 2010.

DOI: http://dx.doi.org/10.1002/ar.21037

IF:1.4

20. Deák, Á., Bácskai, T., Veress, G., Matesz, K.: Vestibular afferents to the motoneurons of

glossopharyngeal and vagus nerves in the frog, Rana esculenta.

Brain Res. 1286, 60-65, 2009.

DOI: http://dx.doi.org/10.1016/j.brainres.2009.06.048

IF:2.463

Idézetek összesen: 2

Független idézetek: 1 1. Терзян, Д.: Нейронные Механизмы Вестибуло-Мозжечковой

Проекционной Системы Лягушки.(2011) Биолог. Журн. Армении, 2 (63), Pp. 43-47

Függő idézetek: 1 1. Szabó, Z., Bácskai, T., Deák, Á., Matesz, K., Veress, G., Sziklai, I.:

Dendrodendritic connections between the cochlear efferent neurons in guinea pig. (2011) Neurosci Lett, 504 (3), pp. 195-198 .

21. Bácskai, T., Veress, G., Halasi, G., Deák, Á., Rácz, É., Székely, G., Matesz, K.: Dendrodendritic and

dendrosomatic contacts between oculomotor and trochlear motoneurons of the frog, Rana

esculenta.

Brain Res. Bull. 75 (2-4), 419-423, 2008.

DOI: http://dx.doi.org/10.1016/j.brainresbull.2007.10.050

IF:2.281

Idézetek összesen: 6

Független idézetek: 3 1. Campbell, R.E., Gaidamaka, G., Han, S.-., Herbison, A.E.: Dendro-dendritic

bundling and shared synapses between gonadotropin- releasing hormone neurons. (2009) Proc Natl Acad Sci U S A, 106 (26), pp. 10835-10840.

2. Campbell, R.E., Suter, K.J.: Redefining the gonadotrophin-releasing hormone neurone dendrite. (2010) J Neuroendocrinol, 22 (7), pp. 650-658.

3. Gottesman-Davis, A., Peusner, K.D.: Identification of vestibuloocular projection neurons in the developing chicken medial vestibular nucleus. (2010) J Neurosci Res, 88 (2), pp. 290-303.

Függő idézetek: 3 1. Matesz C, Bacskai T, Deak A, Racz E, Veress G, Szekely G. Using of

confocal laser scanning microscope in the examination of neural network underlying the gaze and posture control. Kimura M, editor. ; 2009.

2. Bácskai, T., Veress, G., Halasi, G., Matesz, C.: Crossing dendrites of the hypoglossal motoneurons: Possible morphological substrate of coordinated and synchronized tongue movements of the frog, rana esculenta. (2010) Brain Res, 1313 , pp. 89-96.

3. Szabó, Z., Bácskai, T., Deák, Á., Matesz, K., Veress, G., Sziklai, I.: Dendrodendritic connections between the cochlear efferent neurons in guinea pig. (2011) Neurosci Lett, 504 (3), pp. 195-198.

Page 13: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

22. Matesz, K., Kovalecz, G., Veress, G., Deák, Á., Rácz, É., Bácskai, T.: Vestibulotrigeminal pathways

in the frog, Rana esculenta.

Brain Res. Bull. 75 (2-4), 371-374, 2008.

DOI: http://dx.doi.org/10.1016/j.brainresbull.2007.10.049

IF:2.281

Idézetek összesen: 3

Független idézetek: 1 1. Терзян, Д.: Нейронные Механизмы Вестибуло-Мозжечковой

Проекционной Системы Лягушки. (2011) Биолог. Журн. Армении, 2 (63), Pp. 43-47

Függő idézetek: 2 1. Matesz C, Bacskai T, Deak A, Racz E, Veress G, Szekely G. Using of

confocal laser scanning microscope in the examination of neural network underlying the gaze and posture control. Kimura M, editor. ; 2009.

2. Szabó, Z., Bácskai, T., Deák, Á., Matesz, K., Veress, G., Sziklai, I.: Dendrodendritic connections between the cochlear efferent neurons in guinea pig. (2011) Neurosci Lett, 504 (3), pp. 195-198.

23. Mészár, Z., Felszeghy, S., Veress, G., Matesz, K., Székely, G., Módis, L.: Hyaluronan accumulates

around differentiating neurons in spinal cord of chicken embryos.

Brain Res. Bull. 75 (2-4), 414-418, 2008.

DOI: http://dx.doi.org/10.1016/j.brainresbull.2007.10.052

IF:2.281

Idézetek összesen: 6

Független idézetek: 6 1. Krishnan, L.: Design of a biomimetic niche for adult progenitor cell selection

and differentiation. Adult Stem Cell Standardization, , pp. 149. 2. Hartwell, R., Lai, A., Ghahary, A.: Modulation of extracellular matrix through

keratinocyte-fbroblast crosstalk. (2009) Expert Review of Dermatology, 4 (6), pp. 623-635.

3. Eng, D., Caplan, M., Preul, M., Panitch, A.: Hyaluronan scaffolds: A balance between backbone functionalization and bioactivity. (2010) Acta Biomaterialia, 6 (7), pp. 2407-2414.

4. Jose, A., Krishnan, L.K.: Effect of matrix composition on differentiation of nestin-positive neural progenitors from circulation into neurons. (2010) Journal of neural engineering, 7 , pp. 036009.

5. Seidlits, S.K., Khaing, Z.Z., Petersen, R.R., Nickels, J.D., Vanscoy, J.E., Shear, J.B., Schmidt, C.E.: The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation. (2010) Biomaterials, 31 (14), pp. 3930-3940.

6. Astachov, L., Nevo, Z., Aviv, M., Vago, R.: Crystalline calcium carbonate and hydrogels as microenvironment for stem cells. (2011) Frontiers in Bioscience, 16 (2), pp. 458-471.

Page 14: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

24. Rácz, É., Bácskai, T., Szabó, G., Székely, G., Matesz, K.: Organization of last-order premotor

interneurons related to the protraction of tongue in the frog, Rana esculenta.

Brain Res. 1187, 111-115, 2008.

DOI: http://dx.doi.org/10.1016/j.brainres.2007.10.067

IF:2.494

Idézetek összesen: 3

Független idézetek: 2 1. Daulatzai, M.A.: Early stages of pathogenesis in memory impairment during

normal senescence and alzheimer's disease (2010) Journal of Alzheimer's Disease, 20 (2), pp. 355-367.

2. Mandal, R., Anderson, C.W.: Anatomical organization of brainstem circuits mediating feeding motor programs in the marine toad, Bufo marinus (2009) Brain Research, 1298, pp. 99-110.

Függő idézetek: 1 1. Deák, Á., Bácskai, T., Veress, G., Matesz, C.: Vestibular afferents to the

motoneurons of glossopharyngeal and vagus nerves in the frog, Rana esculenta (2009) Brain Research, 1286, pp. 60-65.

25. Baiou, D., Santha, P., Avelino, A., Charrua, A., Bácskai, T., Matesz, K., Cruz, F., Nagy, I.:

Neurochemical characterisation of insulin receptor-expressing primary sensory neurons in wild

type and vanilloid type 1 transient receptor potential receptor knock-out mice.

J. Comp. Neurol. 503 (2), 334-347, 2007.

DOI: http://dx.doi.org/10.1002/cne.21389

IF:3.915

Idézetek összesen: 19

Független idézetek: 14 1. Buniel, M., Glazebrook, P.A., Ramirez-Navarro, A., Kunze, D.L.: Distribution

of voltage-gated potassium and hyperpolarization-activated channels in sensory afferent fibers in the rat carotid body. (2008) J Comp Neurol, 510 (4), pp. 367-377.

2. Amadesi, S., Grant, A.D., Cottrell, G.S., Vaksman, N., Poole, D.P., Rozengurt, E., Bunnett, N.W.: Protein kinase D isoforms are expressed in rat and mouse primary sensory neurons and are activated by agonists of protease-activated receptor 2. (2009) J Comp Neurol, 516 (2), pp. 141-156.

3. Ishida, Y., Ugawa, S., Ueda, T., Yamada, T., Shibata, Y., Hondoh, A., Inoue, K., Yu, Y., Shimada, S.: P2X2- and P2X3-positive fibers in fungiform papillae originate from the chorda tympani but not the trigeminal nerve in rats and mice. (2009) J Comp Neurol, 514 (2), pp. 131-144.

4. Kozlova, E.N., Jansson, L.: Differentiation and migration of neural crest stem cells are stimulated by pancreatic islets. (2009) Neuroreport, 20 (9), pp. 833-838.

5. Avelino, A., Cruz, F.: TRPV1 in visceral pain and other visceral disorders. (2010) Vanilloid Receptor TRPV1 in Drug Discovery, , pp. 206-238.

6. Fujita, M., Andoh, T., Sasaki, A., Saiki, I., Kuraishi, Y.: Involvement of peripheral adenosine 5′-triphosphate and P2X purinoceptor in pain-related behavior produced by orthotopic melanoma inoculation in mice. (2010) Eur J Neurosci, 31 (9), pp. 1629-1636.

7. Pereira U, Misery L. Experimental models of itch. Misery LS,S., editor. ; (2010) Pruritus Part 1, pp. 51-59, DOI: 10.1007/978-1-84882-322-8_9

8. Spicarova, D., Palecek, J.: Modulation of AMPA excitatory postsynaptic currents in the spinal cord dorsal horn neurons by insulin. (2010) Neuroscience, 166 (1), pp. 305-311.

Page 15: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

9. Vulchanova, L., Schuster, D.J., Belur, L.R., Riedl, M.S., Podetz-Pedersen, K.M., Kitto, K.F., Wilcox, G.L., McIvor, R.S., Fairbanks, C.A.: Research differential adeno-associated virus mediated gene transfer to sensory neurons following intrathecal delivery by direct lumbar puncture. (2010) .

10. Vulchanova, L., Schuster, D.J., Belur, L.R., Riedl, M.S., Podetz-Pedersen, K.M., Kitto, K.F., Wilcox, G.L., McIvor, R.S., Fairbanks, C.A.: Differential adeno-associated virus mediated gene transfer to sensory neurons following intrathecal delivery by direct lumbar puncture. (2010) Molecular Pain, 6 .

11. CW, G., JK, M., JM, R., PC, G., DE, W.: Insulin receptor substrate 2 expression and involvement in neuronal insulin resistance in diabetic neuropathy. (2011) Experimental diabetes research, 2011 .

12. Grote, C.W., Morris, J.K., Ryals, J.M., Geiger, P.C., Wright, D.E.: Insulin receptor substrate 2 expression and involvement in neuronal insulin resistance in diabetic neuropathy. (2011) Experimental Diabetes Research, 2011 .

13. Hartmann, P.: Neutrophil leukocyte-mediated inflammatory reactions in the periosteum and synovial membrane. (2011) .

14. Brandao, K.E., Dell'Acqua, M.L., Levinson, S.R.: A-kinase anchoring protein 150 expression in a specific subset of TRPV1- and CaV1.2-positive nociceptive rat dorsal root ganglion neurons. (2012) J Comp Neurol, 520 (1), pp. 81-99.

Függő idézetek: 5 1. Baiou, D., Santha, P., Avelino, A., Charrua, A., Bacskai, T., Matesz, K., Cruz,

F., Nagy, I.: Neurochemical characterization of insulin receptor-expressing primary sensory neurons in wild-type and vanilloid type 1 transient receptor potential receptor knockout mice (vol 503, pg 334, 2007). (2007) J Comp Neurol, 504 (5), pp. 599-599.

2. Nagy, I., White, J.P.M., Paule, C.C., Maze, M., Urban, L.: Functional molecular biology of the TRPV 1 ion channel. (2008) Cannabinoids and the Brain, , pp. 101-130.

3. Charrua, A., Cruz, C.D., Narayanan, S., Gharat, L., Gullapalli, S., Cruz, F., Avelino, A.: GRC-6211, a new oral specific TRPV1 antagonist, decreases bladder overactivity and noxious bladder input in cystitis animal models. (2009) J Urol, 181 (1), pp. 379-386.

4. Hartmann, P., Varga, R., Zobolyák, Z., Héger, J., Csősz, B., Németh, I., Rázga, Z., Vízler, C., Garab, D., Sántha, P.: Anti-inflammatory effects of limb ischaemic preconditioning are mediated by sensory nerve activation in rats. (2010) Naunyn Schmiedebergs Arch Pharmacol, , pp. 1-11.

5. Hartmann, P., Varga, R., Zobolyák, Z., Héger, J., Csosz, B., Németh, I., Rázga, Z., Vízler, C., Garab, D., Sántha, P., Jancsó, G., Boros, M., Szabó, A.: Anti-inflammatory effects of limb ischaemic preconditioning are mediated by sensory nerve activation in rats. (2011) Naunyn Schmiedebergs Arch Pharmacol, 383 (2), pp. 179-189.

26. Halasi, G., Wolf, E., Bácskai, T., Székely, G., Módis, L., M. Szigeti, Z., Mészár, Z., Felszeghy, S.,

Matesz, K.: The effect of vestibular nerve section on the expression of the hyaluronan in the

frog, Rana esculenta.

Brain Struct. Funct. 212 (3-4), 321-334, 2007.

DOI: http://dx.doi.org/10.1007/s00429-007-0162-0

IF:1.423

Page 16: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

27. Takács, L., Losonczy, G., Matesz, K., Balogh, I., Sohajda, Z., Tóth, K., Fazakas, F., Vereb jr., G.,

Berta, A.: TGFBI (BIGH3) gene mutations in Hungary-report of the novel F547S mutation

associated with polymorphic corneal amyloidosis.

Mol. Vis. 13, 1976-1983, 2007.

IF:2.329

Idézetek összesen: 7

Független idézetek: 7 1. Weiss, J.S., Møller, H.U., Lisch, W., Kinoshita, S., Aldave, A.J., Belin, M.W.,

Kivelä, T., Busin, M., Munier, F.L., Seitz, B., Sutphin, J., Bredrup, C., Mannis, M.J., Rapuano, C.J., Van Rij, G., Kim, E.K., Klintworth, G.K.: The IC3D classification of the corneal dystrophies. (2008) Cornea, 27 (SUPPL. 2), pp. S1-S42+S43-S83.

2. Yamada, N., Nishida, T., Chikama, T.-., Hinoda, Y.: Granular corneal dystrophy. (2008) Japanese Journal of Clinical Ophthalmology, 62 (6), pp. 834-837.

3. Pampukha, V.M., Kravchenko, S.A., Tereshchenko, F.A., Livshits, L.A., Drozhyna, G.I.: Novel L558P mutation of the TGFBI gene found in ukrainian families with atypical corneal dystrophy. (2009) Ophthalmologica, 223 (3), pp. 207-214.

4. Han, Y., Sim, A.J., Vora, S.C., Huang, A.J.W.: Unique TGFBI protein in lattice corneal dystrophy. (2011) Invest Ophthalmol Vis Sci, 52 (11), pp. 8401-8406.

5. Paliwal, P., Sharma, A.: Relevance of molecular diagnosis of corneal dystrophies. (2011) International Journal of Human Genetics, 11 (1), pp. 1-14.

6. Weiss, J., Møller, H., Lisch, W., Kinoshita, S., Aldave, A., Belin, M., Kivelä, T., Busin, M., Munier, F., Seitz, B.: IC 3 D-klassifikation von hornhautdystrophien [1] the IC3D classification of the corneal dystrophies. (2011) Klin Monatsbl Augenheilkd, 228 , pp. S1-S39.

7. Weiss, J.S., Moller, H.U., Lisch, W., Kinoshita, S., Aldave, A.J., Belin, M.W., Kivelae, T., Busin, M., Munier, F.L., Seitz, B., Sutphin, J., Bredrup, C., Mannis, M.J., Rapuano, C., Van Rij, G., Kim, E.K., Klintworth, G.K.: The IC3D classification of the corneal dystrophies. (2011) Klin Monatsbl Augenheilkd, 228 , pp. S1-S39.

28. Máthéné Szigeti, Z., Matesz, K., Székely, G., Felszeghy, S., Bácskai, T., Halasi, G., Mészár, Z.,

Módis, L.: Distribution of hyaluronan in the central nervous system of the frog.

J. Comp. Neurol. 496 (6), 819-31, 2006.

DOI: http://dx.doi.org/10.1002/cne.20960

IF:3.831

Idézetek összesen: 8

Független idézetek: 6 1. Costa Riu, C.: Study of extracellular matrix and water channels in bovine

spongiform encephalopathy. (2007) (Dissertation). 2. Gáti, G., Morawski, M., Lendvai, D., Jäger, C., Négyessy, L., Arendt, T., Alpár,

A.: Distribution and classification of aggrecan-based extracellular matrix in the thalamus of the rat. (2010) J Neurosci Res, 88 (15), pp. 3257-3266.

3. Gáti, G., Morawski, M., Lendvai, D., Matthews, R.T., Jäger, C., Zachar, G., Arendt, T., Alpár, A.: Chondroitin sulphate proteoglycan-based perineuronal net establishment is largely activity-independent in chick visual system. (2010) J Chem Neuroanat, 40 (3), pp. 243-247.

4. Morawski, M., Brückner, G., Jäger, C., Seeger, G., Künzle, H., Arendt, T.: Aggrecan-based extracellular matrix shows unique cortical features and conserved subcortical principles of mammalian brain organization in the

Page 17: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

madagascan lesser hedgehog tenrec (echinops telfairi martin, 1838). (2010) Neuroscience, 165 (3), pp. 831-849.

5. Lendvai, D., Morawski, M., Brückner, G., Négyessy, L., Baksa, G., Glasz, T., Patonay, L., Matthews, R., Arendt, T., Alpár, A.: Perisynaptic aggrecan‐based extracellular matrix coats in the human lateral geniculate body devoid of perineuronal nets. (2011) J Neurosci Res, .

6. Lendvai, D., Morawski, M., Brückner, G., Négyessy, L., Baksa, G., Glasz, T., Patonay, L., Matthews, R.T., Arendt, T., Alpár, A.: Perisynaptic aggrecan-based extracellular matrix coats in the human lateral geniculate body devoid of perineuronal nets. (2012) J Neurosci Res, 90 (2), pp. 376-387.

Függő idézetek: 2 1. Halasi, G., Wolf, E., Bácskai, T., Székely, G., Módis, L., Szigeti, Z.M., Mészár,

Z., Felszeghy, S., Matesz, C.: The effect of vestibular nerve section on the expression of the hyaluronan in the frog, rana esculenta. (2007) Brain Structure and Function, 212 (3-4), pp. 321-334.

2. Mészár, Z., Felszeghy, S., Veress, G., Matesz, K., Székely, G., Módis, L.: Hyaluronan accumulates around differentiating neurons in spinal cord of chicken embryos. (2008) Brain Res Bull, 75 (2-4), pp. 414-418.

29. Rácz, É., Bácskai, T., Halasi, G., Kovács, E., Matesz, K.: Organization of Dye-Coupled Cerebellar

Granule Cells Labeled from Afferent Vestibular and Dorsal Root Fibers in the Frog Rana

Esculenta.

J. Comp. Neurol. 496 (3), 382-394, 2006.

DOI: http://dx.doi.org/10.1002/cne.20922

IF:3.831

Idézetek összesen: 3

Független idézetek: 2 1. Khorevin, V.I.: Cerebellar Projections of the Lagena (the Third Inner Ear

Otolith Endorgan) in the Pigeon (2010) Neurophysiology, 42 (1), pp. 25-30. 2. Khorevin, V.I.: The lagena (the third otolith endorgan in vertebrates) (2008)

Neurophysiology, 40 (2), pp. 142-159.

Függő idézetek: 1 1. Bácskai, T., Veress, G., Halasi, G., Matesz, C.: Crossing dendrites of the

hypoglossal motoneurons: Possible morphological substrate of coordinated and synchronized tongue movements of the frog, Rana esculenta (2010) Brain Research, 1313, pp. 89-96.

30. Halasi, G., Bácskai, T., Matesz, K.: Connections of the superior vestibular nucleus with the

oculomotor and red nuclei in the rat: An electron microscopic study.

Brain Res. Bull. 66 (4-6), 532-535, 2005.

DOI: http://dx.doi.org/10.1016/j.brainresbull.2005.02.013

IF:2.481

Idézetek összesen: 1

Független idézetek: 1 1. Yasnetsov, V.V., Pravdivtsev, V.A., Motin, V.G., Karsanova, S.K., Ivanov,

Y.V.: Effects of different neuromediators and regulatory peptides on the impulse activity of neurons in the superior vestibular nucleus. (2011) Aviakosmicheskaya i Ekologicheskaya Meditsina, 45 (3), pp. 52-54.

Page 18: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

31. Matesz, K., Módis, L., Halasi, G., Máthéné Szigeti, Z., Felszeghy, S., Bácskai, T., Székely, G.:

Extracellular matrix molecules and their possible roles in the regeneration offrog nervous

system.

Brain Res. Bull. 66 (4-6), 526-531, 2005.

DOI: http://dx.doi.org/10.1016/j.brainresbull.2005.06.014

IF:2.481

Idézetek összesen: 11

Független idézetek: 9 1. Mello, M.L.S., Michelacci, Y.M., Stockert, J.C., de Campos Vidal, B.: Optical

anisotropy of alcian blue-stained acid glycosaminoglycans. (2007) Acta Histochem, 109 (1), pp. 78-85.

2. Dula, A.N.: (2008) Micro-Anatomical Characterization Of Central White Matter Using Magnetic Resonance Imaging, (Dissertation).

3. Pierucci, A., De Duek, E.A.R., De Oliveira, A.L.R.: Peripheral nerve regeneration through biodegradable conduits prepared using solvent evaporation. (2008) Tissue Engineering - Part A., 14 (5), pp. 595-606.

4. Tucker, B.A., Mearow, K.M.: Peripheral sensory axon growth: From receptor binding to cellular signaling. (2008) Canadian Journal of Neurological Sciences, 35 (5), pp. 551-566.

5. Wu, Y., Wang, X.-., Mo, X.-., Sun, H.-., Li, J.-., Zeng, y., Lin, T., Yuan, J., Xi, Z.-., Zhu, X., Zheng, J.-.: Expression of laminin β1 in hippocampi of patients with intractable epilepsy. (2008) Neurosci Lett, 443 (3), pp. 160-164.

6. Piterina, A.V., Cloonan, A.J., Meaney, C.L., Davis, L.M., Callanan, A., Walsh, M.T., McGloughlin, T.M.: ECM-based materials in cardiovascular applications: Inherent healing potential and augmentation of native regenerative processes. (2009) International Journal of Molecular Sciences, 10 (10), pp. 4375-4417.

7. Qian, L.-., Zhang, Z.-., Gong, A.-., Qin, R.-., Sun, X.-., Cao, X.-., Liu, J.-., Jiang, P., Chen, Y.-.: A novel biosynthetic hybrid scaffold seeded with olfactory ensheathing cells for treatment of spinal cord injuries. (2009) Chin Med J, 122 (17), pp. 2032-2040.

8. Wu, Y., Feng, Y., Pang, J.-., Tang, M., Liu, X.-., Li, J.-., Wang, X.-.: Study on expression of laminin in patients with intractable epilepsy. (2009) Int J Neurosci, 119 (12), pp. 2219-2227.

9. Wu, Y., Wang, X.-., Mo, X.-., Li, J.-., Yuan, J., Zheng, J.-., Feng, Y., Tang, M.: Expression of laminin β1 and integrin α2 in the anterior temporal neocortex tissue of patients with intractable epilepsy. (2011) Int J Neurosci, 121 (6), pp. 323-328.

Függő idézetek: 2 1. Szigeti, Z.M., Matesz, C., Szekely, G., Felszeghy, S., Bácskai, T., Halasi, G.,

Mészár, Z., Módis, L.: Distribution of hyaluronan in the central nervous system of the frog. (2006) J Comp Neurol, 496 (6), pp. 819-831.

2. Halasi, G., Wolf, E., Bácskai, T., Székely, G., Módis, L., Szigeti, Z.M., Mészár, Z., Felszeghy, S., Matesz, C.: The effect of vestibular nerve section on the expression of the hyaluronan in the frog, rana esculenta. (2007) Brain Structure and Function, 212 (3-4), pp. 321-334.

Page 19: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

32. Tóth, A., Szűcs, A., Harasztosi, C., Matesz, K., Pucsok, K., Mikó, I., Sziklai, I.: Intrinsic laryngeal

muscle reinnervation with nerve-muscle pedicle.

Otolaryngol. Head Neck Surg. 132 (5), 701-706, 2005.

DOI: http://dx.doi.org/10.1016/j.otohns.2005.01.045

IF:1.218

Idézetek összesen: 9

Független idézetek: 9 1. Aynehchi, B.B., McCoul, E.D., Sundaram, K.: Systematic review of laryngeal

reinnervation techniques. (2010) Otolaryngology - Head and Neck Surgery, 143 (6), pp. 749-759.

2. Engin, O., Ipekci, F., Yildirim, M., Kulan, A., Yagci, A., Dalgic, A., Calik, B.: Phrenic-recurrent nerve anastomosis in animal models with unilateral cutting of the recurrent nerve. (2010) Indian J Surg, 72 (5), pp. 362-366.

3. Lorenz, R.R., Esclamado, R.M., Teker, A.M., Strome, M., Scharpf, J., Hicks, D., Milstein, C., Lee, W.T.: Ansa cervicalis-to-recurrent laryngeal nerve anastomosis for unilateral vocal fold paralysis: Experience of a single institution. (2008) Annals of Otology, Rhinology and Laryngology, 117 (1), pp. 40-45.

4. Millard, R.P., Tobias, K.M.: Laryngeal paralysis in dogs. (2009) Compendium: Continuing Education For Veterinarians, 31 (5), pp. 212-219.

5. Mu, L., Sanders, I.: Sihler's whole mount nerve staining technique: A review. (2010) Biotechnic and Histochemistry, 85 (1), pp. 19-42.

6. Prades, J.-., Faye, M.B., Timoshenko, A.P., Dubois, M.-., Dupuis-Cuny, A., Martin, C.: Microsurgical anatomy of intralaryngeal distribution of the inferior laryngeal nerve. (2006) Surgical and Radiologic Anatomy, 28 (3), pp. 271-276.

7. Psáder, R., Mihálffy, E., Németh, T.: Endoscopic diagnosis and surgical resolution of one-sided laryngeal paralysis and secondary laryngeal collapse in dog. case report. (2006) Magy Allatorv Lapja, 128 (8), pp. 451-458.

8. Smehák, G., Rovó, L., Tiszlavicz, L., Jóri, J.: Perineurioma originating from the recurrent laryngeal nerve, and the phonochirurgical treatment of the developed vocal fold palsy. (2008) European Archives of Oto-Rhino-Laryngology, 265 (2), pp. 237-241.

9. 慧, 崔永 : 声 麻痹的手 治 . (2006) 床耳鼻咽喉科 志, Clinical Journal of Otorhinolaryngology, 20 (017), pp. 813-816. [Chen Hui, CUI: surgical treatment of unilateral vocal cord paralysis.]

33. Birinyi, A., Székely, G., Csapó, K., Matesz, K.: Quantitative morphological analysis of the

motoneurons innervating muscles involved in tongue movements of the frogRana esculenta.

J. Comp. Neurol. 470 (4), 409-421, 2004.

DOI: http://dx.doi.org/10.1002/cne.20006

IF:3.4

Idézetek összesen: 4

Független idézetek: 1 1. Straka, H., Baker, R., Gilland, E.: Preservation of segmental hindbrain

organization in adult frogs. (2006) J Comp Neurol, 494 (2), pp. 228-245.

Függő idézetek: 3 1. Bácskai, T., Veress, G., Halasi, G., Matesz, C.: Crossing dendrites of the

hypoglossal motoneurons: Possible morphological substrate of coordinated and synchronized tongue movements of the frog, rana esculenta. (2010) Brain Res, 1313 , pp. 89-96.

Page 20: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

2. Rácz, É., Bácskai, T., Szabo, G., Székely, G., Matesz, C.: Organization of last-order premotor interneurons related to the protraction of tongue in the frog, rana esculenta. (2008) Brain Res, 1187 (1), pp. 111-115.

3. Szabó, Z., Bácskai, T., Deák, Á., Matesz, K., Veress, G., Sziklai, I.: Dendrodendritic connections between the cochlear efferent neurons in guinea pig. (2011) Neurosci Lett, 504 (3), pp. 195-198.

34. Gáspár, L., Dezső, B., Csernátony, Z., Szabó, J., Szekanecz, Z., Szepesi, K., Matesz, K.: Capsular

neuronal elements and their relation to pain reduction and functional improvement following total

hip replacement.

Int. Orthop. 28 (3), 142-145, 2004.

DOI: http://dx.doi.org/10.1007/s00264-004-0539-0

IF:0.584

Idézetek összesen: 1

Független idézetek: 1 1. Goebel, S., Steinert, A.F., Schillinger, J., Eulert, J., Broscheit, J., Rudert, M.,

Nöth, U.: Reduced postoperative pain in total hip arthroplasty after minimal-invasive anterior approach. (2011) Int Orthop, , pp. 1-8. [DOI: 10.1007/s00264-011-1280-0]

35. Sathianathan, V., Avelino, A., Charrua, A., Santha, P., Matesz, K., Cruz, F., Nagy, I.: Insulin induces

cobalt uptake in a subpopulation of rat cultured primary sensory neurons.

Eur. J. Neurosci. 18 (9), 2477-2486, 2003.

DOI: http://dx.doi.org/10.1046/j.1460-9568.2003.03004.x

IF:3.872

Idézetek összesen: 21

Független idézetek: 13 1. Bishnoi, M., Premkumar, L.S.: Possible consequences of blocking transient

receptor potential vanilloid 1. (2011) Curr Pharm Biotechnol, 12 (1), pp. 102-114.

2. Gram, D.X., Hansen, A.J.: Inhibition of the activity of the capsaicin receptor in the treatment of obesity or obesity-related diseases and disorders, . (2011) [United States Patent No.: 7879866 B2]

3. Mohammadi-Farani, A., Sahebgharani, M., Sepehrizadeh, Z., Jaberi, E., Ghazi-Khansari, M.: Diabetic thermal hyperalgesia: Role of TRPV1 and CB1 receptors of periaqueductal gray. (2010) Brain Res, 1328 , pp. 49-56.

4. Needham, K., Bron, R., Hunne, B., Nguyen, T.V., Turner, K., Nash, M., Furness, J.B.: Identification of subunits of voltage-gated calcium channels and actions of pregabalin on intrinsic primary afferent neurons in the guinea-pig ileum. (2010) Neurogastroenterology and Motility, 22 (10), pp. e301-e308.

5. Pecze, L., Szabó, K., Széll, M., Jósvay, K., Kaszás, K., Kúsz, E., Letoha, T., Prorok, J., Koncz, I., Tóth, A., Kemény, L., Vizler, C., Oláh, Z.: Human keratinocytes are vanilloid resistant. (2008) PLoS ONE, 3 (10).

6. Prasad, B.C.N., Shrivastava, R., Ravishankar, G.A.: Capsaicin: A promising multifaceted drug from capsicum spp. (2005) Evidence-Based Integrative Medicine, 2 (3), pp. 147-166.

7. Premkumar, L.S., Bishnoi, M.: Disease-related changes in TRPV1 expression and its implications for drug development. (2011) Current Topics in Medicinal Chemistry, 11 (17), pp. 2192-2209.

8. Razavi, R., Chan, Y., Afifiyan, F.N., Liu, X.J., Wan, X., Yantha, J., Tsui, H., Tang, L., Tsai, S., Santamaria, P., Driver, J.P., Serreze, D., Salter, M.W.,

Page 21: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

Dosch, H.-.: TRPV1+ sensory neurons control β cell stress and islet inflammation in autoimmune diabetes. (2006) Cell, 127 (6), pp. 1123-1135.

9. Soneji, N.D., Paule, C.C., Mlynarczyk, M., Nagy, I.: Effects of cannabinoids on capsaicin receptor activity following exposure of primary sensory neurons to inflammatory mediators. (2010) Life Sci, 87 (5-6), pp. 162-168.

10. Srinivasan, R., Wolfe, D., Goss, J., Watkins, S., De Groat, W.C., Sculptoreanu, A., Glorioso, J.C.: Protein kinase C epsilon contributes to basal and sensitizing responses of TRPV1 to capsaicin in rat dorsal root ganglion neurons. (2008) Eur J Neurosci, 28 (7), pp. 1241-1254.

11. Tsui, H., Dorfman, R., Salter, M.W., Dosch, H.: The role of TRPV1 in diabetes. (2010) Vanilloid Receptor TRPV1 in Drug Discovery, , pp. 423-448.

12. Tsui, H., Razavi, R., Chan, Y., Yantha, J., Dosch, H.-.: 'Sensing' autoimmunity in type 1 diabetes. (2007) Trends Mol Med, 13 (10), pp. 405-413.

13. Van Buren, J.J., Bhat, S., Rotello, R., Pauza, M.E., Premkumar, L.S.: Sensitization and translocation of TRPVI by insulin and IGF-I. (2005) Molecular Pain, 1 . [doi:10.1186/1744-8069-1-17]

Függő idézetek: 8 1. Baiou, D., Santha, P., Avelino, A., Charrua, A., Bacskai, T., Matesz, K., Cruz,

F., Nagy, I.: Neurochemical characterization of insulin receptor-expressing primary sensory neurons in wild-type and vanilloid type 1 transient receptor potential receptor knockout mice. (2007) J Comp Neurol, 503 (2), pp. 334-347.

2. Lever, I.J., Robinson, M., Cibelli, M., Paule, C., Santha, P., Yee, L., Hunt, S.P., Cravatt, B.F., Elphick, M.R., Nagy, I., Rice, A.S.C.: Localization of the endocannabinoid-degrading enzyme fatty acid amide hydrolase in rat dorsal root ganglion cells and its regulation after peripheral nerve injury. (2009) Journal of Neuroscience, 29 (12), pp. 3766-3780.

3. Mahmud, A., Santha, P., Paule, C.C., Nagy, I.: Cannabinoid 1 receptor activation inhibits transient receptor potential vanilloid type 1 receptor-mediated cationic influx into rat cultured primary sensory neurons. (2009) Neuroscience, 162 (4), pp. 1202-1211.

4. Nagy, I., Sántha, P., Jancsó, G., Urbán, L.: The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. (2004) Eur J Pharmacol, 500 (1-3 SPEC. ISS.), pp. 351-369.

5. Sántha, P., Oszlács, O., Dux, M., Dobos, I., Jancsó, G.: Inhibition of glucosylceramide synthase reversibly decreases the capsaicin-induced activation and TRPV1 expression of cultured dorsal root ganglion neurons. (2010) Pain, 150 (1), pp. 103-112.

6. Singh Tahim, A., Sántha, P., Nagy, I.: Inflammatory mediators convert anandamide into a potent activator of the vanilloid type 1 transient receptor potential receptor in nociceptive primary sensory neurons. (2005) Neuroscience, 136 (2), pp. 539-548.

7. White, J.P.M., Calcott, G., Jenes, A., Hossein, M., Paule, C.C., Santha, P., Davis, J.B., Ma, D., Rice, A.S.C., Nagy, I.: Xenon reduces activation of transient receptor potential vanilloid type 1 (TRPV1) in rat dorsal root ganglion cells and in human TRPV1-expressing HEK293 cells. (2011) Life Sci, 88 (3-4), pp. 141-149.

8. White, J.P.M., Urban, L., Nagy, I.: TRPV1 function in health and disease. (2011) Curr Pharm Biotechnol, 12 (1), pp. 130-144.

Page 22: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

36. Bácskai, T., Matesz, K.: Primary afferent fibers establish dye-coupled connections in the frog central

nervous system.

Brain Res. Bull. 57 (3-4), 317-319, 2002.

DOI: http://dx.doi.org/10.1016/S0361-9230(01)00707-9

IF:2.283

Idézetek összesen: 9

Független idézetek: 6 1. De Zeeuw, C., Chorev, E., Devor, A., Manor, Y., Van der Giessen, R., De Jeu,

M., Hoogenraad, C., Bijman, J., Ruigrok, T., French, P., Jaarsma, D., Kistler, W., Meier, C., Petrasch-Parwez, E., Dermietzel, R., Sohl, G., Gueldenagel, M., Willecke, K., Yarom, Y.: Deformation of network connectivity in the inferior olive of connexin 36-deficient mice is compensated by morphological and electrophysiological changes at the single neuron level RID B-8866-2011. (2003) Journal of Neuroscience, 23 (11), pp. 4700-4711.

2. Fan, R., Marin-Burgin, A., French, K., Friesen, W.: A dye mixture (neurobiotin and alexa 488) reveals extensive dye-coupling among neurons in leeches; physiology confirms the connections. (2005) Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology, 191 (12), pp. 1157-1171.

3. Honma, S., De, S., Li, D., Shuler, C., Turman, J.: Developmental regulation of connexins 26, 32, 36, and 43 in trigeminal neurons. (2004) Synapse, 52 (4), pp. 258-271.

4. Kokkorogiannis, T.: Somatic and intramuscular distribution of muscle spindles and their relation to muscular angiotypes. (2004) J Theor Biol, 229 (2), pp. 263-280.

5. Straka, H., Dieringer, N.: Basic organization principles of the VOR: Lessons from frogs. (2004) Prog Neurobiol, 73 (4), pp. 259-309.

6. Winmill, R., Hedrick, M.: Gap junction blockade with carbenoxolone differentially affects fictive breathing in larval and adult bullfrogs. (2003) Respiratory Physiology & Neurobiology, 138 (2-3), pp. 239-251.

Függő idézetek:3 1. Bacskai, T., Veress, G., Halasi, G., Deak, A., Racz, E., Szekely, G., Matesz,

C.: Dendrodendritic and dendrosomatic contacts between oculomotor and trochlear motoneurons of the frog, rana esculenta RID C-9714-2009. (2008) Brain Res Bull, 75 (2-4), pp. 419-423.

2. Bacskai, T., Veress, G., Halasi, G., Matesz, C.: Crossing dendrites of the hypoglossal motoneurons: Possible morphological substrate of coordinated and synchronized tongue movements of the frog, rana esculenta. (2010) Brain Res, 1313 , pp. 89-96.

3. Racz, E., Bacskai, T., Halasi, G., Kovacs, E., Matesz, C.: Organization of dye-coupled cerebellar granule cells labeled from afferent vestibular and dorsal root fibers in the frog rana esculenta. (2006) J Comp Neurol, 496 (3), pp. 382-394.

37. Matesz, K., Kulik, Á., Bácskai, T.: Ascending and descending projections of the lateral vestibular

nucleus in the frogRana esculenta.

J. Comp. Neurol. 444 (2), 115-128, 2002.

DOI: http://dx.doi.org/10.1002/cne.10137

IF:3.848

Idézetek összesen: 16

Független idézetek: 10 1. Butler, A.B.: Evolution of the thalamus: A morphological and functional review.

(2008) Thalamus and Related Systems, 4 (1), pp. 35-58.

Page 23: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

2. González, A., ten Donkelaar, H.J.: Comparative analysis of descending supraspinal projections in amphibians. (2006) Model Organisms in Spinal Cord Regeneration, , pp. 187-226.

3. Horowitz, S.S., Chapman, J.A., Simmons, A.M.: Plasticity of auditory medullary-midbrain connectivity across metamorphic development in the bullfrog, rana catesbeiana. (2006) Brain Behav Evol, 69 (1), pp. 1-19.

4. Malinvaud, D., Vassias, I., Reichenberger, I., Rössert, C., Straka, H.: Functional organization of vestibular commissural connections in frog. (2010) Journal of Neuroscience, 30 (9), pp. 3310-3325.

5. Nagaeva, D.V., Akhmadeev, A.V.: Structural organization, neurochemical characteristics, and connections of the reticular nucleus of the thalamus. (2006) Neurosci Behav Physiol, 36 (9), pp. 987-995.

6. Nagayeva, D.V., Akhmadeyev, A.V.: Structural organization of the reticular thalamic nucleus. (2005) Morfologiya, 128 (6), pp. 9-17.

7. Saltiel, P., Wyler-Duda, K., D'Avella, A., Ajemian, R.J., Bizzi, E.: Localization and connectivity in spinal interneuronal networks: The adduction-caudal extension-flexion rhythm in the frog. (2005) J Neurophysiol, 94 (3), pp. 2120-2138.

8. Simmons, A.M., Flores, V.: Particle motion is broadly represented in the vestibular medulla of the bullfrog across larval development. (2011) Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, pp. 1-14.

9. Straka, H., Dieringer, N.: Basic organization principles of the VOR: Lessons from frogs. (2004) Prog Neurobiol, 73 (4), pp. 259-309.

10. Westhoff, G., Roth, G., Straka, H.: Topographic representation of vestibular and somatosensory signals in the anuran thalamus. (2004) Neuroscience, 124 (3), pp. 669-683.

Függő idézetek: 6 1. Bácskai, T., Veress, G., Halasi, G., Matesz, C.: Crossing dendrites of the

hypoglossal motoneurons: Possible morphological substrate of coordinated and synchronized tongue movements of the frog, rana esculenta. (2010) Brain Res, 1313 , pp. 89-96.

2. Deák, Á., Bácskai, T., Veress, G., Matesz, C.: Vestibular afferents to the motoneurons of glossopharyngeal and vagus nerves in the frog, rana esculenta. (2009) Brain Res, 1286 , pp. 60-65.

3. Matesz, C., Kovalecz, G., Veress, G., Deák, A., Rácz, E., Bácskai, T.: Vestibulotrigeminal pathways in the frog, rana esculenta. (2008) Brain Res Bull, 75 (2-4), pp. 371-374.

4. Matesz, C., Modis, L., Halasi, G., Szigeti, Z.M., Felszeghy, S., Bacskai, T., Szekely, G.: Extracellular matrix molecules and their possible roles in the regeneration of frog nervous system. (2005) Brain Res Bull, 66 (4-6), pp. 526-531.

5. Rácz, E., Bácskai, T., Halasi, G., Kovács, E., Matesz, C.: Organization of dye-coupled cerebellar granule cells labeled from afferent vestibular and dorsal root fibers in the frog rana esculenta. (2006) J Comp Neurol, 496 (3), pp. 382-394.

6. Rácz, É., Bácskai, T., Szabo, G., Székely, G., Matesz, C.: Organization of last-order premotor interneurons related to the protraction of tongue in the frog, rana esculenta. (2008) Brain Res, 1187 (1), pp. 111-115.

Page 24: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

38. Matesz, K., Bácskai, T., Nagy, É., Halasi, G., Kulik, Á.: Efferent connections of the vestibular nuclei

in the rat: A comparative neuromorphological study.

Brain Res. Bull. 57 (3-4), 313-315, 2002.

DOI: http://dx.doi.org/10.1016/S0361-9230(01)00726-2

IF:2.283

Idézetek összesen: 13

Független idézetek: 12 1. Biazoli, C.E., Jr., Goto, M., Campos, A.M.P., Canteras, N.S.: The supragenual

nucleus: A putative relay station for ascending vestibular signs to head direction cells. (2006) Brain Res, 1094 , pp. 138-148.

2. Brown, J., Card, J., Yates, B.: Polysynaptic pathways from the vestibular nuclei to the lateral mammillary nucleus of the rat: Substrates for vestibular input to head direction cells RID D-5602-2009. (2005) Experimental Brain Research, 161 (1), pp. 47-61.

3. Deumens, R., Koopmans, G., Joosten, E.: Regeneration of descending axon tracts after spinal cord injury. (2005) Prog Neurobiol, 77 (1-2), pp. 57-89.

4. Lai, C., Yiu, C.N.S., Lai, S., Ng, K., Yung, K.K.L., Shum, D.K.Y., Chan, Y.: Maturation of canal-related brainstem neurons in the detection of horizontal angular acceleration in rats. (2010) J Comp Neurol, 518 (10), pp. 1742-1763.

5. Lopez, C., Blanke, O.: The thalamocortical vestibular system in animals and humans. (2011) Brain Res Rev, 67 (1-2), pp. 119-146.

6. Markia, B., Kovacs, Z.I., Palkovits, M.: Projections from the vestibular nuclei to the hypothalamic paraventricular nucleus: Morphological evidence for the existence of a vestibular stress pathway in the rat brain. (2008) Brain Structure & Function, 213 (1-2), pp. 239-245.

7. Mong, J., Devidze, N., Goodwillie, A., Pfaff, D.: Reduction of lipocalin-type prostaglandin D synthase in the preoptic area of female mice mimics estradiol effects on arousal and sex behavior. (2003) Proc Natl Acad Sci U S A, 100 (25), pp. 15206-15211.

8. Scholtes, F., Phan-Ba, R., Theunissen, E., Adriaensens, P., Brook, G., Franzen, R., Bouhy, D., Gelan, J., Martin, D., Schoenen, J.: Rapid, postmortem 9.4 T MRI of spinal cord injury: Correlation with histology and survival times. (2008) J Neurosci Methods, 174 (2), pp. 157-167.

9. Sun, Y., Godfrey, D.A., Godfrey, M.A., Hong, S., Jin, Y., Rubin, A.M.: Changes of amino acid concentrations in the rat vestibular nuclei after midline lesions. (2011) Journal of Vestibular Research-Equilibrium & Orientation, 21 (4), pp. 175-191.

10. Tobias, C., Shumsky, J., Shibata, M., Tuszynski, M., Fischer, I., Tessler, A., Murray, M.: Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotornized red nucleus neurons from loss and atrophy, and provides limited regeneration. (2003) Exp Neurol, 184 (1), pp. 97-113.

11. Tyurin, N.L.: Role of neuronal NMDA and non-NMDA glutamate receptors in medial vestibular nucleus in the regulation of respiratory rhythmogenesis in newborn rats in vitro. (2009) Bull Exp Biol Med, 148 (2), pp. 167-170.

12. Webb, A., Muir, G.: Course of motor recovery following ventrolateral spinal cord injury in the rat. (2004) Behav Brain Res, 155 (1), pp. 55-65.

Függő idézetek: 1 1. Halasi, G., Bacskai, T., Matesz, C.: Connections of the superior vestibular

nucleus with the oculomotor and red nuclei in the rat: An electron microscopic study. (2005) Brain Res Bull, 66 (4-6), pp. 532-535.

Page 25: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

39. Polgár, E., Puskár, Z., Watt, C., Matesz, K., Todd, A.J.: Selective innervation of lamina I projection

neurones that possess the neurokinin 1 receptor by serotonin-containing axons in the rat spinal

cord.

Neuroscience. 109 (4), 799-809, 2002.

DOI: http://dx.doi.org/10.1016/S0306-4522(01)00304-9

IF:3.457

Idézetek összesen: 21

Független idézetek: 19 2. Al Ghamdi, K.S., Polgar, E., Todd, A.J.: Soma size distinguishes projection

neurons from neurokinin 1 receptor-expressing interneurons in lamina i of the rat lumbar spinal dorsal horn rid A-6855-2011. (2009) Neuroscience, 164 (4), pp. 1794-1804.

3. Al-Khater, K.M., Todd, A.J.: Collateral projections of neurons in laminae I, III, and IV of rat spinal cord to thalamus, periaqueductal gray matter, and lateral parabrachial area RID A-6855-2011. (2009) J Comp Neurol, 515 (6), pp. 629-646.

4. Bannister, K., Bee, L.A., Dickenson, A.H.: Preclinical and early clinical investigations related to monoaminergic pain modulation. (2009) Neurotherapeutics, 6 (4), pp. 703-712.

5. Hwang, S., Burette, A., Valtschanoff, J.: VR1-positive primary afferents contact NK1-positive spinoparabrachial neurons. (2003) J Comp Neurol, 460 (2), pp. 255-265.

6. Lindstedt, F., Lonsdorf, T.B., Schalling, M., Kosek, E., Ingvar, M.: Perception of thermal pain and the thermal grill illusion is associated with polymorphisms in the serotonin transporter gene. (2011) Plos One, 6 (3), pp. e17752.

7. Morris, R., Cheunsuang, O., Stewart, A., Maxwell, D.: Spinal dorsal horn neurone targets for nociceptive primary afferents: Do single neurone morphological characteristics suggest how nociceptive information is processed at the spinal level. (2004) Brain Res Rev, 46 (2), pp. 173-190.

8. Olave, M., Maxwell, D.: Neurokinin-1 projection cells in the rat dorsal horn receive synaptic contacts from axons that possess alpha(2C)-adrenergic receptors. (2003) Journal of Neuroscience, 23 (17), pp. 6837-6846.

9. Ossipov M, Porreca F. Ascending and descending facilitatory circuits in neuropathic pain states. Campbell, JN Basbaum, AI Dray, A Dubner, R Dworkin, RH Sang,CN, editor. ; 2006.

10. Qi, J., Zhang, H., Guo, J., Yang, L., Wang, W., Chen, T., Li, H., Wu, S., Li, Y.: Synaptic connections of the neurokinin 1 receptor-like immunoreactive neurons in the rat medullary dorsal horn. (2011) Plos One, 6 (8), pp. e23275.

11. Rosenow, J., Henderson, J.: Anatomy and physiology of chronic pain. (2003) Neurosurg Clin N Am, 14 (3), pp. 445-+.

12. Suzuki R, Morcuende S, Webber M, Hunt S, Dickenson A. What the brain tells the spinal cord: Lamina I/III NK1-expressing neurons control spinal activity via descending pathways RID C-1646-2008. Dostrovsky, JO Carr, DB Koltzenburg,M., editor. ; 2003.

13. Suzuki, R., Morcuende, S., Webber, M., Hunt, S., Dickenson, A.: Superficial NK1-expressing neurons control spinal excitability through activation of descending pathways RID C-1646-2008. (2002) Nat Neurosci, 5 (12), pp. 1319-1326.

14. Todd AJ. Changes in NK1 and glutamate receptors in pain. Malcangio M, editor. ; 2009.

15. Usunoff, K., Popratiloff, A., Schmitt, O., Wree, A.: Functional neuroanatomy of pain. (2006) Functional Neuroanatomy of Pain, 184 , pp. 1-115.

16. Vera-Portocarrero, L.P., Zhang, E., King, T., Ossipov, M.H., Vanderah, T.W., Lai, J., Porreca, F.: Spinal NK-1 receptor expressing neurons mediate opioid-induced hyperalgesia and antinociceptive tolerance via activation of descending pathways. (2007) Pain, 129 (1-2), pp. 35-45.

Page 26: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

17. Worsley, M., Todd, A., King, A.: Serotoninergic-mediated inhibition of substance P sensitive deep dorsal horn neurons: A combined electrophysiological and morphological study in vitro RID A-6855-2011. (2005) Experimental Brain Research, 160 (3), pp. 360-367.

18. Wu, S., Wang, W., Li, H., Wang, Y., Feng, Y., Li, Y.: The synaptic connectivity that underlies the noxious transmission and modulation within the superficial dorsal horn of the spinal cord. (2010) Prog Neurobiol, 91 (1), pp. 38-54.

19. Zeilhofer, H.U., Wildner, H., Yévenes, G.E.: Fast synaptic inhibition in spinal sensory processing and pain control. (2012) Physiol Rev, 92 (1), pp. 193-235.

Függő idézetek: 2 1. Kozsurek, M., Lukacsi, E., Fekete, C., Puskar, Z.: Nonselective innervation of

lamina I projection neurons by cocaine- and amphetamine-regulated transcript peptide (CART)-immunoreactive fibres in the rat spinal dorsal horn. (2009) Eur J Neurosci, 29 (12), pp. 2375-2387.

2. Todd, A., Spike, R., Young, S., Puskar, Z.: Fos induction in lamina I projection neurons in response to noxious thermal stimuli RID A-6855-2011. (2005) Neuroscience, 131 (1), pp. 209-217.

40. Birinyi, A., Straka, H., Matesz, K., Dieringer, N.: Location of dye-coupled second order and of

efferent vestibular neurons labeled from individual semicircular canal or otolith organs in the

frog.

Brain Res. 921 (1-2), 44-39, 2001.

DOI: http://dx.doi.org/10.1016/S0006-8993(01)03075-X

IF:2.489

Idézetek összesen: 24

Független idézetek: 19 1. Boyle, R., Rabbitt, R.D., Highstein, S.M.: Efferent control of hair cell and

afferent responses in the semicircular canals. (2009) J Neurophysiol, 102 (3), pp. 1513-1525.

2. Goto, F.: Otolith and canal input in vestibular nuclei. (2002) Equilibrium Research, 61 (6), pp. 403-411.

3. Holstein, G., Martinelli, G., Boyle, R., Rabbitt, R., Highstein, S.: Ultrastructural observations of efferent terminals in the crista ampullaris of the toadfish, opsanus tau (vol 155, pg 265, 2004). (2004) Experimental Brain Research, 157 (1), pp. 128-136.

4. Holstein, G., Martinelli, G., Boyle, R., Rabbitt, R., Highstein, S.: Ultrastructural observations of efferent terminals in the crista ampullaris of the toadfish, opsanus tau. (2004) Experimental Brain Research, 155 (3), pp. 265-273.

5. Horowitz, S.S., Chapman, J.A., Simmons, A.M.: Plasticity of auditory medullary-midbrain connectivity across metamorphic development in the bullfrog, rana catesbeiana. (2007) Brain Behavior and Evolution, 69 (1), pp. 1-19.

6. Horowitz, S.S., Tanyu, L.H., Simmons, A.M.: Multiple mechanosensory modalities influence development of auditory function. (2007) Journal of Neuroscience, 27 (4), pp. 782-790.

7. Jamali, M., Sadeghi, S.G., Cullen, K.E.: Response of vestibular nerve afferents innervating utricle and saccule during passive and active translations. (2009) J Neurophysiol, 101 (1), pp. 141-149.

8. Khorevin, V.I.: The lagena (the third otolith endorgan in vertebrates). (2008) Neurophysiology, 40 (2), pp. 142-159.

9. Koeppl, C.: Evolution of the octavolateral efferent system. (2011) Auditory and Vestibular Efferents, 38 , pp. 217-259.

10. Maklad, A., Fritzsch, B.: Development of vestibular afferent projections into the hindbrain and their central targets. (2003) Brain Res Bull, 60 (5-6), pp. 497-510.

Page 27: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

11. Malinvaud, D., Vassias, I., Reichenberger, I., Roessert, C., Straka, H.: Functional organization of vestibular commissural connections in frog. (2010) Journal of Neuroscience, 30 (9), pp. 3310-3325.

12. Morona, R., Gonzalez, A.: Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians. (2009) J Comp Neurol, 515 (5), pp. 503-537.

13. Pfanzelt, S., Roessert, C., Rohregger, M., Glasauer, S., Moore, L.E., Straka, H.: Differential dynamic processing of afferent signals in frog tonic and phasic second-order vestibular neurons RID A-5898-2008. (2008) Journal of Neuroscience, 28 (41), pp. 10349-10362.

14. Straka, H., Bayer, R., Gilland, E.: Preservation of segmental hindbrain organization in adult frogs. (2006) J Comp Neurol, 494 (2), pp. 228-245.

15. Straka, H., Dieringer, N.: Basic organization principles of the VOR: Lessons from frogs. (2004) Prog Neurobiol, 73 (4), pp. 259-309.

16. Straka, H., Dieringer, N.: Spatial convergence pattern of canal and macular nerve afferent signals in frog second-order vestibular neurons. (2003) Oculomotor and Vestibular Systems: their Function and Disorders, 1004 , pp. 429-433.

17. Straka, H., Holler, S., Goto, F.: Patterns of canal and otolith afferent input convergence in frog second-order vestibular neurons RID C-6337-2011. (2002) J Neurophysiol, 88 (5), pp. 2287-2301.

18. Straka, H., Holler, S., Goto, F., Kolb, F., Gilland, E.: Differential spatial organization of otolith signals in frog vestibular nuclei RID C-6337-2011. (2003) J Neurophysiol, 90 (5), pp. 3501-3512.

19. Straka, H., Vibert, N., Vidal, P., Moore, L., Dutia, M.: Intrinsic membrane properties of vertebrate vestibular neurons: Function, development and plasticity. (2005) Prog Neurobiol, 76 (6), pp. 349-392.

Függő idézetek: 5 1. Deak, A., Bacskai, T., Veress, G., Matesz, C.: Vestibular afferents to the

motoneurons of glossopharyngeal and vagus nerves in the frog, rana esculenta RID C-9714-2009. (2009) Brain Res, 1286 , pp. 60-65.

2. Halasi, G., Wolf, E., Bacskai, T., Szekely, G., Modis, L., Szigeti, Z.M., Meszar, Z., Felszeghy, S., Matesz, C.: The effect of vestibular nerve section on the expression of the hyaluronan in the frog, rana esculenta. (2007) Brain Structure & Function, 212 (3-4), pp. 321-334.

3. Matesz C, Bacskai T, Deak A, Racz E, Veress G, Szekely G. Using of confocal laser scanning microscope in the examination of neural network underlying the gaze and posture control. Kimura M, editor. ; 2009.

4. Matesz, C., Kovalecz, G., Veress, G., Deak, A., Racz, E., Bacskai, T.: Vestibulotrigeminal pathways in the frog, rana esculenta RID C-9714-2009. (2008) Brain Res Bull, 75 (2-4), pp. 371-374.

5. Racz, E., Bacskai, T., Halasi, G., Kovacs, E., Matesz, C.: Organization of dye-coupled cerebellar granule cells labeled from afferent vestibular and dorsal root fibers in the frog rana esculenta. (2006) J Comp Neurol, 496 (3), pp. 382-394.

41. Matesz, K., Schmidt, I., Szabó, L., Birinyi, A., Székely, G.: Organization of the motor centres for the

innervation of different muscles of the tongue: A neuromorphological study in the frog.

Eur. J. Morphol. 37 (2-3), 129-133, 1999.

IF:0.405

Idézetek összesen: 10

Független idézetek: 8 1. Brandes, I.F., Zuperku, E.J., Dean, C., Hopp, F.A., Jakovcevic, D., Stuth,

E.A.E.: Retrograde labeling reveals extensive distribution of genioglossal motoneurons possessing 5-HT2A receptors throughout the hypoglossal nucleus of adult dogs. (2007) Brain Res, 1132 (1), pp. 110-119.

Page 28: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

2. Gilland, E., Baker, R.: Evolutionary patterns of cranial nerve efferent nuclei in vertebrates. (2005) Brain Behav Evol, 66 (4), pp. 234-254.

3. Hedrick, M.S.: Development of respiratory rhythm generation in ectothermic vertebrates. (2005) Respiratory Physiology and Neurobiology, 149 (1-3), pp. 29-41.

4. Mandal, R., Anderson, C.W.: Anatomical organization of brainstem circuits mediating feeding motor programs in the marine toad, bufo marinus. (2009) Brain Res, 1298 , pp. 99-110.

5. Martinez-Marcos, A., Ubeda-Banon, I., Halpern, M.: Neural substrates for tongue-flicking behavior in snakes. (2001) J Comp Neurol, 432 (1), pp. 75-87.

6. Straka, H., Baker, R., Gilland, E.: Preservation of segmental hindbrain organization in adult frogs. (2006) J Comp Neurol, 494 (2), pp. 228-245.

7. Yasuda, K., Mori, R., Tanaka, M., Nakayama, Y., Tanaka, S., Kumai, T., Matsuhashi, H., Kondo, E., Yamaoka, M., Furusawa, K.: Evidence of parasympathetic postganglionic neurons in the rat hypoglossal nerve trunk. (2003) Experimental Brain Research, 153 (3), pp. 302-309.

8. Yasuda, K., Nakayama, Y., Tanaka, M., Tanaka, M., Mori, R., Furusawa, K.: The distribution of respiration-related and swallowing-related motoneurons innervating the rat genioglossus muscle. (2002) Somatosensory and Motor Research, 19 (1), pp. 30-35.

Függő idézetek: 2 1. Bácskai, T., Veress, G., Halasi, G., Matesz, C.: Crossing dendrites of the

hypoglossal motoneurons: Possible morphological substrate of coordinated and synchronized tongue movements of the frog, rana esculenta. (2010) Brain Res, 1313 , pp. 89-96

2. Rácz, É., Bácskai, T., Szabo, G., Székely, G., Matesz, C.: Organization of last-order premotor interneurons related to the protraction of tongue in the frog, rana esculenta. (2008) Brain Res, 1187 (1), pp. 111-115.

42. Polgár, E., Szűcs, P., Urbán, L., Matesz, K., Nagy, I.: Immunohistochemical localization of

neurokinin-l receptor in the lumbar spinal cord of young rats: Morphology and distribution.

Somatosens. Mot. Res. 16 (4), 361-368, 1999.

IF:1.018

Idézetek összesen: 2

Független idézetek: 2 1. Budai, D.: Neurotransmitters and receptors in the dorsal horn of the spinal

cord. (2000) Acta Biologica Szegediensis, 44 (1-4), pp. 21-38. 2. Wang, Z.-., Katsurabayashi, S., Rhee, J.-., Brodwick, M., Akaike, N.:

Substance P abolishes the facilitatory effect of ATP on spontaneous glycine release in neurons of the trigeminal nucleus pars caudalis. (2001) Journal of Neuroscience, 21 (9), pp. 2983-2991.

43. Levy, Y., Mikó, I., Hauck, M., Matesz, K., Furka, I., Orda, R.: Effect of omental angiogenic lipid factor

on revascularization of autotransplanted spleen in dogs.

Eur. Surg. Res. 30 (2), 138-143, 1998.

DOI: http://dx.doi.org/10.1159/000008569

IF:0.709

Idézetek összesen: 17

Független idézetek: 12 1. Akan, A.A., Şengül, N., Şimşek, S., Demirer, S.: The effects of splenectomy

and splenic autotransplantation on plasma lipid levels. (2008) Journal of Investigative Surgery, 21 (6), pp. 369-372.

Page 29: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

2. Alagumuthu, M., Das, B., Pattanayak, S., Rasananda, M.: The omentum: A unique organ of exceptional versatility. (2006) Indian J Surg, 68 (3), pp. 136-141.

3. Dvir, T., Kedem, A., Ruvinov, E., Levy, O., Freeman, I., Landa, N., Holbova, R., Feinberg, M.S., Dror, S., Etzion, Y., Leor, J., Cohen, S.: Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. (2009) Proc Natl Acad Sci U S A, 106 (35), pp. 14990-14995.

4. Freud, E., Cohen, I.J., Mor, C., Golinsky, D., Blumenfeld, A., Zer, M.: Splenic 'regeneration' after partial splenectomy for gaucher disease: Histological features. (1998) Blood Cells, Molecules, and Diseases, 24 (3), pp. 309-316.

5. Kim, J.H., Kim, J., Kong, W.H., Seo, S.W.: Factors affecting tissue culture and transplantation using omentum. (2010) ASAIO Journal, 56 (4), pp. 349-355.

6. Oloumi, M.M., Derakhshanfar, A., Molaei, M.M., Tayyebi, M.: The angiogenic potential of autogenous free omental graft in experimental tibial defects in rabbit: Short-term preliminary histopathological study. (2006) J Exp Anim Sci, 43 (3), pp. 179-187.

7. Pereira, M.C.P.: Pseudoquistos renais em gatos. (2011) .[MSc Thesis, Technical University of Lisbon]

8. Ramírez, P.E.A., Santos, I.C.R., Yera, A.I.: Transplante autólogo de músculo estriado y omento en miomectomias extensas vs bases fisiológicas e histológicas. (2004)[http://mar.uninet.edu/conganat-mirror/conganat.sld.cu/autores/trabajos/T404/] [6th Virtual Conference of Anatomy and Pathology, Cuba]

9. Saifzadeh, S., Pourreza, B., Hobbenaghi, R., Naghadeh, B.D., Kazemi, S.: Autogenous greater omentum, as a free nonvascularized graft, enhances bone healing: An experimental nonunion model. (2009) Journal of Investigative Surgery, 22 (2), pp. 129-137.

10. Vatansev, C., Ustun, M.E., Ogun, C.O., Tastekin, G., Karabacakoglu, A., Yilmaz, H.: Omental transposition decreases ischemic brain damage examined in a new ischemia model. (2003) European Surgical Research, 35 (4), pp. 388-394.

11. Vernik, J., Singh, A.K.: Omentum: Power to heal and regenerate. (2007) Int J Artif Organs, 30 (2), pp. 95-99.

12. 蒋登金, 郭光金, 坤, 王林, 天 , 左 芳: 大网膜内植入自体脾 与原位脾 的 构比 . (2004) 解剖学 志, Journal of Anatomy, 27 (002), pp. 180-183. [Jiang Teng-gold, GUO Guang-jin, ZHANG Kun, Wang Lin, Zhang Tianfei left Walkers: the greater omentum implanted since the structure of the body of spleen tissue in situ splenic tissue]

Függő idézetek: 5 1. Brath, E., Miko, I., Kovacs, J., Toth, F.F., Fachet, J., Furka, I.: Multiorgan

transplantation with a new organ-chip technique in mice: Preliminary histological data. (2003) Microsurgery, 23 (5), pp. 466-469.

2. Miko, I., Brath, E., Furka, I., Kovacs, J., Kelvin, D., Zhong, R.: Spleen autotransplantation in mice: A novel experimental model for immunology study. (2001) Microsurgery, 21 (4), pp. 140-142.

3. Miko, I., Brath, E., Nemeth, N., Furka, A., Sipka Jr., S., Peto, K., Serfozo, J., Kovacs, J., Imre, S., Benko, I., Galuska, L., Sipka, S., Acs, G., Furka, I.: Spleen autotransplantation. morphological and functional follow-up after spleen autotransplantation in mice: A research summary. (2007) Microsurgery, 27 (4), pp. 312-316.

4. Miko, I., Brath, E., Nemeth, N., Toth, F.F., Sipka, S., Kovacs, J., Sipka Jr., S., Fachet, J., Furka, A., Furka, I., Zhong, R.: Hematological, hemorheological, immunological, and morphological studies of spleen autotransplantation in mice: Preliminary results. (2003) Microsurgery, 23 (5), pp. 483-488.

5. Miko, I., Nemeth, N., Sajtos, E., Brath, E., Peto, K., Furka, A., Szabo, G., Kiss, F., Imre, S., Furka, I.: Splenic function and red blood cell deformability: The beneficial effects of spleen autotransplantation in animal experiments. (2010) Clin Hemorheol Microcirc, 45 (2-4), pp. 281-288.

Page 30: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

44. Kulik, Á., Matesz, K.: Projection from the nucleus isthmi to the visual and auditory centres in the

frog, Rana esculenta.

J. Hirnforsch. 38 (3), 299-307, 1997.

Idézetek összesen: 2

Független idézetek: 2 1. Hollis, D.M., Boyd, S.K.: Distribution of GABA-like immunoreactive cell bodies

in the brains of two amphibians, rana catesbeiana and xenopus laevis. (2005) Brain Behav Evol, 65 (2), pp. 127-142.

2. Pollák, E., Lázár, G., Gábriel, R., Wang, S.-.: Localization and source of γ aminobutyric acid immunoreactivity in the isthmic nucleus of the frog rana esculenta. (1999) Brain Res Bull, 48 (3), pp. 343-350.

45. Matesz, K., Székely, G.: Organization of the ambiguus nucleus in the frog (Rana esculenta).

J. Comp. Neurol. 371 (2), 258-269, 1996.

DOI: http://dx.doi.org/10.1002/(SICI)1096-9861(19960722)371:2<258::AID-CNE6>3.3.CO;2-8

IF:3.748

Idézetek összesen: 6

Független idézetek: 4 1. Brion, B., Jonathan, M.N.: Transitional nerve: A new and original classification

of a peripheral nerve supported by the nature of the accessory nerve (CN XI). (2010) Neurology Research International, Article ID 476018, [doi:10.1155/2010/476018]

2. Gilland, E., Baker, R.: Evolutionary patterns of cranial nerve efferent nuclei in vertebrates. (2005) Brain Behav Evol, 66 (4), pp. 234-254.

3. Straka, H., Baker, R., Gilland, E.: Preservation of segmental hindbrain organization in adult frogs. (2006) J Comp Neurol, 494 (2), pp. 228-245.

4. Zhang, X.-., Ai, H.-.: Progress in the study on the nucleus ambiguus. (2004) Chinese Journal of Neuroscience, 20 (2), pp. 180-186.

Függő idéztek: 2 1. Deák, Á., Bácskai, T., Veress, G., Matesz, C.: Vestibular afferents to the

motoneurons of glossopharyngeal and vagus nerves in the frog, rana esculenta. (2009) Brain Res, 1286 , pp. 60-65.

2. Szabó, Z., Bácskai, T., Deák, Á., Matesz, K., Veress, G., Sziklai, I.: Dendrodendritic connections between the cochlear efferent neurons in guinea pig. (2011) Neurosci Lett, 504 (3), pp. 195-198.

46. Matesz, K., Birinyi, A., Kothalawala, D.S., Székely, G.: Investigation of the dendritic geometry of

brain stem motoneurons with different functions using multivariant multistatistical techniques in

the frog.

Neuroscience. 65 (4), 1129-1144, 1995.

DOI: http://dx.doi.org/10.1016/0306-4522(94)00551-F

IF:4.288

Idézetek összesen: 15

Független idézetek: 7 1. Arbib, M.A., Érdi, P.: Organizing the brain's diversities. (2000) Behav Brain

Sci, 23 (4), pp. 551-571.

Page 31: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

2. Brichta, A.M., Goldberg, J.M.: Morphological identification of physiologically characterized afferents innervating the turtle posterior crista. (2000) J Neurophysiol, 83 (3), pp. 1202-1223.

3. Cesar Jr., R.M., Da Fontoura Costa, L.: Computer-vision-based extraction of neural dendrograms. (1999) J Neurosci Methods, 93 (2), pp. 121-131.

4. Korogod, S.M., Kulagina, I.B., Horcholle-Bossavit, G., Gogan, P., Tyc-Dumont, S.: Activity-dependent reconfiguration of the effective dendritic field of motoneurons. (2000) J Comp Neurol, 422 (1), pp. 18-34.

5. Li R Perrins, W.-., Soffe, S.R., Yoshida, M., Walford A, A., Roberts, L.: Defining classes of spinal interneuron and their axonal projections in hatchling xenopus laevis tadpoles. (2001) J Comp Neurol, 441 (3), pp. 248-265.

6. Mizrahi, A., Ben-Ner, E., Katz, M.J., Kedem, K., Glusman, J.G., Libersat, F.: Comparative analysis of dendritic architecture of identified neurons using the hausdorff distance metric. (2000) J Comp Neurol, 422 (3), pp. 415-428.

7. Quartz, S.R., Sejnowski, T.J.: The neural basis of cognitive development: A constructivist manifesto. (1997) Behav Brain Sci, 20 (4), pp. 537-596.

Függő idézetek: 8 1. Birinyi, A., Szekely, G., Csapó, K., Matesz, C.: Quantitative morphological

analysis of the motoneurons innervating muscles involved in tongue movements of the frog rana esculenta. (2004) J Comp Neurol, 470 (4), pp. 409-421.

2. Matesz, C., Kovalecz, G., Veress, G., Deák, A., Rácz, E., Bácskai, T.: Vestibulotrigeminal pathways in the frog, rana esculenta. (2008) Brain Res Bull, 75 (2-4), pp. 371-374.

3. Matesz, C., Schmidt, I., Szabo, L., Birinyi, A., Székely, G.: Organization of the motor centres for the innervation of different muscles of the tongue: A neuromorphological study in the frog. (1999) Eur J Morphol, 37 (2-3), pp. 190-194.

4. Matesz, C., Székely, G.: Organization of the ambiguus nucleus in the frog (rana esculenta). (1996) J Comp Neurol, 371 (2), pp. 258-269.

5. Rácz, É., Bácskai, T., Szabo, G., Székely, G., Matesz, C.: Organization of last-order premotor interneurons related to the protraction of tongue in the frog, rana esculenta. (2008) Brain Res, 1187 (1), pp. 111-115.

6. Szabó, Z., Bácskai, T., Deák, Á., Matesz, K., Veress, G., Sziklai, I.: Dendrodendritic connections between the cochlear efferent neurons in guinea pig. (2011) Neurosci Lett, 504 (3), pp. 195-198.

7. Székely, G.: An approach to the complexity of the brain. (2001) Brain Res Bull, 55 (1), pp. 11-28.

8. Wolf, E., Birinyi, A., Puskár, Z.: Morphometric descriptors and cable modelling of dendritic arborizations based on 3-dimensional reconstructions. (1996) Acta Biol Hung, 47 (1-4), pp. 427-439.

47. Matesz, K., Birinyi, A., Hevessy, Z.: Motoneurons differ in size and peripheral target in the trigeminal

and facial nuclear complex of the frog.

J. Hirnforsch. 35 (1), 67-70, 1994.

Idézetek összesen: 3

Független idézetek: 1 1. Straka, H., Bayer, R., Gilland, E.: Preservation of segmental hindbrain

organization in adult frogs. (2006) J Comp Neurol, 494 (2), pp. 228-245.

Függő idézetek: 2 1. Matesz, C., Schmidt, I., Szabo, L., Birinyi, A., Szekely, G.: Organization of the

motor centres for the innervation of different muscles of the tongue: A neuromorphological study in the frog. (1999) Eur J Morphol, 37 (2-3), pp. 190-194.

2. Wolf, E., Birinyi, A., Puskar, Z.: Morphometric descriptors and cable modelling of dendritic arborizations based on 3-dimensional reconstructions. (1996) Acta Biol Hung, 47 (1-4), pp. 427-439.

Page 32: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

48. Matesz, K.: Synaptic relations of the trigeminal motoneurons in a frog (Rana esculenta).

Eur. J. Morphol. 32 (2-4), 117-121, 1994.

IF:0.79

Idézetek összesen: 4

Független idézetek: 3 1. Lanciego, J.L., Wouterlood, F.G.: A half century of experimental

neuroanatomical tracing. (2011) J Chem Neuroanat, 42 (3), pp. 157-183. 2. Lazarov, N.E.: Comparative analysis of the chemical neuroanatomy of the

mammalian trigeminal ganglion and mesencephalic trigeminal nucleus. (2002) Prog Neurobiol, 66 (1), pp. 19-59.

3. Lazarov, N.E.: The mesencephalic trigeminal nucleus in the cat. (2000) Adv Anat Embryol Cell Biol, 153 , pp. iii-xiv, 1-103.

Függő idézetek: 1 1. Birinyi, A., Szekely, G., Csapó, K., Matesz, C.: Quantitative morphological

analysis of the motoneurons innervating muscles involved in tongue movements of the frog rana esculenta. (2004) J Comp Neurol, 470 (4), pp. 409-421.

49. Székely, G., Matesz, K.: Comparative anatomy of the central representation of the facial nerve.

Eur. Arch Otolaryngol. Suppl, S3-S5, 1994.

IF:0.459

50. Nagy, I., Pabla, R., Matesz, K., Dray, A., Woolf, C., Urban, L.: Cobalt uptake enables identification of

capsaicin and bradykinin sensitive sub populations of rat dorsal root ganglion cells in vitro.

Neuroscience. 56 (1), 241-246, 1993.

DOI: http://dx.doi.org/10.1016/0306-4522(93)90576-2

IF:4.582

Idézetek összesen: 29

Független idézetek: 17 1. Antoni, F., Sosunov, A., Haunso, A., Paterson, J., Simpson, J.: Short-term

plasticity of cyclic adenosine 3 ',5 '-monophosphate signaling in anterior pituitary corticotrope cells: The role of adenylyl cyclase isotypes. (2003) Molecular Endocrinology, 17 (4), pp. 692-703.

2. Bryant, B.P.: Method for measuring sensory irritation in vitro, . (1998) [United States Patent No.: 5811256]

3. De Stasio, G., Mercanti, D., Clotti, M., Droubay, T., Perfetti, P., Margaritonda, G., Tonner, B.: Synchrotron spectromicroscopy of cobalt accumulation in granule cells, glial cells and GABAergic neurons. (1996) Journal of Physics D-Applied Physics, 29 (1), pp. 259-262.

4. Engelman, H., Allen, T., MacDermott, A.: The distribution of neurons expressing calcium-permeable AMPA receptors in the superficial laminae of the spinal cord dorsal horn. (1999) Journal of Neuroscience, 19 (6), pp. 2081-2089.

5. Ferreira S., Poole S, Cunha F .: Bradykinin initiates cytokine-mediated inflammatory hyperalgesia (1993). Br J Pharmacol. 110(3), pp. 1227-1231.

6. Hirai, K., Tanaka, E., Motelica-Heino, I., Katayama, Y., Higashi, H., Tsuji, S.: A new cytochemical method for in situ detection of cholinergic synaptic transmission by staining of Cu2+ incorporated in frog neuromuscular junction during nerve stimulation. (2006) Biomedical Research-Tokyo, 27 (3), pp. 125-130.

Page 33: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

7. Jansen, H., Dierckx, R., Hew, J., Paans, A., Minderhoud, J., Korf, J.: Positron emission tomography in primary brain tumours using cobalt-55. (1997) Nucl Med Commun, 18 (8), pp. 734-740.

8. Jansen, H., Willemsen, A., Sinnige, L., Paans, A., Hew, J., Franssen, E., Zorgdrager, A., Pruim, J., Minderhoud, J., Korf, J.: Cobalt-55 positron emission tomography in relapsing-progressive multiple-sclerosis. (1995) J Neurol Sci, 132 (2), pp. 139-145.

9. Jensen, J., Schousboe, A., Pickering, D.: Development of calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in cultured neocortical neurons visualized by cobalt staining. (1998) J Neurosci Res, 54 (2), pp. 273-281.

10. Lorusso, G., De Stasio, G., Gilbert, B., Perret, D., Perfetti, P., Margaritondo, G., Casalbore, P., Ciotti, M., Milazzo, L., Mercanti, D.: High sensitivity quantitative analysis of cobalt uptake in rat cerebellar granule cells with and without excitatory amino acids (1998) Neurosci Lett, 248 (1), pp. 9-12.

11. Matsuzaki, S., Hayashi, I., Nara, Y., Kamata, K., Yamanaka, M., Okamoto, H., Hoka, S., Majima, M.: Role of kinin and prostaglandin in cutaneous thermal nociception. (2002) Int Immunopharmacol, 2 (13-14), pp. 2005-2012.

12. Petersen, M., Eckert, A., Von Banchet, G., Heppelmann, B., Klusch, A., Kniffki, K.: Plasticity in the expression of bradykinin binding sites in sensory neurons after mechanical nerve injury. (1998) Neuroscience, 83 (3), pp. 949-959.

13. Poole, S., Lorenzetti, B., Cunha, J., Cunha, F., Ferreira, S.: Bradykinin B-1 and B-2 receptors, tumour necrosis factor alpha and inflammatory hyperalgesia. (1999) Br J Pharmacol, 126 (3), pp. 649-656.

14. Raidoo, D., Bhoola, K.: Pathophysiology of the kallikrein-kinin system in mammalian nervous tissue. (1998) Pharmacol Ther, 79 (2), pp. 105-127.

15. Stevens, H., Van de Wiele, C., Santens, P., Jansen, H., De Reuck, J., Dierckx, R., Korf, J.: Cobalt-57 and technetium-99m-HMPAO-labeled leukocytes for visualization of ischemic infarcts. (1998) Journal of Nuclear Medicine, 39 (3), pp. 495-498.

16. VonBanchet, G., Petersen, M., Heppelmann, B.: Bradykinin receptors in cultured rat dorsal root ganglion cells: Influence of length of time in culture. (1996) Neuroscience, 75 (4), pp. 1211-1218.

17. Yoshimura, N., Erdman, S., Snider, M., De Groat, W.: Effects of spinal cord injury on neurofilament immunoreactivity and capsaicin sensitivity in rat dorsal root ganglion neurons innervating the urinary bladder. (1998) Neuroscience, 83 (2), pp. 633-643.

Függő idézetek: 12 1. Babbedge, R., Dray, A., Urban, L.: Bradykinin depolarizes the rat isolated

superior cervical-ganglion via B-2 receptor activation. (1995) Neurosci Lett, 193 (3), pp. 161-164.

2. Davis, C., Naeem, S., Phagoo, S., Campbell, E., Urban, L., Burgess, G.: B-1 bradykinin receptors and sensory neurones. (1996) Br J Pharmacol, 118 (6), pp. 1469-1476.

3. Kulik, A., Polgar, E., Matesz, C., Szucs, P., Kothalawala, S., Nagy, I.: Sub-population of capsaicin sensitive primary afferent neurons in thoracic, lumbar and sacral dorsal root ganglion in young rats revealed by stimulated cobalt uptake. (1996) Acta Biol Hung, 47 (1-4), pp. 251-259.

4. Lever, I.J., Robinson, M., Cibelli, M., Paule, C., Santha, P., Yee, L., Hunt, S.P., Cravatt, B.F., Elphick, M.R., Nagy, I., Rice, A.S.C.: Localization of the endocannabinoid-degrading enzyme fatty acid amide hydrolase in rat dorsal root ganglion cells and its regulation after peripheral nerve injury. (2009) Journal of Neuroscience, 29 (12), pp. 3766-3780.

5. Mahmud, A., Santha, P., Paule, C.C., Nagy, I.: Cannabinoid 1 receptor activation inhibits transient receptor potential vanilloid type 1 receptor-mediated cationic influx into rat cultured primary sensory neurons. (2009) Neuroscience, 162 (4), pp. 1202-1211.

6. Nagy, B., Fedonidis, C., Photiou, A., Wahba, J., Paule, C.C., Ma, D., Buluwela, L., Nagy, I.: Capsaicin-Sensitive Primary Sensory Neurons In The

Page 34: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

Mouse Express N-Acyl Phosphatidylethanolamine Phospholipase D. (2009) Neuroscience, 161 (2), pp. 572-577.

7. Nagy, I., Woolf, C., Dray, A., Urban, L.: Cobalt accumulation in neurons expressing ionotropic excitatory amino-acid receptors in young-rat spinal-cord - morphology and distribution. (1994) J Comp Neurol, 344 (3), pp. 321-335.

8. Santha, P., Jenes, A., Somogyi, C., Nagy, I.: The endogenous cannabinoid anandamide inhibits transient receptor potential vanilloid type 1 receptor-mediated currents in rat cultured primary sensory neurons. (2010) Acta Physiol Hung, 97 (2), pp. 149-158.

9. Sathianathan, V., Avelino, A., Charrua, A., Santha, P., Matesz, K., Cruz, F., Nagy, I.: Insulin induces cobalt uptake in a subpopulation of rat cultured primary sensory neurons. (2003) Eur J Neurosci, 18 (9), pp. 2477-2486.

10. Soneji, N.D., Paule, C.C., Mlynarczyk, M., Nagy, I.: Effects of cannabinoids on capsaicin receptor activity following exposure of primary sensory neurons to inflammatory mediators. (2010) Life Sci, 87 (5-6), pp. 162-168.

11. Urban, L., Thompson, S., Fox, A., Jeftinija, S., Dray, A.: Peptidergic afferents: Physiological aspects. (1995) Neuropeptides in the Spinal Cord, 104 , pp. 255-269.

12. White, J.P.M., Calcott, G., Jenes, A., Hossein, M., Paule, C.C., Santha, P., Davis, J.B., Ma, D., Rice, A.S.C., Nagy, I.: Xenon reduces activation of transient receptor potential vanilloid type 1 (TRPV1) in rat dorsal root ganglion cells and in human TRPV1-expressing HEK293 cells. (2011) Life Sci, 88 (3-4), pp. 141-149.

51. Matesz, K.: Development of the abducens nuclei in the Xenopus laevis.

Dev. Brain Res. 51, 179-184, 1990.

IF:2.502

Idézetek összesen: 6

Független idézetek: 6 1. Buttner-Ennever, J.: The extraocular motor nuclei: Organization and functional

neuroanatomy. (2006) Neuroanatomy of the Oculomotor System, 151 , pp. 95-125.

2. Gonzalez, M., Pombal, M., Rodicio, M., Anadon, R.: Internuclear neurons of the ocular motor system of the larval sea lamprey. (1998) J Comp Neurol, 401 (1), pp. 1-15.

3. Lopez, J., Smeets, W., Gonzalez, A.: Choline acetyltransferase immunoreactivity in the developing brain of xenopus laevis. (2002) J Comp Neurol, 453 (4), pp. 418-434.

4. Straka, H., Dieringer, N.: Basic organization principles of the VOR: Lessons from frogs. (2004) Prog Neurobiol, 73 (4), pp. 259-309.

5. Szekely, G.: Comparative anatomy of cranial nerve motor nuclei - with a comment on evolution of the craniofacial region. (1994) Eur J Morphol, 32 (2-4), pp. 217-224.

6. Wahl, C., Noden, D., Baker, R.: Developmental relations between 6th nerve motor-neurons and their targets in the chick-embryo. (1994) Developmental Dynamics, 201 (2), pp. 191-202.

Page 35: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

52. Matesz, K.: Development of the oculomotor and trochlear nuclei in the Xenopus toad.

Neurosci. Lett. 116 (1-2), 1-6, 1990.

DOI: http://dx.doi.org/10.1016/0304-3940(90)90376-K

IF:2.765

Idézetek összesen: 11

Független idézetek: 11 1. Boser, S., Dournon, C., Gualandris-Parisot, L., Horn, E.: Altered gravity

affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (xenopus laevis). (2008) Arch Ital Biol, 146 (1), pp. 1-20.

2. Colamarino, S., Tessierlavigne, M.: The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons. (1995) Cell, 81 (4), pp. 621-629.

3. Irving, C., Malhas, A., Guthrie, S., Mason, I.: Establishing the trochlear motor axon trajectory: Role of the isthmic organiser and Fgf8. (2002) Development, 129 (23), pp. 5389-5398.

4. Lopez, J., Smeets, W., Gonzalez, A.: Choline acetyltransferase immunoreactivity in the developing brain of xenopus laevis. (2002) J Comp Neurol, 453 (4), pp. 418-434.

5. Morona, R., Gonzalez, A.: Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians. (2009) J Comp Neurol, 515 (5), pp. 503-537.

6. Munoz, M., Gonzalez, A.: The trochlear nucleus of the frog rana-ridibunda - localization, morphology and ultrastructure of identified motoneurons. (1995) Brain Res Bull, 36 (5), pp. 433-441.

7. Naujoksmanteuffel, C., Sonntag, R., Fritzsch, B.: Development of the amphibian oculomotor complex - evidences for migration of oculomotor motoneurons across the midline. (1991) Anat Embryol, 183 (6), pp. 545-552.

8. Pombal, M., Rodicio, M., Anadon, R.: Development and organization of the ocular motor nuclei in the larval sea lamprey, petromyzon-marinus L - an hrp study. (1994) J Comp Neurol, 341 (3), pp. 393-406.

9. Straka, H., Bayer, R., Gilland, E.: Preservation of segmental hindbrain organization in adult frogs. (2006) J Comp Neurol, 494 (2), pp. 228-245.

10. Straka, H., Dieringer, N.: Basic organization principles of the VOR: Lessons from frogs. (2004) Prog Neurobiol, 73 (4), pp. 259-309.

11. Szekely, G.: Comparative anatomy of cranial nerve motor nuclei - with a comment on evolution of the craniofacial region. (1994) Eur J Morphol, 32 (2-4), pp. 217-224.

53. Módis, L., Matesz, K., Telek, B., Ádány, R.: Submicroscopic structure of glycosaminoglycans in

osteocyte capsule of human embryonic bone as revealed by polarization microscopy.

Archives Ital. Anat. Embryol. 94 (3), 283-288, 1989.

Page 36: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

54. Székely, G., Matesz, K.: Topography and organization of cranial nerve nuclei of the sand lizard,

Lacerta agilis.

J. Comp. Neurol. 267 (4), 525-544, 1988.

DOI: http://dx.doi.org/10.1002/cne.902670407

IF:3.78

Idézetek összesen: 22

Független idézetek: 19 1. Atobe, Y., Nakano, M., Kadota, T., Hisajima, T., Goris, R., Funakoshi, K.:

Medullary efferent and afferent neurons of the facial nerve of the pit viper gloydius brevicaudus. (2004) J Comp Neurol, 472 (3), pp. 345-357.

2. Benninger, B., McNeil, J.: Transitional nerve: A new and original classification of a peripheral nerve supported by the nature of the accessory nerve (CN XI). (2010) Neurology Research International, 2010 . Article ID 476018, [doi:10.1155/2010/476018]

3. Cabrera, B., Pasaro, R., Delgadogarcia, J.: A morphological-study of the principal and accessory abducens nuclei in the caspian terrapin (mauremys-caspica). (1993) Brain Behavior and Evolution, 41 (1), pp. 6-13.

4. Desfilis, E., Font, E., Garcia-Verdugo, J.: Trigeminal projections to the dorsal thalamus in a lacertid lizard, podarcis hispanica. (1998) Brain Behavior and Evolution, 52 (2), pp. 99-110.

5. El Hassni, M., Bennis, M., Rio, J., Reperant, J.: Localization of motoneurons innervating the extraocular muscles in the chameleon (chamaeleo chameleon). (2000) Anat Embryol, 201 (1), pp. 63-74.

6. Font, E.: Localization of brain-stem motoneurons involved in dewlap extension in the lizard, anolis-equestris. (1991) Behav Brain Res, 45 (2), pp. 171-176.

7. Fritzsch, B., Sonntag, R., Dubuc, R., Ohta, Y., Grillner, S.: Organization of the 6 motor nuclei innervating the ocular muscles in lamprey. (1990) J Comp Neurol, 294 (4), pp. 491-506.

8. Funakoshi, K., Atobe, Y., Nakano, M., Hisajima, T., Goris, R., Kishida, R.: Monoaminergic and peptidergic axonal projections to the vagal motor cell column of a teleost, the filefish stephanotepis cirrhifer. (2002) J Comp Neurol, 447 (4), pp. 351-365.

9. Keifer, J.: In-vitro eye-blink reflex model - role of excitatory amino-acids and labeling of network activity with sulforhodamine. (1993) Experimental Brain Research, 97 (2), pp. 239-253.

10. Lazar, G., Szabo, T., Libouban, S., Ravailleveron, M., Toth, P., Brandle, K.: Central projections and motor nuclei of the facial, glossopharyngeal, and vagus nerves in the mormyrid fish gnathonemus-petersii. (1992) J Comp Neurol, 325 (3), pp. 343-358.

11. Martinez-Marcos, A., Ubeda-Banon, I., Halpern, M.: Neural substrates for tongue-flicking behavior in snakes. (2001) J Comp Neurol, 432 (1), pp. 75-87.

12. Munoz, M., Munoz, A., Gonzalez, A.: Distribution, morphology, and central projections of mesencephalic trigeminal neurons in the frog rana-ridibunda. (1993) Anat Rec, 235 (1), pp. 165-177.

13. Nagy, I., Sik, A., Polgar, E., Petko, M., Antal, M.: Combination of cobalt labeling with immunocytochemical reactions for electron-microscopic investigations on frog spinal-cord. (1994) Microsc Res Tech, 28 (1), pp. 60-66.

14. Peterson, E.: Motorpool organization of vertebrate axial muscles. (1989) Am Zool, 29 (1), pp. 123-137.

15. Powers, A., Reiner, A.: The distribution of cholinergic neurons in the central-nervous-system of turtles. (1993) Brain Behavior and Evolution, 41 (6), pp. 326-345.

16. Roth, G., Naujoksmanteuffel, C., Grunwald, W.: Cytoarchitecture of the tectum mesencephali in salamanders - a golgi and hrp study. (1990) J Comp Neurol, 291 (1), pp. 27-42.

17. Tang, Y., Piao, Y., Zhuang, L., Wang, Z.: Expression of androgen receptor mRNA in the brain of gekko gecko: Implications for understanding the role of

Page 37: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

androgens in controlling auditory and vocal processes. (2001) J Comp Neurol, 438 (2), pp. 136-147.

18. Wake, D.: Brain-stem organization and branchiomeric nerves. (1993) Acta Anat, 148 (2-3), pp. 124-131.

19. Zhu, D., Keifer, J.: Distribution of facial motor neurons in the pond turtle pseudemys scripta elegans. (2005) Neurosci Lett, 373 (2), pp. 134-137.

Függő idézetek: 3 1. Birinyi, A., Szekely, G., Csapo, K., Matesz, C.: Quantitative morphological

analysis of the motoneurons innervating muscles involved in tongue movements of the frog rana esculenta. (2004) J Comp Neurol, 470 (4), pp. 409-421.

2. Matesz, C.: Development of the abducens nuclei in the xenopus-laevis. (1990) Dev Brain Res, 51 (2), pp. 179-184.

3. Matesz, C., Szekely, G.: Organization of the ambiguus nucleus in the frog (rana esculenta). (1996) J Comp Neurol, 371 (2), pp. 258-269.

55. Székely, G., Matesz, K.: Trigeminal motoneurons with disparate dendritic geometry innervate

different muscle group in the frog.

Neurosci. Lett. 77 (2), 161-165, 1987.

DOI: http://dx.doi.org/10.1016/0304-3940(87)90579-9

IF:2.771

Idézetek összesen: 8

Független idézetek: 5 1. Alley, K.: Retrofitting larval neuromuscular circuits in the metamorphosing

frog. (1990) J Neurobiol, 21 (7), pp. 1092-1107. 2. Mong, F., Chen, Y., Lu, C.: Dendritic ramifications of trigeminal motor neurons

innervating jaw-closing muscles of rats. (1988) J Neurol Sci, 86 (2-3), pp. 251-264.

3. Rosenthal, B., Alley, K.: Trigeminal motoneurons in frogs develop a new dendritic field during metamorphosis. (1988) Neurosci Lett, 95 (1-3), pp. 53-58.

4. Schwippert, W., Beneke, T., Ewert, J.: Responses of medullary neurons to moving visual-stimuli in the common toad .2. an intracellular-recording and cobalt-lysine labeling study. (1990) Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology, 167 (4), pp. 509-520.

5. Straka, H., Bayer, R., Gilland, E.: Preservation of segmental hindbrain organization in adult frogs. (2006) J Comp Neurol, 494 (2), pp. 228-245.

Függő idézetek: 3 1. Matesz, C., Birinyi, A., Kothalawala, D., Szekely, G.: Investigation of the

dendritic geometry of brain-stem motoneurons with different functions using multivariant statistical techniques in the frog. (1995) Neuroscience, 65 (4), pp. 1129-1144.

2. Matesz, C., Schmidt, I., Szabo, L., Birinyi, A., Szekely, G.: Organization of the motor centres for the innervation of different muscles of the tongue: A neuromorphological study in the frog. (1999) Eur J Morphol, 37 (2-3), pp. 190-194.

3. Matesz, C., Szekely, G.: Organization of the ambiguus nucleus in the frog (rana esculenta). (1996) J Comp Neurol, 371 (2), pp. 258-269.

Page 38: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

56. Székely, G., Lévai, G., Matesz, K.: Primary afferent terminals in the nucleus of the solitary tract of

the frog: An electron microscopic study.

Exp. Brain Res. 53 (1), 109-117, 1983.

IF:2.444

Idézetek összesen: 13

Független idézetek: 9 1. Antal, M.: The application of cobalt labeling to electron-microscopic

investigations of serial sections. (1984) J Neurosci Methods, 12 (1), pp. 69-77. 2. Ewert, J.: Toads prey-catching - a complex system of heuristic value. (1987)

Behav Brain Sci, 10 (3), pp. 389-398. 3. Ewert, J.: Concepts in vertebrate neuroethology. (1985) Anim Behav, 33 (1),

pp. 1-14. [http://dx.doi.org/10.1016/S0003-3472(85)80116-0] 4. Fritzsch, B.: The lateral-line and inner-ear afferents in larval and adult

urodeles. (1988) Brain Behavior and Evolution, 31 (6), pp. 325-348. 5. Glagow, M., Ewert, J.: Apomorphine alters prey-catching patterns in the

common toad: Behavioral experiments and (14)C-2-deoxyglucose brain mapping studies. (1999) Brain Behavior and Evolution, 54 (4), pp. 223-242.

6. Glagow, M., Ewert, J.: Dopaminergic modulation of visual responses in toads .1. apomorphine-induced effects on visually directed appetitive and consummatory prey-catching behavior. (1997) Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology, 180 (1), pp. 1-9.

7. Matsushima, T., Satou, M., Ueda, K.: Neuronal pathways for the lingual reflex in the japanese toad. (1988) Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology, 164 (2), pp. 173-193.

8. Nagy, I., Sik, A., Polgar, E., Petko, M., Antal, M.: Combination of cobalt labeling with immunocytochemical reactions for electron-microscopic investigations on frog spinal-cord. (1994) Microsc Res Tech, 28 (1), pp. 60-66.

9. Oka, Y., Satou, M., Ueda, K.: An improved method for correlative light and electron-microscopic examination of cobaltic-lysine-labeled neurons. (1987) Neurosci Lett, 73 (2), pp. 187-191.

Függő idézetek: 4 1. Antal, M., Kraftsik, R., Szekely, G., Vanderloos, H.: Distal dendrites of frog

motor neurons - a computer-aided electron-microscopic study of cobalt-filled cells. (1986) J Neurocytol, 15 (3), pp. 303-310.

2. Matesz, C.: Synaptic relations of the trigeminal motoneurons in a frog (rana-esculenta). (1994) Eur J Morphol, 32 (2-4), pp. 117-121.

3. Matesz, C.: Fine-structure of the primary afferent vestibulocochlear terminals in the frog. (1988) Acta Biol Hung, 39 (2-3), pp. 267-277.

4. Szekely, G., Nagy, I., Wolf, E., Nagy, P.: Spatial-distribution of presynaptic and postsynaptic sites of axon terminals in the dorsal horn of the frog spinal-cord. (1989) Neuroscience, 29 (1), pp. 175-188.

57. Székely, G., Matesz, K., Baker, R.E., Antal, M.: The termination of cutaneous nerves in the dorsal

horn of the spinal cord in normal and in skin-rotated frogs.

Exp. Brain. Res. 45 (1-2), 19-28, 1982.

IF:2.424

Idézetek összesen: 21

Független idézetek: 19 1. Andrés, F.L., Van Der Loos, H.: Cultured embryonic non-innervated mouse

muzzle is capable of generating a whisker pattern. (1983) International Journal of Developmental Neuroscience, 1 (4-5), pp. 319-338.

Page 39: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

2. Dicke, U., Muhlenbrock-Lenter, S.: Primary And Secondary Somatosensory Projections In Direct-Developing Plethodontid Salamanders. (1998) J Morphol, 238 (3), Pp. 307-326.

3. Frank, E.: Development Of Specific Sensory-Motor Pathways In Amphibians. (1983) Trends Neurosci, 6 (11), Pp. 463-467.

4. Gonzalez, H., Jimenez, I., Rudomin, P.: Reticulospinal Actions On Primary Afferent Depolarization Of Cutaneous And Muscle Afferents In The Isolated Frog Neuraxis. (1993) Experimental Brain Research, 95 (2), Pp. 261-270.

5. Jhaveri, S., Frank, E.: Central Projections Of The Brachial Nerve In Bullfrogs - Muscle And Cutaneous Afferents Project To Different Regions Of The Spinal-Cord. (1983) J Comp Neurol, 221 (3), Pp. 304-312.

6. Mears, S., Frank, E.: A Critical Period For The Influence Of Peripheral Targets On The Central Projections Of Developing Sensory Neurons. (1996) International Journal Of Developmental Neuroscience, 14 (6), Pp. 731-737.

7. Nakano, M., Kishida, R., Funakoshi, K., Tsukagoshi, M., Goris, R., Kadota, T., Atobe, Y., Hisajima, T.: Central Projections Of Thoracic Splanchnic And Somatic Nerves And The Location Of Sympathetic Preganglionic Neurons In Xenopus Laevis. (2003) J Comp Neurol, 456 (4), Pp. 321-337.

8. O'donovan, M.J., Lee, M.T., Koebbe, M.J.: The development of muscle afferent connections in the vertebrate spinal cord. (1992) Sensory Neurons: Diversity, Development and Plasticity”, Oxford Univ.Press, New York, pp. 264-286.

9. Rosenthal, B., Cruce, W.: Distribution And Ultrastructure Of Primary Afferent Axons In Lissauers Tract In The Northern Leopard Frog (Rana-Pipiens). (1985) Brain Behavior And Evolution, 27 (2-4), Pp. 195-214.

10. Rosenthal, B., Cruce, W.: Contralateral Motoneuron Dendritic Changes Induced By Transection Of Frog Spinal Nerves. (1984) Exp Neurol, 85 (3), Pp. 565-573.

11. Ruigrok, T., Crowe, A., Tendonkelaar, H.: Morphology Of Primary Afferents To The Spinal-Cord Of The Turtle Pseudemys-Scripta-Elegans. (1985) Anat Embryol, 171 (1), Pp. 75-81.

12. Salio, C., Fischer, J., Wijkhuisen, A., Franzoni, M., Conrath, M.: Distribution And Ultrastructure Of Tachykinin-Like Immunoreactivity In The Frog (Rana Esculenta) Spinal Cord, Notably, The Dorsal Horn. (2001) J Comp Neurol, 433 (2), Pp. 183-192.

13. Seltzer, Z., Devor, M.: Effect Of Nerve-Section On The Spinal Distribution Of Neighboring Nerves. (1984) Brain Res, 106 (1-2), Pp. 31-37.

14. Smith, C.: The Critical Period For Peripheral Specification Of Dorsal-Root Ganglion Neurons Is Related To The Period Of Sensory Neurogenesis. (1990) Dev Biol, 142 (2), Pp. 476-480.

15. Smith, C., Frank, E.: Specificity Of Sensory Projections To The Spinal-Cord During Development In Bullfrogs. (1988) J Comp Neurol, 269 (1), Pp. 96-108.

16. Smith, C., Frank, E.: Peripheral Specification Of Sensory Neurons Transplanted To Novel Locations Along The Neuraxis. (1987) Journal Of Neuroscience, 7 (5), Pp. 1537-1549.

17. Stein, P.: The Vertebrate Scratch Reflex. (1983) Symp Soc Exp Biol, (37), Pp. 383-403.

18. Stevens, C.W.: Nonmammalian models for the study of pain. (2008) Sourcebook of Models for Biomedical Research , pp. 341-352.

19. Vanderlinden, J., Tendonkelaar, H., Deboervanhuizen, R.: Development Of Spinocerebellar Afferents In The Clawed Toad, Xenopus-Laevis. (1988) J Comp Neurol, 277 (1), Pp. 41-52.

Függő idézetek: 2 1. Szekely, G., Antal, M.: Segregation Of Muscle And Cutaneous Afferent Fiber

Terminals In The Brachial Spinal-Cord Of The Frog. (1984) J Hirnforsch, 25 (6), Pp. 671-675.

2. Szekely, G., Matesz, C.: Topography And Organization Of Cranial Nerve Nuclei In The Sand Lizard, Lacerta-Agilis. (1988) J Comp Neurol, 267 (4), Pp. 525-544.

Page 40: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

58. Székely, G., Matesz, K.: The accessory motor nuclei of the trigeminal, facial and abducens nerves.

J. Comp. Neurol. 210 (3), 258-264, 1982.

DOI: http://dx.doi.org/10.1002/cne.902100305

IF:4.135

Idézetek összesen: 53

Független idézetek: 47 1. Auclair, F., Valdes, N., Marchand, R.: Rhombomere-specific origin of

branchial and visceral motoneurons of the facial nerve in the rat embryo. (1996) J Comp Neurol, 369 (3), pp. 451-461.

2. Barbashenry, H., Lohman, A.: The motor complex and primary projections of the trigeminal nerve in the monitor lizard, varanus-exanthematicus. (1986) J Comp Neurol, 254 (3), pp. 314-329.

3. Billig, I., Balaban, C.: Zonal organization of the vestibulo-cerebellum in the control of horizontal extraocular muscles using pseudorabies virus: I. Flocculus/ventral paraflocculus. (2004) Neuroscience, 125 (2), pp. 507-520.

4. Brown, M.: Fiber pathways and branching patterns of biocytin-labeled olivocochlear neurons in the mouse brain-stem. (1993) J Comp Neurol, 337 (4), pp. 600-613.

5. Byrd, K.: Craniofacial sequelae of lesions to facial and trigeminal motor nuclei in growing-rats. (1988) Am J Phys Anthropol, 76 (1), pp. 87-103.

6. Delgadogarcia, J., Evinger, C., Escudero, M., Baker, R.: Behavior of accessory abducens and abducens motoneurons during eye retraction and rotation in the alert cat. (1990) J Neurophysiol, 64 (2), pp. 413-422.

7. Denboer, P., Bout, R., Dubbeldam, L.: Topographical representation of the jaw muscles within the trigeminal motor nucleus - an hrp study in the mallard, anas-platyrhynchos. (1986) Acta Morphol Neerl, 24 (1), pp. 1-17.

8. Destombes, J., Durand, J., Gogan, P., Gueritaud, J., Horchollebossavit, G., Tycdumont, S.: Ultrastructural and electrophysiological properties of accessory abducens nucleus motoneurones - an intracellular horseradish-peroxidase study in the cat. (1983) Neuroscience, 10 (4), pp. 1317-&.

9. Donga, R., Dubuc, R., Kolta, A., Lund, J.: Evidence that the masticatory muscles receive a direct innervation from cell group-K in the rabbit. (1992) Neuroscience, 49 (4), pp. 951-961.

10. Durand, J.: Electrophysiological and morphological properties of rat abducens motoneurones. (1989) Experimental Brain Research, 76 (1), pp. 141-152.

11. Durand, J., Gogan, P., Gueritaud, J., Horchollebossavit, G., Tycdumont, S.: Morphological and electro-physiological properties of trigeminal neurons projecting to the accessory abducens nucleus of the cat. (1983) Experimental Brain Research, 53 (1), pp. 118-128.

12. El Hassni, M., Bennis, M., Rio, J., Reperant, J.: Localization of motoneurons innervating the extraocular muscles in the chameleon (chamaeleo chameleon). (2000) Anat Embryol, 201 (1), pp. 63-74.

13. Friauf, E., Baker, R.: An intracellular hrp-study of cat tensor tympani motoneurons. (1985) Experimental Brain Research, 57 (3), pp. 499-511.

14. Gemba-Nishimura, A., Inoue, T., Nakamura, S., Nakayama, K., Mochizuki, A., Shintani, S., Yoshimura, S.: Properties of synaptic transmission from the reticular formation dorsal to the facial nucleus to trigeminal motoneurons during early postnatal development in rats. (2010) Neuroscience, 166 (3), pp. 1008-1022.

15. Gonzalez, A., Munoz, M.: Distribution and morphology of abducens motoneurons innervating the lateral rectus and retractor bulbi muscles in the frog rana-ridibunda. (1987) Neurosci Lett, 79 (1-2), pp. 29-34.

16. Guinan, J., Joseph, M., Norris, B.: Brain-stem facial-motor pathways from 2 distinct groups of stapedius motoneurons in the cat. (1989) J Comp Neurol, 287 (1), pp. 134-144.

Page 41: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

17. Hadlock, T., Lindsay, R., Edwards, C., Smitson, C., Weinberg, J., Knox, C., Heaton, J.T.: The effect of electrical and mechanical stimulation on the regenerating rodent facial nerve. (2010) Laryngoscope, 120 (6), pp. 1094-1102.

18. Housley, G., Montgomery, J.: Central projections of vestibular afferents from the horizontal semicircular canal in the carpet shark cephaloscyllium-isabella rid D-4310-2009. (1983) J Comp Neurol, 221 (2), pp. 154-162.

19. Ichikawa, T., Shimizu, T.: Organization of choline acetyltransferase-containing structures in the cranial nerve motor nuclei and spinal cord of the monkey. (1998) Brain Res, 779 (1-2), pp. 96-103.

20. Jacquin, M., Rhoades, R., Enfiejian, H., Egger, M.: Organization and morphology of masticatory neurons in the rat - a retrograde hrp study. (1983) J Comp Neurol, 218 (3), pp. 239-256.

21. Joseph, M., Guinan, J., Fullerton, B., Norris, B., Kiang, N.: Number and distribution of stapedius motoneurons in cats. (1985) J Comp Neurol, 232 (1), pp. 43-54.

22. Kang, T., Lee, B., Seo, J., Song, S., Kim, J., Won, M., Lee, I., Lee, H.: The nuclei innervating digastric muscle do not project to the hypoglossal nucleus in the rat. (1999) Anatomia Histologia Embryologia-Journal of Veterinary Medicine Series C-Zentralblatt Fur Veterinarmedizin Reihe C, 28 (1), pp. 39-40.

23. Kawai, Y., Takami, K., Shiosaka, S., Emson, P., Hillyard, C., Girgis, S., Macintyre, I., Tohyama, M.: Topographic localization of calcitonin gene-related peptide in the rat-brain - an immunohistochemical analysis. (1985) Neuroscience, 15 (3), pp. 747-&.

24. Kruger, L., Mantyh, P., Sternini, C., Brecha, N., Mantyh, C.: Calcitonin gene-related peptide (cgrp) in the rat central nervous-system - patterns of immunoreactivity and receptor-binding sites. (1988) Brain Res, 463 (2), pp. 223-244.

25. Lingenhohl, K., Friauf, E.: Sensory neurons and motoneurons of the jaw-closing reflex pathway in rats - a combined morphological and physiological study using the intracellular horseradish-peroxidase technique. (1991) Experimental Brain Research, 83 (2), pp. 385-396.

26. Mogoseanu, D., Smith, A., Bolam, J.: Monosynaptic innervation of trigeminal motor-neurons involved in mastication by neurons of the parvicellular reticular-formation. (1993) J Comp Neurol, 336 (1), pp. 53-65.

27. Montgomery, J., Housley, G.: The abducens nucleus in the carpet shark cephaloscyllium-isabella rid D-4310-2009. (1983) J Comp Neurol, 221 (2), pp. 163-168.

28. Nomura, S., Mizuno, N.: Axonal trajectories of masticatory motoneurons - a genu formation of axons of jaw-opening motoneurons in the cat. (1983) Neurosci Lett, 37 (1), pp. 11-15.

29. Petropoulos, A., Cheney, M.: Induction of facial muscle neurotization by temporalis muscle transposition: Literature review and animal model evaluation using horseradish peroxidase uptake. (2000) J Otolaryngol, 29 (1), pp. 40-46.

30. Raappana, P., Arvidsson, J.: Location, morphology, and central projections of mesencephalic trigeminal neurons innervating rat masticatory muscles studied by axonal-transport of choleragenoid-horseradish peroxidase. (1993) J Comp Neurol, 328 (1), pp. 103-114.

31. Rethelyi, M., Metz, C., Lund, P.: Distribution of neurons expressing calcitonin gene-related peptide messenger-rnas in the brain-stem, spinal-cord and dorsal-root ganglia of rat and guinea-pig. (1989) Neuroscience, 29 (1), pp. 225-239.

32. Rokx, J., Juch, P., Vanwilligen, J.: On the bilateral innervation of masticatory muscles - a study with retrograde tracers. (1985) J Anat, 140 (MAR), pp. 237-243.

33. Rokx, J., Vanwilligen, J.: Arrangement of supramandibular and suprahyoid motoneurons in the rat - a fluorescent tracer study. (1985) Acta Anat, 122 (3), pp. 158-162.

Page 42: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

34. Sakai, K., Luppi, P., Salvert, D., Kimura, H., Maeda, T., Jouvet, M.: Localization of cholinergic neurons in the cat lower brain-stem. (1986) Comptes Rendus De L Academie Des Sciences Serie Iii-Sciences De La Vie-Life Sciences, 303 (8), pp. 317-&.

35. Satoh, K., Armstrong, D., Fibiger, H.: A comparison of the distribution of central cholinergic neurons as demonstrated by acetylcholinesterase pharmacohistochemistry and choline-acetyltransferase immunohistochemistry. (1983) Brain Res Bull, 11 (6), pp. 693-720.

36. Schnyder, H.: The innervation of the monkey accessory lateral rectus muscle. (1984) Brain Res, 296 (1), pp. 139-144.

37. Semba, K., Egger, M.: The facial motor-nerve of the rat - control of vibrissal movement and examination of motor and sensory components. (1986) J Comp Neurol, 247 (2), pp. 144-158.

38. Semba, K., Fibiger, H.: Organization of central cholinergic systems. (1989) Prog Brain Res, 79 , pp. 37-63.

39. Setsu, T., Ikeda, Y., Woodhams, P., Terashima, T.: Branchiogenic motoneurons innervating facial, masticatory, and esophageal muscles show aberrant distribution in the reeler-phenotype mutant rat, shaking rat kawasaki. (2001) J Comp Neurol, 439 (3), pp. 275-290.

40. Song, J., Boord, R.: Motor components of the trigeminal nerve and organization of the mandibular arch muscles in vertebrates - phylogenetically conservative patterns and their ontogenic basis. (1993) Acta Anat, 148 (2-3), pp. 139-149.

41. Terashima, T., Kishimoto, Y., Ochiishi, T.: Musculotopic organization in the motor trigeminal nucleus of the reeler mutant mouse. (1994) Brain Res, 666 (1), pp. 31-42.

42. Toth, P., Csank, G., Lazar, G.: Morphology of the cells of origin of descending pathways to the spinal-cord in rana-esculenta - a tracing study using cobaltic-lysine complex. (1985) J Hirnforsch, 26 (4), pp. 365-383.

43. Turman, J.E., Jr.: The development of mastication in rodents: From neurons to behaviors. (2007) Arch Oral Biol, 52 (4), pp. 313-316.

44. Turman, J., Chopiuk, N., Shuler, C.: The krox-20 null mutation differentially affects the development of masticatory muscles. (2001) Dev Neurosci, 23 (2), pp. 113-121.

45. Ueyama, T., Satoda, T., Tashiro, T., Sugimoto, T., Matsushima, R., Mizuno, N.: Infrahyoid and accessory motoneurons in the japanese monkey (macaca-fuscata). (1990) J Comp Neurol, 291 (3), pp. 373-382.

46. Urakami, H., Chiu, A.: A monoclonal-antibody that recognizes somatic motor neurons in the mature rat nervous-system. (1990) Journal of Neuroscience, 10 (2), pp. 620-630.

47. Woolf, N.: Cholinergic systems in mammalian brain and spinal-cord. (1991) Prog Neurobiol, 37 (6), pp. 475-524.

Függő idézetek: 6 1. Matesz, C.: Development of the abducens nuclei in the xenopus-laevis. (1990)

Dev Brain Res, 51 (2), pp. 179-184. 2. Matesz, C., Birinyi, A., Kothalawala, D., Szekely, G.: Investigation of the

dendritic geometry of brain-stem motoneurons with different functions using multivariant statistical techniques in the frog. (1995) Neuroscience, 65 (4), pp. 1129-1144.

3. Matesz, C., Szekely, G.: Organization of the ambiguus nucleus in the frog (rana esculenta). (1996) J Comp Neurol, 371 (2), pp. 258-269.

4. Matesz, C., Szekely, G.: The motor nuclei of the glossopharyngeal-vagal and the accessorius nerves in the rat. (1983) Acta Biol Hung, 34 (2-3), pp. 215-&.

5. Szekely, G., Matesz, C.: Topography and organization of cranial nerve nuclei in the sand lizard, lacerta-agilis. (1988) J Comp Neurol, 267 (4), pp. 525-544.

6. Szekely, G., Matesz, C.: Trigeminal motoneurons with disparate dendritic geometry innervate different muscle groups in the frog. (1987) Neurosci Lett, 77 (2), pp. 161-165.

Page 43: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

59. Baker, R.E., Matesz, K., Urbán, L.: Peripheral reinnervation patterns and dorsal root ganglion cell

topograpy in skin-grafted Rana pipiens frogs.

Brain Res. Bull. 7 (6), 635-638, 1981.

IF:1.064

Idézetek összesen: 2

Független idézetek: 2 1. Davis, M.R., Constantine‐Paton, M.: Hyperplasia in the spinal sensory system

of the frog. II. central and peripheral connectivity patterns. (1983) J Comp Neurol, 221 (4), pp. 453-465.

2. Frank, E.: Development of specific sensory-motor pathways in amphibians. (1983) Trends Neurosci, 6 , pp. 463-467.

60. Baker, R.E., Matesz, K., Corner, M.A., Székely, G.: Peripheral reinnervation patterns and dorsal root

ganglion topography in skin-grafted frogs: A behavioral and histological examination.

Dev. Neurosci. 4 (2), 134-141, 1981.

IF:1.39

Idézetek összesen: 5

Független idézetek: 2 1. Prats-Galino, A., Puigdellivol-Sanchez, A., Ruano-Gil, D., Molander, C.:

Representations of hindlimb digits in rat dorsal root ganglia. (1999) J Comp Neurol, 408 (1), pp. 137-145.

2. Puigdellivol-Sanchez, A., Prats-Galino, A., Ruano-Gil, D., Molander, C.: Sciatic and femoral nerve sensory neurones occupy different regions of the L4 dorsal root ganglion in the adult rat. (1998) Neurosci Lett, 251 (3), pp. 169-172.

Függő idézetek: 3 1. Baker, R., Matesz, K., Corner, M.: Shifts in dorsal-root ganglion-cell sizes

following early skin rotation in the frog discoglossus pictus. (1981) Ircs Medical Science-Biochemistry, 9 (11), pp. 1073-1073.

2. Baker, R., Matesz, K., Urban, L.: Peripheral re-innervation patterns and dorsal-root ganglion-cell topography in skin-grafted rana-pipiens frogs. (1981) Brain Res Bull, 7 (6), pp. 635-638.

3. Corner, M.: Reciprocity of structure-function relations in developing neural networks - the odyssey of a self-organizing brain through research fads, fallacies and prospects. (1994) Self-Organizing Brain: from Growth Cones to Functional Networks, 102 , pp. 3-31.

61. Matesz, K.: Peripheral and central distribution of fibers of the mesencephalic trigeminal root in the

rat.

Neurosci. Lett. 27 (1), 13-17, 1981.

DOI: http://dx.doi.org/10.1016/0304-3940(81)90198-1

IF:2.873

Idézetek összesen: 79

Független idézetek: 77 1. Anadon, R., Demiguel, E., Gonzalezfuentes, M., Rodicio, C.: Hrp study of the

central components of the trigeminal nerve in the larval sea lamprey - organization and homology of the primary medullary and spinal nucleus of the trigeminus. (1989) J Comp Neurol, 283 (4), pp. 602-610.

Page 44: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

2. Appenteng, K., Donga, R., Williams, R.: Morphological and electrophysiological determination of the projections of jaw-elevator muscle-spindle afferents in rats. (1985) Journal of Physiology-London, 369 (DEC), pp. 93-113.

3. Arends, J., Dubbeldam, J.: Exteroceptive And Proprioceptive Afferents Of The Trigeminal And Facial Motor Nuclei In The Mallard (Anas-Platyrhynchos L). (1982) J Comp Neurol, 209 (3), Pp. 313-329.

4. Arvidsson, J., Pfaller, K.: Central projections of C4-C8 dorsal-root ganglia in the rat studied by anterograde transport of wga-hrp. (1990) J Comp Neurol, 292 (3), pp. 349-362.

5. Arvidsson, J., Raappana, P.: An hrp study of the central projections from primary sensory neurons innervating the rat masseter muscle. (1989) Brain Res, 480 (1-2), pp. 111-118.

6. Barbashenry, H., Lohman, A.: The motor complex and primary projections of the trigeminal nerve in the monitor lizard, varanus-exanthematicus. (1986) J Comp Neurol, 254 (3), pp. 314-329.

7. Barnett, E., Perlman, S.: The olfactory nerve and not the trigeminal nerve is the major site of cns entry for mouse hepatitis-virus, strain jhm. (1993) Virology, 194 (1), pp. 185-191.

8. Borke, R., Nau, M., Ringler, R.: Brain-stem afferents of hypoglossal neurons in the rat. (1983) Brain Res, 269 (1), pp. 47-55.

9. Bout, R., Tellegen, A., Dubbeldam, J.: Central connections of the nucleus mesencephalicus nervi trigemini in the mallard (anas platyrhynchos L). (1997) Anat Rec, 248 (4), pp. 554-565.

10. Buisseretdelmas, C., Epelbaum, M., Buisseret, P.: The vestibular nuclei of the cat receive a primary afferent projection from receptors in extraocular-muscles. (1990) Experimental Brain Research, 81 (3), pp. 654-658.

11. BuisseretDelmas, C., Pinganaud, G., Compoint, C., Buisseret, P.: Projection from trigeminal nuclei to neurons of the mesencephalic trigeminal nucleus in rat. (1997) Neurosci Lett, 229 (3), pp. 189-192.

12. Byers, M., Dong, W.: Comparison of trigeminal receptor location and structure in the periodontal-ligament of different types of teeth from the rat, cat, and monkey. (1989) J Comp Neurol, 279 (1), pp. 117-127.

13. Chapotat, B., Stuart, M., Buda, C., Woda, A.: Demonstration with [C-14] 2-deoxyglucose of brain structures involved in the masticatory activity of the hedgehog (erinaceus-europaeus). (1990) Brain Res, 536 (1-2), pp. 139-145.

14. Cruccu, G., Truini, A., Priori, A.: Excitability of the human trigeminal motoneuronal pool and interactions with other brainstem reflex pathways. (2001) Journal of Physiology-London, 531 (2), pp. 559-571.

15. Dacey, D.: Axon morphology of mesencephalic trigeminal neurons in a snake, thamnophis-sirtalis. (1982) J Comp Neurol, 204 (3), pp. 268-279.

16. Dessem, D., Luo, P.: Jaw-muscle spindle afferent feedback to the cervical spinal cord in the rat. (1999) Experimental Brain Research, 128 (4), pp. 451-459.

17. Dessem, D., Taylor, A.: Morphology of jaw-muscle spindle afferents in the rat. (1989) J Comp Neurol, 282 (3), pp. 389-403.

18. Donga, R., Ishizuka, K., Satoh, Y., Scott, J., Murakami, T.: Physiological evidence in support of a direct projection by jaw muscle spindle afferents to the caudal medulla in the anaesthetized rat. (1999) Neurobiology of Mastication - from Molecular to Systems Approach, 1186 , pp. 270-274.

19. Gonzalez, A., Munoz, M.: Central distribution of the efferent cells and the primary afferent-fibers of the trigeminal nerve in pleurodeles-waltlii (amphibia, urodela). (1988) J Comp Neurol, 270 (4), pp. 517-527.

20. Herbert, H., Moga, M., Saper, C.: Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular-formation in the rat. (1990) J Comp Neurol, 293 (4), pp. 540-580.

21. Hummel, G., Hild, A., Wenisch, S.: Development, cytoarchitecture and ultrastructure of the mesencephalic trigeminal nucleus in domestic ruminants. (1997) Anatomia Histologia Embryologia-Journal of Veterinary Medicine Series C-Zentralblatt Fur Veterinarmedizin Reihe C, 26 (2), pp. 99-106.

Page 45: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

22. Iida, C., Oka, A., Moritani, M., Kato, T., Haque, T., Sato, F., Nakamura, M., Uchino, K., Seki, S., Bae, Y.C., Takada, K., Yoshida, A.: Corticofugal direct projections to primary afferent neurons in the trigeminal mesencephalic nucleus of rats. (2010) Neuroscience, 169 (4), pp. 1739-1757.

23. Jacquin, M., Chiaia, N., Haring, J., Rhoades, R.: Intersubnuclear connections within the rat trigeminal brain-stem complex. (1990) Somatosensory and Motor Research, 7 (4), pp. 399-420.

24. Jacquin, M., Semba, K., Egger, M., Rhoades, R.: Organization of hrp-labeled trigeminal mandibular primary afferent neurons in the rat. (1983) J Comp Neurol, 215 (4), pp. 397-420.

25. Jacquin, M., Semba, K., Rhoades, R., Egger, M.: Trigeminal primary afferents project bilaterally to dorsal horn and ipsilaterally to cerebellum, reticular-formation, and cuneate, solitary, supratrigeminal and vagal nuclei. (1982) Brain Res, 246 (2), pp. 285-291.

26. Juch, P., Rokx, J.: Efferent Projections Of The Parvocellular Reticular Nucleus To The Mesencephalic Trigeminal Nucleus In Rat. (1988) Brain Res, 462 (1), Pp. 185-189.

27. Kirzinger, A., Jurgens, U.: Vocalization-Correlated Single-Unit Activity In The Brain-Stem Of The Squirrel-Monkey. (1991) Experimental Brain Research, 84 (3), Pp. 545-560.

28. Kubota, K., Narita, N., Ohkubo, K., Hosaka, K., Nagae, K., Lee, M., Kawamoto, T., Kubota, M., Odagiri, N.: Central projection of proprioceptive afferents arising from maxillo-facial regions in some animals studied by hrp-labeling technique. (1988) Anat Anz, 165 (2-3), pp. 229-251.

29. Kunzle, H.: Meso-diencephalic regions projecting to spinal-cord and dorsal column nuclear-complex in the hedgehog-tenrec, echinops-telfairi. (1992) Anat Embryol, 185 (1), pp. 57-68.

30. Kunzle, H., Rehkamper, G.: Distribution of cortical-neurons projecting to dorsal column nuclear-complex and spinal-cord in the hedgehog tenrec, echinops-telfairi. (1992) Somatosensory and Motor Research, 9 (3), pp. 185-197.

31. Lazarov, N.: Comparative analysis of the chemical neuroanatomy of the mammalian trigeminal ganglion and mesencephalic trigeminal nucleus. (2002) Prog Neurobiol, 66 (1), pp. 19-59.

32. Lazarov, N.: The mesencephalic trigeminal nucleus in the cat. (2000) Mesencephalic Trigeminal Nucleus in the Cat, 153 , pp. 1-+.

33. Lingenhohl, K., Friauf, E.: Sensory neurons and motoneurons of the jaw-closing reflex pathway in rats - a combined morphological and physiological study using the intracellular horseradish-peroxidase technique. (1991) Experimental Brain Research, 83 (2), pp. 385-396.

34. Lowe, D., Russell, I.: The relation between soma position and fiber trajectory of neurons in the mesencephalic trigeminal nucleus of xenopus-laevis. (1984) Proceedings of the Royal Society of London Series B-Biological Sciences, 221 (1225), pp. 437-&.

35. Lucier, G., Egizii, R.: Central projections of the ethmoidal nerve of the cat as determined by the horseradish-peroxidase tracer technique. (1986) J Comp Neurol, 247 (1), pp. 123-132.

36. Luo, P., Dessem, D.: Inputs from identified jaw-muscle spindle afferents to trigeminothalamic neurons in the rat - a double-labeling study using retrograde hrp and intracellular biotinamide. (1995) J Comp Neurol, 353 (1), pp. 50-66.

37. Luo, P., Wang, B., Peng, Z., Li, J.: Morphological-characteristics and terminating patterns of masseteric neurons of the mesencephalic trigeminal nucleus in the rat - an intracellular horseradish-peroxidase labeling study. (1991) J Comp Neurol, 303 (2), pp. 286-299.

38. Luo, P., Wong, R., Dessem, D.: Projection of jaw-muscle spindle afferents to the caudal brain-stem in rats demonstrated using intracellular biotinamide. (1995) J Comp Neurol, 358 (1), pp. 63-78.

39. Luo, P., Zhang, J., Yang, R., Pendlebury, W.: Neuronal circuitry and synaptic organization of trigeminal proprioceptive afferents mediating tongue movement and jaw-tongue coordination via hypoglossal premotor neurons. (2006) Eur J Neurosci, 23 (12), pp. 3269-3283.

Page 46: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

40. Luschei, E.: Central projections of the mesencephalic nucleus of the 5th nerve - an autoradiographic study. (1987) J Comp Neurol, 263 (1), pp. 137-145.

41. Marfurt, C., Rajchert, D.: Trigeminal primary afferent-projections to non-trigeminal areas of the rat central-nervous-system. (1991) J Comp Neurol, 303 (3), pp. 489-511.

42. Matsuo, S., Ichikawa, H., Silos-Santiago, I., Arends, J., Henderson, T., Kiyomiya, K., Kurebe, M., Jacquin, M.: Proprioceptive afferents survive in the masseter muscle of trkC knockout mice. (2000) Neuroscience, 95 (1), pp. 209-216.

43. Munoz, M., Gonzalez, A.: Electron-Microscopic Observations Of The Trigeminal Mesencephalic Nucleus In The Frog, Rana-Ridibunda. (1990) J Hirnforsch, 31 (3), Pp. 341-348.

44. Munoz, M., Munoz, A., Gonzalez, A.: Distribution, morphology, and central projections of mesencephalic trigeminal neurons in the frog rana-ridibunda. (1993) Anat Rec, 235 (1), pp. 165-177.

45. Nagy, I., Sik, A., Polgar, E., Petko, M., Antal, M.: Combination of cobalt labeling with immunocytochemical reactions for electron-microscopic investigations on frog spinal-cord. (1994) Microsc Res Tech, 28 (1), pp. 60-66.

46. Nagy, J., Buss, M., Daddona, P.: On the innervation of trigeminal mesencephalic primary afferent neurons by adenosine deaminase-containing projections from the hypothalamus in the rat. (1986) Neuroscience, 17 (1), pp. 141-156.

47. Nomura, S., Mizuno, N.: Differential distribution of cell-bodies and central axons of mesencephalic trigeminal nucleus neurons supplying the jaw-closing muscles and periodontal tissue - a transganglionic tracer study in the cat. (1985) Brain Res, 359 (1-2), pp. 311-319.

48. Panneton, W.M., Gan, Q., Juric, R.: Brainstem projections from recipient zones of the anterior ethmoidal nerve in the medullary dorsal horn. (2006) Neuroscience, 141 (2), pp. 889-906.

49. Panneton, W.: Primary Afferent-Projections From The Upper Respiratory-Tract In The Muskrat. (1991) J Comp Neurol, 308 (1), Pp. 51-65.

50. Pfaller, K., Arvidsson, J.: Central distribution of trigeminal and upper cervical primary afferents in the rat studied by anterograde transport of horseradish-peroxidase conjugated to wheat-germ agglutinin. (1988) J Comp Neurol, 268 (1), pp. 91-108.

51. Pombal, M., AlvarezOtero, R., Rodicio, M., Anadon, R.: A tract-tracing study of the central projections of the mesencephalic nucleus of the trigeminus in the guppy (lebistes reticulatus, teleostei), with some observations on the descending trigeminal tract. (1997) Brain Res Bull, 42 (2), pp. 111-118.

52. Puzdrowski, R.: Afferent-projections of the trigeminal nerve in the goldfish, carassius-auratus. (1988) J Morphol, 198 (2), pp. 131-147.

53. Raappana, P., Arvidsson, J.: Location, morphology, and central projections of mesencephalic trigeminal neurons innervating rat masticatory muscles studied by axonal-transport of choleragenoid-horseradish peroxidase. (1993) J Comp Neurol, 328 (1), pp. 103-114.

54. Raappana, P., Arvidsson, J.: The reaction of mesencephalic trigeminal neurons to peripheral-nerve transection in the adult-rat. (1992) Experimental Brain Research, 90 (3), pp. 567-571.

55. Ro, J., Capra, N.: Receptive-Field Properties Of Trigeminothalamic Neurons In The Rostral Trigeminal Sensory Nuclei Of Cats. (1994) Somatosensory And Motor Research, 11 (2), Pp. 119-130.

56. Rokx, J., Juch, P., Vanwilligen, J.: Arrangement and connections of mesencephalic trigeminal neurons in the rat. (1986) Acta Anat, 127 (1), pp. 7-15.

57. Rokx, J., Luiten, P., Vanwilligen, J.: Afferent-projections to the mesencephalic trigeminal nucleus in the rat - anterograde tracing with phaseolus-vulgaris leukoagglutinin. (1988) Acta Anat, 132 (3), pp. 260-264.

58. Rokx, J., Vanwilligen, J., Juch, P.: Bilateral brain-stem connections of the rat supratrigeminal region. (1986) Acta Anat, 127 (1), pp. 16-21.

Page 47: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

59. Ryu, K., Watanabe, K., Kawana, E.: The Mesencephalic Root Fibers Of The Trigeminal Nerve In The Dog. (1983) Acta Anat, 116 (1), Pp. 26-36.

60. Segade, L., Quintanilla, D., Nunez, J.: The postganglionic parasympathetic fibers originating in the otic ganglion are distributed in several branches of the trigeminal mandibular nerve - an hrp study in the guinea-Pig. (1987) Brain Res, 411 (2), Pp. 386-390.

61. Segade, L., Quintanilla, J., Cobos, A.: Contralateral projections of trigeminal mandibular primary afferents in the guinea-pig as seen by transganglionic transport of horseradish-peroxidase. (1990) Brain Res, 506 (2), pp. 267-280.

62. Seng, K., Jeng, Y., Wai, C.: Localizing spinal-cord-projecting neurons in adult albino-rats. (1984) J Comp Neurol, 228 (1), pp. 1-17.

63. Shammahlagnado, S., Costa, M., Ricardo, J.: Afferent connections of the parvocellular reticular-formation - a horseradish-peroxidase study in the rat. (1992) Neuroscience, 50 (2), pp. 403-425.

64. Shigenaga, Y., Mitsuhiro, Y., Shirana, Y., Tsuru, H.: 2 Types Of Jaw-Muscle Spindle Afferents In The Cat As Demonstrated By Intraaxonal Staining With Hrp. (1990) Brain Res, 514 (2), Pp. 219-237.

65. Shigenaga, Y., Sera, M., Nishimori, T., Suemune, S., Nishimura, M., Yoshida, A., Tsuru, K.: The central projection of masticatory afferent-fibers to the trigeminal sensory nuclear-complex and upper cervical spinal-cord. (1988) J Comp Neurol, 268 (4), pp. 489-507.

66. Shortland, P., DeMaro, J., Jacquin, M.: Trigeminal structure-function relationships: A reevaluation based on long-range staining of a large sample of brainstem A beta fibers. (1995) Somatosensory and Motor Research, 12 (3-4), pp. 249-275.

67. Sirkin, D., Feng, A.: Autoradiographic study of descending pathways from the pontine reticular-formation and the mesencephalic trigeminal nucleus in the rat. (1987) J Comp Neurol, 256 (4), pp. 483-493.

68. Takada, M., Itoh, K., Yasui, Y., Mitani, A., Nomura, S., Mizuno, N.: Distribution of premotor neurons for the hypoglossal nucleus in the cat. (1984) Neurosci Lett, 52 (1-2), pp. 141-146.

69. Ugolini, G.: Specificity of rabies virus as a transneuronal tracer of motor networks - transfer from hypoglossal motoneurons to connected 2nd-order and higher-order central-nervous-system cell groups. (1995) J Comp Neurol, 356 (3), pp. 457-480.

70. Vornov, J., Sutin, J.: Noradrenergic hyperinnervation of the motor trigeminal nucleus - alterations in membrane-properties and responses to synaptic input. (1986) Journal of Neuroscience, 6 (1), pp. 30-37.

71. Vornov, J., Sutin, J.: Brain-stem projections to the normal and noradrenergically hyperinnervated trigeminal motor nucleus. (1983) J Comp Neurol, 214 (2), pp. 198-208.

72. Walberg, F., Dietrichs, E., Nordby, T.: The medullary projection from the mesencephalic trigeminal nucleus - an experimental-study with comments on the intrinsic trigeminal connections. (1984) Experimental Brain Research, 56 (2), pp. 377-383.

73. Yasuda, K., Furusawa, K., Tanaka, M., Yamaoka, M.: The distribution of afferent neurons in the trigeminal mesencephalic nucleus and the central projection of afferent fibers of the mylohyoid nerve in the rat. (1995) Somatosensory and Motor Research, 12 (3-4), pp. 309-315.

74. Yoshida, A., Mukai, N., Moritani, M., Nagase, Y., Hirose, Y., Honma, S., Fukami, H., Takagi, K., Matsuya, T., Shigenaga, Y.: Physiologic and morphologic properties of motoneurons and spindle afferents innervating the temporal muscle in the cat. (1999) J Comp Neurol, 406 (1), pp. 29-50.

75. Zhang, J., Luo, P.: Ultrastructural features of synapse from dorsal parvocellular reticular formation neurons to hypoglossal motoneurons of the rat. (2003) Brain Res, 963 (1-2), pp. 262-273.

76. Zhang, J., Luo, P., Pendlebury, W.: Light and electron microscopic observations of a direct projection from mesencephalic trigeminal nucleus neurons to hypoglossal motoneurons in the rat. (2001) Brain Res, 917 (1), pp. 67-80.

Page 48: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

77. Zhang, J., Wang, B., Li, H., Li, J.: Projections from neurons innervating the masseter muscle to the subnucleus oralis of the spinal trigeminal nucleus and adjacent lateral reticular-formation in the rat. (1991) J Hirnforsch, 32 (5), pp. 641-646.

Függő idézetek: 2 1. Matesz, C.: Termination areas of primary afferent-fibers of the trigeminal

nerve in the rat. (1983) Acta Biol Hung, 34 (1), pp. 31-43. 2. Szekely, G., Matesz, C.: Topography and organization of cranial nerve nuclei

in the sand lizard, lacerta-agilis. (1988) J Comp Neurol, 267 (4), pp. 525-544.

62. Matesz, K.: Central projections of the VIIIth cranial nerve in the frog.

Neuroscience. 4 (12), 2061-2071, 1979.

DOI: http://dx.doi.org/10.1016/0306-4522(79)90078-2

IF:3.373

Idézetek összesen: 94

Független idézetek: 84 1. Aitken, P.: Autoradiographic demonstration of viiith nerve projections in rana-

pipiens. (1981) Neurosci Lett, 24 (3), pp. 237-242. 2. Altman, J., Dawes, E.: A cobalt study of medullary sensory projections from

lateral line nerves, associated cutaneous nerves, and the viiith nerve in adult xenopus. (1983) J Comp Neurol, 213 (3), pp. 310-326.

3. Anderson, C.: Anatomical evidence for brainstem circuits mediating feeding motor programs in the leopard frog, rana pipiens. (2001) Experimental Brain Research, 140 (1), pp. 12-19.

4. Antal, M., Tornai, I., Szekely, G.: Longitudinal extent of dorsal-root fibers in the spinal-cord and brain-stem of the frog. (1980) Neuroscience, 5 (7), pp. 1311-1322.

5. Ashton, J., Boddy, A., Donaldson, I.: Input from proprioceptors in the extrinsic ocular muscles to the vestibular nuclei in the giant toad, bufo-marinus. (1984) Experimental Brain Research, 53 (2), pp. 409-419.

6. Barbashenry, H., Lohman, A.: Primary projections and efferent cells of the viiith cranial nerve in the monitor lizard, varanus-exanthematicus. (1988) J Comp Neurol, 277 (2), pp. 234-249.

7. Burian, M., Gstoettner, W., Mayr, R.: Brain-stem projection of the vestibular nerve in the guinea-pig - an hrp (horseradish-peroxidase) and wga-hrp (wheat-germ agglutinin-hrp) study. (1990) J Comp Neurol, 293 (2), pp. 165-177.

8. Christensendalsgaard, J., Jorgensen, M.: The response characteristics of vibration-sensitive saccular fibers in the grassfrog, rana-temporaria. (1988) Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology, 162 (5), pp. 633-638.

9. Christensen-Dalsgaard, J., Walkowiak, W.: In vitro and in vivo responses of saccular and caudal nucleus neurons in the grassfrog (rana temporaria). (1999) Eur J Morphol, 37 (2-3), pp. 206-210.

10. Dickman, J., Fang, Q.: Differential central projections of vestibular afferents in pigeons. (1996) J Comp Neurol, 367 (1), pp. 110-131.

11. Dieringer, N.: Vestibular compensation - neural plasticity and its relations to functional recovery after labyrinthine lesions in frogs and other vertebrates. (1995) Prog Neurobiol, 46 (2-3), pp. 97-&.

12. Dieringer, N., Kunzle, H., Precht, W.: Increased projection of ascending dorsal-root fibers to vestibular nuclei after hemilabyrinthectomy in the frog. (1984) Experimental Brain Research, 55 (3), pp. 574-578.

13. Don, D., Newman, A., Micevych, P., Popper, P.: Expression of brain-derived neurotrophic factor and its receptor mRNA in the vestibuloauditory system of the bullfrog. (1997) Hear Res, 114 (1-2), pp. 10-20.

Page 49: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

14. Edwards, C., Kelley, D.: Auditory and lateral line inputs to the midbrain of an aquatic anuran; neuroanatomic studies in xenopus laevis. (2001) J Comp Neurol, 438 (2), pp. 148-162.

15. Fanardjian, V., Manvelyan, L., Nasoyan, A.: Spatial distribution of the vestibulospinal neurons in the frog vestibular nuclei. (2001) Neuroscience, 104 (3), pp. 853-862.

16. Fanardjian, V., Manvelyan, L., Zakarian, V., Pogossian, V., Nasoyan, A.: Electrophysiological properties of the somatotopic organization of the vestibulospinal system in the frog. (1999) Neuroscience, 94 (3), pp. 845-857.

17. Fanardzhyan, V., Manvelyan, L., Pogosyan, V., Zakaryan, V., Arutyunyan, E., Nasoyan, A.: Specific functional features of the correlation between vestibular input and the vestibulospinal system in the frog rana ridibunda. (1998) Journal of Evolutionary Biochemistry and Physiology, 34 (4), pp. 330-335.

18. Fanardzhyan, V., Manvelyan, L., Zakaryan, V., Nasoyan, A.: Electrophysiological analysis of the topical organization of vestibulospinal neurons in the frogs. (1999) Doklady Akademii Nauk, 366 (5), pp. 708-711.

19. Feng, A.: Afferent and efferent innervation patterns of the cochlear nucleus (dorsal medullary nucleus) of the leopard frog. (1986) Brain Res, 367 (1-2), pp. 183-191.

20. Feng, A., Lin, W.: Neuronal architecture of the dorsal nucleus (cochlear nucleus) of the frog, rana pipiens pipiens. (1996) J Comp Neurol, 366 (2), pp. 320-334.

21. Fritzsch, B.: Experimental reorganization in the alar plate of the clawed toad, xenopus-laevis .1. quantitative and qualitative effects of embryonic otocyst extirpation. (1990) Dev Brain Res, 51 (1), pp. 113-122.

22. Fritzsch, B.: The lateral-line and inner-ear afferents in larval and adult urodeles. (1988) Brain Behavior and Evolution, 31 (6), pp. 325-348.

23. Fritzsch, B.: The pattern of lateral-line afferents in urodeles - a horseradish-peroxidase study. (1981) Cell Tissue Res, 218 (3), pp. 581-594.

24. Fritzsch, B., Nikundiwe, A.: Studying nervous connectivity in whole mounted brains of small animals using horseradish-peroxidase. (1984) Mikroskopie, 41 (5-6), pp. 145-149.

25. Fritzsch, B., Nikundiwe, A., Will, U.: Projection patterns of lateral-line afferents in anurans - a comparative hrp study. (1984) J Comp Neurol, 229 (3), pp. 451-469.

26. Fritzsch, B., Will, U., Nikundiwe, A.: The area octavo-lateralis of amphibians - a reinterpretation. (1985) Fortschr Zool, 30 , pp. 603-606.

27. Fuzessery, Z., Feng, A.: Frequency-selectivity in the anuran medulla - excitatory and inhibitory tuning properties of single neurons in the dorsal medullary and superior olivary nuclei. (1983) Journal of Comparative Physiology, 150 (1), pp. 107-119.

28. Fuzessery, Z., Feng, A.: Frequency representation in the dorsal medullary nucleus of the leopard frog, rana P pipiens. (1981) Journal of Comparative Physiology, 143 (3), pp. 339-347.

29. Gonzalez, A., Munoz, M.: The area acustico-vestibularis of discoglossus-pictus .1. cytoarchitecture and ultrastructure features. (1988) J Hirnforsch, 29 (4), pp. 411-419.

30. Gonzalez, A., Munoz, M.: The area acustico-vestibularis of discoglossus-pictus .2. the primary afferent-projections. (1988) J Hirnforsch, 29 (4), pp. 421-434.

31. Gonzalez, A., Munoz, M.: Distribution and morphology of abducens motoneurons innervating the lateral rectus and retractor bulbi muscles in the frog rana-ridibunda. (1987) Neurosci Lett, 79 (1-2), pp. 29-34.

32. Gonzalez, A., Tendonkelaar, H., Deboervanhuizen, R.: Cerebellar connections in xenopus-laevis - an hrp study. (1984) Anat Embryol, 169 (2), pp. 167-176.

33. Gonzalez, M., Manso, M., Anadon, R.: Octavolateral neurons projecting to the middle and posterior rhombencephalic reticular nuclei of larval lamprey: A retrograde horseradish peroxidase labeling study. (1997) J Comp Neurol, 384 (3), pp. 396-408.

Page 50: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

34. Grover, B., Grussercornehls, U.: Cerebellar afferents in the frogs, rana-esculenta and rana temporaria. (1984) Cell Tissue Res, 237 (2), pp. 259-267.

35. Hall, J., Feng, A.: Temporal processing in the dorsal medullary nucleus of the northern leopard frog (rana-pipiens-pipiens). (1991) J Neurophysiol, 66 (3), pp. 955-973.

36. Hall, J., Feng, A.: Classification of the temporal discharge patterns of single auditory neurons in the dorsal medullary nucleus of the northern leopard frog. (1990) J Neurophysiol, 64 (5), pp. 1460-1473.

37. Hall, J., Feng, A.: Evidence for parallel processing in the frogs auditory thalamus. (1987) J Comp Neurol, 258 (3), pp. 407-419.

38. Honrubia, V., Suarez, C., Kuruvilla, A., Sitko, S.: Central projections of primary vestibular fibers in the bullfrog .3. the anterior semicircular canal afferents. (1985) Laryngoscope, 95 (12), pp. 1526-1535.

39. Horn, E., Lang, H., Rayer, B.: The development of the static vestibuloocular reflex in the southern clawed toad, xenopus-laevis .1. intact animals. (1986) Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology, 159 (6), pp. 869-878.

40. Horn, E., Mack, R., Lang, H.: The development of the static vestibuloocular reflex in the southern clawed toad, xenopus-laevis .2. animals with acute vestibular lesions. (1986) Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology, 159 (6), pp. 879-885.

41. Horowitz, S.S., Chapman, J.A., Simmons, A.M.: Plasticity of auditory medullary-midbrain connectivity across metamorphic development in the bullfrog, rana catesbeiana. (2007) Brain Behavior and Evolution, 69 (1), pp. 1-19.

42. Horowitz, S.S., Tanyu, L.H., Simmons, A.M.: Multiple mechanosensory modalities influence development of auditory function. (2007) Journal of Neuroscience, 27 (4), pp. 782-790.

43. Housley, G., Montgomery, J.: Central projections of vestibular afferents from the horizontal semicircular canal in the carpet shark cephaloscyllium-isabella. (1983) J Comp Neurol, 221 (2), pp. 154-162.

44. Jacoby, J., Rubinson, K.: The acoustic and lateral line nuclei are distinct in the premetamorphic frog, rana-catesbeiana. (1983) J Comp Neurol, 216 (2), pp. 152-161.

45. Khorevin, V.I.: Central projections of the lagena (the third otolith endorgan of the inner ear) in the pigeon. (2008) Neurophysiology, 40 (3), pp. 167-177.

46. Khorevin, V.I.: The lagena (the third otolith endorgan in vertebrates). (2008) Neurophysiology, 40 (2), pp. 142-159.

47. Knopfel, T.: Evidence for N-methyl-D-aspartic acid receptor-mediated modulation of the commissural input to central vestibular neurons of the frog. (1987) Brain Res, 426 (2), pp. 212-224.

48. Kunkel, A., Dieringer, N.: Morphological and electrophysiological consequences of unilateral preganglionic versus postganglionic vestibular lesions in the frog. (1994) Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology, 174 (5), pp. 621-632.

49. Kuruvilla, A., Sitko, S., Schwartz, I., Honrubia, V.: Central projections of primary vestibular fibers in the bullfrog .1. the vestibular nuclei. (1985) Laryngoscope, 95 (6), pp. 692-707.

50. Lazar, G.: Long-term persistence, after eye-removal, of unmyelinated fibers in the frog visual pathway. (1980) Brain Res, 199 (1), pp. 219-224.

51. Lazar, G., Losonczy, A.: NADPH-diaphorase-positive neurons and pathways in the brain of the frog rana esculenta. (1999) Anat Embryol, 199 (2), pp. 185-198.

52. Lazar, G., Maderdrut, J., Trasti, S., Liposits, Z., Toth, P., Kozicz, T., Merchenthaler, I.: Distribution of proneuropeptide Y-derived peptides in the brain of rana-esculenta and xenopus-laevis. (1993) J Comp Neurol, 327 (4), pp. 551-571.

53. Lee, W., Newman, A., Honrubia, V.: Afferent innervation of the vestibular nuclei in the chinchilla .1. a method for labeling individual vestibular receptors with horseradish-peroxidase. (1992) Brain Res, 597 (2), pp. 269-277.

Page 51: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

54. Malinvaud, D., Vassias, I., Reichenberger, I., Roessert, C., Straka, H.: Functional organization of vestibular commissural connections in frog. (2010) Journal of Neuroscience, 30 (9), pp. 3310-3325.

55. Mandal, R., Anderson, C.W.: Anatomical organization of brainstem circuits mediating feeding motor programs in the marine toad, bufo marinus. (2009) Brain Res, 1298 , pp. 99-110.

56. Manteuffel, G., Naujoksmanteuffel, C.: Anatomical connections and electrophysiological properties of toral and dorsal tegmental neurons in the terrestrial urodele salamandra-salamandra. (1990) J Hirnforsch, 31 (1), pp. 65-76.

57. Marin, O., Smeets, W., Gonzalez, A.: Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (rana perezi, xenopus laevis) and urodele (pleurodeles waltl) amphibians. (1997) J Comp Neurol, 382 (4), pp. 499-534.

58. Meredith, G.: Comparative view of the central organization of afferent and efferent circuitry for the inner-ear. (1988) Acta Biol Hung, 39 (2-3), pp. 229-249.

59. Montgomery, J., Housley, G.: The abducens nucleus in the carpet shark cephaloscyllium-isabella. (1983) J Comp Neurol, 221 (2), pp. 163-168.

60. Montgomery, N.: Projections of the vestibular and cerebellar nuclei in rana-pipiens. (1988) Brain Behavior and Evolution, 31 (2), pp. 82-95.

61. Morona, R., Gonzalez, A.: Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians. (2009) J Comp Neurol, 515 (5), pp. 503-537.

62. Newman, A., Suarez, C., Lee, W., Honrubia, V.: Afferent innervation of the vestibular nuclei in the chinchilla .2. description of the vestibular nerve and nuclei. (1992) Brain Res, 597 (2), pp. 278-297.

63. Nikundiwe, A., Nieuwenhuys, R.: The cell masses in the brain-stem of the south-african clawed frog xenopus-laevis - a topographical and topological analysis. (1983) J Comp Neurol, 213 (2), pp. 199-219.

64. Petko, M., Santa, A.: Distribution of calcitonin gene-related peptide immunoreactivity in the central-nervous-system of the frog, rana-esculenta. (1992) Cell Tissue Res, 269 (3), pp. 525-534.

65. Pogosyan, V., Arutyunyan, T., Aglintsyan, T., Danielyan, M., Fanardjian, V.: Morphological study of spatial distribution of vestibulospinal neurons in the frog rana ridibunda. (2002) Journal of Evolutionary Biochemistry and Physiology, 38 (6), pp. 773-780.

66. Reichenberger, I., Straka, H., Ottersen, O., Streit, P., Gerrits, N., Dieringer, N.: Distribution of GABA, glycine, and glutamate immunoreactivities in the vestibular nuclear complex of the frog. (1997) J Comp Neurol, 377 (2), pp. 149-164.

67. Roth, G., Nishikawa, K., Naujoksmanteuffel, C., Schmidt, A., Wake, D.: Pedomorphosis and simplification in the nervous-system of salamanders. (1993) Brain Behavior and Evolution, 42 (3), pp. 137-170.

68. Sanchez-Camacho, C., Marin, O., Ten Donkelaar, H., Gonzalez, A.: Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin. (2001) J Comp Neurol, 434 (2), pp. 186-208.

69. 79. Schweitzer, J., Lowe, D.: Mesencephalic and diencephalic cobalt-lysine injections in an elasmobranch - evidence for 2 parallel electrosensory pathways. (1984) Neurosci Lett, 44 (3), pp. 317-322.

70. 80. Straka, H., Baker, R., Gilland, E.: Rhombomeric organization of vestibular pathways in larval frogs. (2001) J Comp Neurol, 437 (1), pp. 42-55.

71. 81. Straka, H., Biesdorf, S., Dieringer, N.: Spatial distribution of semicircular canal nerve evoked monosynaptic response components in frog vestibular nuclei. (2000) Brain Res, 880 (1-2), pp. 70-83.

72. Straka, H., Dieringer, N.: Basic organization principles of the VOR: Lessons from frogs. (2004) Prog Neurobiol, 73 (4), pp. 259-309.

73. Straka, H., Dieringer, N.: Uncrossed disynaptic inhibition of second-order vestibular neurons and its interaction with monosynaptic excitation from

Page 52: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

vestibular nerve afferent fibers in the frog. (1996) J Neurophysiol, 76 (5), pp. 3087-3101.

74. Straka, H., Holler, S., Goto, F., Kolb, F., Gilland, E.: Differential spatial organization of otolith signals in frog vestibular nuclei. (2003) J Neurophysiol, 90 (5), pp. 3501-3512.

75. Straka, H., Reichenberger, I., Dieringer, N.: Size-related properties of vestibular afferent fibers in the frog: Uptake of and immunoreactivity for glycine and aspartate glutamate. (1996) Neuroscience, 70 (3), pp. 685-696.

76. Stuesse, S., Cruce, W., Powell, K.: Organization within the cranial ix-X complex in ranid frogs - a horseradish-peroxidase transport study. (1984) J Comp Neurol, 222 (3), pp. 358-365.

77. Suarez, C., Kuruvilla, A., Sitko, S., Schwartz, I., Honrubia, V.: Central projections of primary vestibular fibers in the bullfrog .2. nerve branches from individual receptors. (1985) Laryngoscope, 95 (10), pp. 1238-1250.

78. Tendonkelaar, H., Deboervanhuizen, R., Schouten, F.: Cells of origin of descending pathways to the spinal-cord in the clawed toad (xenopus-laevis). (1981) Neuroscience, 6 (11), pp. 2297-2312.

79. Toth, P., Csank, G., Lazar, G.: Morphology of the cells of origin of descending pathways to the spinal-cord in rana-esculenta - a tracing study using cobaltic-lysine complex. (1985) J Hirnforsch, 26 (4), pp. 365-383.

80. Voitenko, L.: Vestibulospinal system organization in vertebrates. (1992) Neurophysiology, 24 (2), pp. 139-158.

81. Wilczynski, W., Capranica, R.: The auditory-system of anuran amphibians. (1984) Prog Neurobiol, 22 (1), pp. 1-&.

82. Will, U., Luhede, G., Gorner, P.: The area octavo-lateralis in xenopus-laevis .1. the primary afferent-projections. (1985) Cell Tissue Res, 239 (1), pp. 147-161.

83. Will, U., Luhede, G., Gorner, P.: The area octavo-lateralis in xenopus-laevis .2. 2nd order projections and cytoarchitecture. (1985) Cell Tissue Res, 239 (1), pp. 163-175.

84. Wold, J.: The vestibular nuclei in the domestic hen (gallus-domesticus) .6. afferents from the cerebellum. (1981) J Comp Neurol, 201 (3), pp. 319-341.

Függő idézetek: 10 1. Birinyi, A., Straka, H., Matesz, C., Dieringer, N.: Location of dye-coupled

second order and of efferent vestibular neurons labeled from individual semicircular canal or otolith organs in the frog. (2001) Brain Res, 921 (1-2), pp. 44-59.

2. Deak, A., Bacskai, T., Veress, G., Matesz, C.: Vestibular afferents to the motoneurons of glossopharyngeal and vagus nerves in the frog, rana esculenta. (2009) Brain Res, 1286 , pp. 60-65.

3. Halasi, G., Wolf, E., Bacskai, T., Szekely, G., Modis, L., Szigeti, Z.M., Meszar, Z., Felszeghy, S., Matesz, C.: The effect of vestibular nerve section on the expression of the hyaluronan in the frog, rana esculenta. (2007) Brain Structure & Function, 212 (3-4), pp. 321-334.

4. Kulik, A., Matesz, K., Szekely, G.: Mesencephalic projections of the cochlear nucleus in the frog, rana-esculenta. (1994) Acta Biol Hung, 45 (2-4), pp. 323-335.

5. Matesz, C.: Fine-structure of the primary afferent vestibulocochlear terminals in the frog. (1988) Acta Biol Hung, 39 (2-3), pp. 267-277.

6. Matesz, C.: Termination areas of primary afferent-fibers of the trigeminal nerve in the rat. (1983) Acta Biol Hung, 34 (1), pp. 31-43.

7. Matesz, C., Kulik, A., Bacskai, T.: Ascending and descending projections of the lateral vestibular nucleus in the frog rana esculenta. (2002) J Comp Neurol, 444 (2), pp. 115-128.

8. Matesz C, Bacskai T, Deak A, Racz E, Veress G, Szekely G. Using of confocal laser scanning microscope in the examination of neural network underlying the gaze and posture control. Kimura M, editor. ; 2009.

Page 53: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

9. Matesz, C., Kovalecz, G., Veress, G., Deak, A., Racz, E., Bacskai, T.: Vestibulotrigeminal pathways in the frog, rana esculenta (2008) Brain Res Bull, 75 (2-4), pp. 371-374.

10. Racz, E., Bacskai, T., Halasi, G., Kovacs, E., Matesz, C.: Organization of dye-coupled cerebellar granule cells labeled from afferent vestibular and dorsal root fibers in the frog rana esculenta. (2006) J Comp Neurol, 496 (3), pp. 382-394.

63. Matesz, K.: The motor column and sensory projections of the branchial cranial nerves in the frog.

J. Comp. Neurol. 178 (1), 157-176, 1978.

DOI: http://dx.doi.org/10.1002/cne.901780109

IF:5.198

Idézetek összesen: 98

Független idézetek: 83 1. Altman, J., Dawes, E.: A cobalt study of medullary sensory projections from

lateral line nerves, associated cutaneous nerves, and the viiith nerve in adult xenopus. (1983) J Comp Neurol, 213 (3), pp. 310-326.

2. Anadon, R., Demiguel, E., Gonzalezfuentes, M., Rodicio, C.: Hrp study of the central components of the trigeminal nerve in the larval sea lamprey - organization and homology of the primary medullary and spinal nucleus of the trigeminus. (1989) J Comp Neurol, 283 (4), pp. 602-610.

3. Antal, M.: Termination areas of corticobulbar and corticospinal fibers in the rat. (1984) J Hirnforsch, 25 (6), pp. 647-659.

4. Antal, M., Tornai, I., Szekely, G.: Longitudinal extent of dorsal-root fibers in the spinal-cord and brain-stem of the frog. (1980) Neuroscience, 5 (7), pp. 1311-1322.

5. Barbashenry, H.: The motor nuclei and primary projections of the facial-nerve in the monitor lizard varanus-exanthematicus. (1982) J Comp Neurol, 207 (2), pp. 105-113.

6. Bout, R., Tellegen, A., Dubbeldam, J.: Central connections of the nucleus mesencephalicus nervi trigemini in the mallard (anas platyrhynchos L). (1997) Anat Rec, 248 (4), pp. 554-565.

7. Dacey, D.: Axon morphology of mesencephalic trigeminal neurons in a snake, thamnophis-sirtalis. (1982) J Comp Neurol, 204 (3), pp. 268-279.

8. Davis, G., Farel, P.: Mauthner cells maintain their lumbar projection in adult frog. (1990) Neurosci Lett, 113 (2), pp. 139-143.

9. Dicke, U., Muhlenbrock-Lenter, S.: Primary and secondary somatosensory projections in direct-developing plethodontid salamanders. (1998) J Morphol, 238 (3), pp. 307-326.

10. Dieringer, N., Kunzle, H., Precht, W.: Increased projection of ascending dorsal-root fibers to vestibular nuclei after hemilabyrinthectomy in the frog. (1984) Experimental Brain Research, 55 (3), pp. 574-578.

11. Dubbeldam, J., Brus, E., Menken, S., Zeilstra, S.: Central projections of glossopharyngeal and vagus ganglia in mallard, anas-platyrhynchos L. (1979) J Comp Neurol, 183 (1), pp. 149-168.

12. Ewert, J.: Neural correlates of key stimulus and releasing mechanism: A case study and two concepts. (1997) Trends Neurosci, 20 (8), pp. 332-339.

13. Ewert, J.: Concepts in vertebrate neuroethology. (1985) Anim Behav, 33 (FEB), pp. 1-&.

14. Font, E.: Localization of brain-stem motoneurons involved in dewlap extension in the lizard, anolis-equestris. (1991) Behav Brain Res, 45 (2), pp. 171-176.

15. Fritzsch, B., Nikundiwe, A., Will, U.: Projection patterns of lateral-line afferents in anurans - a comparative hrp study. (1984) J Comp Neurol, 229 (3), pp. 451-469.

16. Gonzalez, A., Lopez, J., Sanchez-Camacho, C., Marin, O.: Localization of choline acetyltransferase (ChAT) immunoreactivity in the brain of a caecilian

Page 54: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

amphibian, dermophis mexicanus (amphibia : Gymnophiona). (2002) J Comp Neurol, 448 (3), pp. 249-267.

17. Gonzalez, A., Munoz, A., Munoz, M.: Trigeminal primary afferent-projections to the spinal-cord of the frog, rana-ridibunda. (1993) J Morphol, 217 (2), pp. 137-146.

18. Gonzalez, A., Tendonkelaar, H., Deboervanhuizen, R.: Cerebellar connections in xenopus-laevis - an hrp study. (1984) Anat Embryol, 169 (2), pp. 167-176.

19. Gorcs, T., Antal, M., Olah, E., Szekely, G.: An improved cobalt labeling technique with complex-compounds. (1979) Acta Biologica Academiae Scientiarum Hungaricae, 30 (1-2), pp. 79-86.

20. Grover, B., Grussercornehls, U.: Cerebellar afferents in the frogs, rana-esculenta and rana temporaria. (1984) Cell Tissue Res, 237 (2), pp. 259-267.

21. Hall, J., Feng, A.: Evidence for parallel processing in the frogs auditory thalamus. (1987) J Comp Neurol, 258 (3), pp. 407-419.

22. Hanamori, T., Ishiko, N.: Intraganglionic distribution of the primary afferent neurons in the frog glossopharyngeal nerve and its transganglionic projection to the rhombencephalon studied by hpr method. (1983) Brain Res, 260 (2), pp. 191-199.

23. Hanamori, T., Ishiko, N.: Surface and intramedullary potentials-evoked by stimulation of the glossopharyngeal nerve in frogs. (1983) Brain Res, 260 (1), pp. 51-60.

24. Hiscock, J., Straznicky, C.: Peripheral and central terminations of axons of the mesencephalic trigeminal neurons in xenopus. (1982) Neurosci Lett, 32 (3), pp. 235-240.

25. Jacobs, V.: Sensory component of the facial-nerve of a reptile (lacerta-viridis). (1979) J Comp Neurol, 184 (3), pp. 537-546.

26. Kanwal, J., Caprio, J.: Central projections of the glossopharyngeal and vagal nerves in the channel catfish, ictalurus-punctatus - clues to differential processing of visceral inputs. (1987) J Comp Neurol, 264 (2), pp. 216-230.

27. Kerem, G., Yoshimoto, M., Yamamoto, N., Yang, C., Xue, H., Ito, H.: Somatotopic organization of the trigeminal ganglion cells in a cichlid fish, oreochromis (tilapia) niloticus. (2005) Brain Behavior and Evolution, 65 (2), pp. 109-126.

28. Kishida, R., Onishi, H., Nishizawa, H., Kadota, T., Goris, R., Kusunoki, T.: Organization of the trigeminal and facial motor nuclei in the hagfish, eptatretus-burgeri - a retrograde hrp study. (1986) Brain Res, 385 (2), pp. 263-272.

29. Kogo, N., Remmers, J.: Neural organization of the ventilatory activity in the frog, rana-catesbeiana .2. (1994) J Neurobiol, 25 (9), pp. 1080-1094.

30. Koyama, H.: Organization of the sensory and motor nuclei of the glossopharyngeal and vagal nerves in lampreys. (2005) Zool Sci, 22 (4), pp. 469-476.

31. Lazar, G.: Long-term persistence, after eye-removal, of unmyelinated fibers in the frog visual pathway. (1980) Brain Res, 199 (1), pp. 219-224.

32. Lazar, G., Losonczy, A.: NADPH-diaphorase-positive neurons and pathways in the brain of the frog rana esculenta. (1999) Anat Embryol, 199 (2), pp. 185-198.

33. Lazar, G., Toth, P., Csank, G., Kicliter, E.: Morphology and location of tectal projection neurons in frogs - a study with hrp and cobalt-filling. (1983) J Comp Neurol, 215 (1), pp. 108-120.

34. Lazar, G., Liposits, Z., Toth, P., Trasti, S., Maderdrut, J., Merchenthaler, I.: Distribution of galanin-like immunoreactivity in the brain of rana-esculenta and xenopus-laevis. (1991) J Comp Neurol, 310 (1), pp. 45-67.

35. Lowe, D., Russell, I.: The relation between soma position and fiber trajectory of neurons in the mesencephalic trigeminal nucleus of xenopus-laevis. (1984) Proceedings of the Royal Society of London Series B-Biological Sciences, 221 (1225), pp. 437-&.

Page 55: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

36. Lowe, D., Russell, I.: The central projections of lateral line and cutaneous sensory fibers (vii and X) in xenopus-laevis. (1982) Proceedings of the Royal Society of London Series B-Biological Sciences, 216 (1204), pp. 279-&.

37. Marin, O., Gonzalez, A., Smeets, W.: Basal ganglia organization in amphibians: Afferent connections to the striatum and the nucleus accumbens. (1997) J Comp Neurol, 378 (1), pp. 16-49.

38. Marin, O., Smeets, W., Gonzalez, A.: Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (rana perezi, xenopus laevis) and urodele (pleurodeles waltl) amphibians. (1997) J Comp Neurol, 382 (4), pp. 499-534.

39. Marin, O., Smeets, W., Gonzalez, A.: Basal ganglia organization in amphibians: Catecholaminergic innervation of the striatum and the nucleus accumbens. (1997) J Comp Neurol, 378 (1), pp. 50-69.

40. Matsuda, H., Goris, R., Kishida, R.: Afferent and efferent projections of the glossopharyngeal-vagal nerve in the hagfish. (1991) J Comp Neurol, 311 (4), pp. 520-530.

41. Matsushima, T., Satou, M., Ueda, K.: Medullary reticular neurons in the japanese toad - morphologies and excitatory inputs from the optic tectum. (1989) Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology, 166 (1), pp. 7-22.

42. Matsushima, T., Satou, M., Ueda, K.: Neuronal pathways for the lingual reflex in the japanese toad. (1988) Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology, 164 (2), pp. 173-193.

43. Matsushima, T., Satou, M., Ueda, K.: Direct contacts between glossopharyngeal afferent terminals and hypoglossal motoneurons revealed by double labeling with cobaltic-lysine and horseradish-peroxidase in the japanese toad. (1987) Neurosci Lett, 80 (3), pp. 241-245.

44. Montgomery, N.: Projections of the vestibular and cerebellar nuclei in rana-pipiens. (1988) Brain Behavior and Evolution, 31 (2), pp. 82-95.

45. Morita, Y., Ito, H., Masai, H.: Central gustatory paths in the crucian carp, carassius-carassius. (1980) J Comp Neurol, 191 (1), pp. 119-132.

46. Munoz, A., Munoz, M., Gonzalez, A., tenDonkelaar, H.: Spinal ascending pathways in amphibians: Cells of origin and main targets. (1997) J Comp Neurol, 378 (2), pp. 205-228.

47. Munoz, A., Munoz, M., Gonzalez, A., Tendonkelaar, H.: Anuran dorsal column nucleus - organization, immunohistochemical characterization, and fiber-connections in rana-perezi and xenopus-laevis. (1995) J Comp Neurol, 363 (2), pp. 197-220.

48. Munoz, M., Munoz, A., Gonzalez, A.: Distribution, morphology, and central projections of mesencephalic trigeminal neurons in the frog rana-ridibunda. (1993) Anat Rec, 235 (1), pp. 165-177.

49. Munoz, M., Munoz, A., Marin, O., Gonzalez, A.: Primary afferents and 2nd-order projections of the trigeminal system in a frog (rana-ridibunda). (1994) Eur J Morphol, 32 (2-4), pp. 288-292.

50. Nikundiwe, A., Nieuwenhuys, R.: The cell masses in the brain-stem of the south-african clawed frog xenopus-laevis - a topographical and topological analysis. (1983) J Comp Neurol, 213 (2), pp. 199-219.

51. Oka, Y., Satou, M., Ueda, K.: An improved method for correlative light and electron-microscopic examination of cobaltic-lysine-labeled neurons. (1987) Neurosci Lett, 73 (2), pp. 187-191.

52. Oka, Y., Satou, M., Ueda, K.: Morphology and distribution of the motor neurons of the accessory nerve (nxi) in the japanese toad - a cobaltic lysine study. (1987) Brain Res, 400 (2), pp. 383-388.

53. Oka, Y., Takeuchi, H., Satou, M., Ueda, K.: Cobaltic lysine study of the morphology and distribution of the cranial nerve efferent neurons (motoneurons and preganglionic parasympathetic neurons) and rostral spinal motoneurons in the japanese toad. (1987) J Comp Neurol, 259 (3), pp. 400-423.

54. Oka, Y., Takeuchi, H., Satou, M., Ueda, K.: Morphology and distribution of the preganglionic parasympathetic neurons of the facial, glossopharyngeal and

Page 56: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

vagus nerves in the japanese toad - a cobaltic lysine study. (1987) Brain Res, 400 (2), pp. 389-395.

55. Papalopulu, N., Clarke, J., Bradley, L., Wilkinson, D., Krumlauf, R., Holder, N.: Retinoic acid causes abnormal-development and segmental patterning of the anterior hindbrain in xenopus embryos rid C-5347-2009. (1991) Development, 113 (4), pp. 1145-&.

56. Petko, M., Santa, A.: Distribution of calcitonin gene-related peptide immunoreactivity in the central-nervous-system of the frog, rana-esculenta. (1992) Cell Tissue Res, 269 (3), pp. 525-534.

57. Roth, G., Naujoksmanteuffel, C., Grunwald, W.: Cytoarchitecture Of The Tectum Mesencephali In Salamanders - A Golgi And Hrp Study. (1990) J Comp Neurol, 291 (1), Pp. 27-42.

58. Roth, G., Nishikawa, K., Wake, D., Dicke, U., Matsushima, T.: Mechanics and neuromorphology of feeding in amphibians. (1990) Neth J Zool, 40 (1-2), pp. 115-135.

59. Satou, M., Matsushima, T., Takeuchi, H., Ueda, K.: Tongue-muscle-controlling motoneurons in the japanese toad - topography, morphology and neuronal pathways from the snapping-evoking area in the optic tectum. (1985) Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology, 157 (6), pp. 717-737.

60. Schlosser, G., Roth, G.: Evolution of nerve development in frogs .1. the development of the peripheral nervous system in discoglossus pictus (discoglossidae). (1997) Brain Behavior and Evolution, 50 (2), pp. 61-93.

61. Schlosser, G., Roth, G.: Distribution of cranial and rostral spinal nerves in tadpoles of the frog discoglossus-pictus (discoglossidae). (1995) J Morphol, 226 (2), pp. 189-212.

62. Schwippert, W., Beneke, T., Ewert, J.: Responses of medullary neurons to moving visual-stimuli in the common toad .2. an intracellular-recording and cobalt-lysine labeling study. (1990) Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology, 167 (4), pp. 509-520.

63. Sewards, T., Sewards, M.: Innate visual object recognition in vertebrates: Some proposed pathways and mechanisms. (2002) Comparative Biochemistry and Physiology A-Molecular and Integrative Physiology, 132 (4), pp. 861-891.

64. Simpson, H., Tobias, M., Kelley, D.: Origin and identification of fibers in the cranial nerve ix-X complex of xenopus-laevis - lucifer yellow backfills invitro. (1986) J Comp Neurol, 244 (4), pp. 430-444.

65. Sirkin, D., Feng, A.: Autoradiographic study of descending pathways from the pontine reticular-formation and the mesencephalic trigeminal nucleus in the rat. (1987) J Comp Neurol, 256 (4), pp. 483-493.

66. Song, J., Boord, R.: Motor components of the trigeminal nerve and organization of the mandibular arch muscles in vertebrates - phylogenetically conservative patterns and their ontogenic basis. (1993) Acta Anat, 148 (2-3), pp. 139-149.

67. Sperry, D., Boord, R.: Central location of the motoneurons that supply the cucullaris (trapezius) of the clearnose skate, raja-eglanteria. (1992) Brain Res, 582 (2), pp. 312-319.

68. Straka, H., Baker, R., Gilland, E.: The frog as a unique vertebrate model for studying the rhombomeric organization of functionally identified hindbrain neurons. (2002) Brain Res Bull, 57 (3-4), pp. 301-305.

69. Straka, H., Bayer, R., Gilland, E.: Preservation of segmental hindbrain organization in adult frogs. (2006) J Comp Neurol, 494 (2), pp. 228-245.

70. Strake, J., Luksch, H., Walkowiak, W.: Audio-motor interface in anurans. (1994) Eur J Morphol, 32 (2-4), pp. 122-126.

71. Stuesse, S., Cruce, W.: Afferent and efferent components of the facial-nerve in a frog, rana-pipiens. (1986) Cell Tissue Res, 244 (1), pp. 147-151.

72. Szekely, G.: Order and plasticity in the nervous-system. (1979) Trends Neurosci, 2 (10), pp. 245-248.

73. Szekely, G., Antal, N., Gorcs, T.: Direct dorsal-root projection onto the cerebellum in the frog. (1980) Neurosci Lett, 19 (2), pp. 161-165.

Page 57: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

74. Takei, K., Oka, Y., Satou, M., Ueda, K.: Horseradish-peroxidase study of the localization of motoneurons in the accessory nucleus (xi) of the japanese toad. (1987) Neurosci Lett, 79 (3), pp. 241-245.

75. Takei, K., Oka, Y., Satou, M., Ueda, K.: Distribution of motoneurons involved in the prey-catching behavior in the japanese toad, bufo-japonicus. (1987) Brain Res, 410 (2), pp. 395-400.

76. Taylor, B., Finger, T., Darcy, G., Roper, S.: Accuracy of regeneration of vagal parasympathetic axons. (1983) J Comp Neurol, 221 (2), pp. 145-153.

77. Tendonkelaar, H., Bangma, G., Barbashenry, H., Deboervanhuizen, R., Wolters, J.: The brain-stem in a lizard, varanus-exanthematicus. (1987) Advances in Anatomy Embryology and Cell Biology, 107 , pp. 1-168.

78. Tendonkelaar, H., Deboervanhuizen, R.: Observations on the development of ascending spinal pathways in the clawed toad, xenopus-laevis. (1991) Anat Embryol, 183 (6), pp. 589-603.

79. Toth, P., Csank, G., Lazar, G.: Morphology of the cells of origin of descending pathways to the spinal-cord in rana-esculenta - a tracing study using cobaltic-lysine complex. (1985) J Hirnforsch, 26 (4), pp. 365-383.

80. Wake, D.: Brain-stem organization and branchiomeric nerves. (1993) Acta Anat, 148 (2-3), pp. 124-131.

81. Will, U.: Amphibian mauthner cells. (1991) Brain Behavior and Evolution, 37 (5), pp. 317-332.

82. Will, U.: Mauthner neurons survive metamorphosis in anurans - a comparative hrp study on the cytoarchitecture of mauthner neurons in amphibians. (1986) J Comp Neurol, 244 (1), pp. 111-120.

83. Will, U.: Efferent neurons of the lateral-line system and the viii-cranial nerve in the brain-stem of anurans - a comparative-study using retrograde tracer methods. (1982) Cell Tissue Res, 225 (3), pp. 673-685.

Függő idézetek: 15 1. Bacskai, T., Matesz, C.: Primary afferent fibers establish dye-coupled

connections in the frog central nervous system. (2002) Brain Res Bull, 57 (3-4), pp. 317-319.

2. Bacskai, T., Veress, G., Halasi, G., Matesz, C.: Crossing dendrites of the hypoglossal motoneurons: Possible morphological substrate of coordinated and synchronized tongue movements of the frog, rana esculenta. (2010) Brain Res, 1313 , pp. 89-96.

3. Matesz, C.: Synaptic relations of the trigeminal motoneurons in a frog (rana-esculenta). (1994) Eur J Morphol, 32 (2-4), pp. 117-121.

4. Matesz, C.: Termination areas of primary afferent-fibers of the trigeminal nerve in the rat. (1983) Acta Biol Hung, 34 (1), pp. 31-43.

5. Matesz, C.: Peripheral and central distribution of fibers of the mesencephalic trigeminal root in the rat. (1981) Neurosci Lett, 27 (1), pp. 13-17.

6. Matesz, C.: Central projection of the viiith-cranial nerve in the frog. (1979) Neuroscience, 4 (12), pp. 2061-&.

7. Matesz, C., Birinyi, A., Kothalawala, D., Szekely, G.: Investigation of the dendritic geometry of brain-stem motoneurons with different functions using multivariant statistical techniques in the frog. (1995) Neuroscience, 65 (4), pp. 1129-1144.

8. Matesz, C., Szekely, G.: Organization of the ambiguus nucleus in the frog (rana esculenta). (1996) J Comp Neurol, 371 (2), pp. 258-269.

9. Matesz, C., Szekely, G.: Dorsomedial nuclear group of cranial nerves in frog. (1977) Acta Biologica Academiae Scientiarum Hungaricae, 28 (4), pp. 461-474.

10. Matesz, C., Kovalecz, G., Veress, G., Deak, A., Racz, E., Bacskai, T.: Vestibulotrigeminal pathways in the frog, rana esculenta. (2008) Brain Res Bull, 75 (2-4), pp. 371-374.

11. Racz, E., Bacskai, T., Szabo, G., Szekely, G., Matesz, C.: Organization of last-order premotor interneurons related to the protraction of tongue in the frog, rana esculenta. (2008) Brain Res, 1187 , pp. 111-115.

Page 58: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

12. Szabo, Z., Bacskai, T., Deak, A., Matesz, K., Veress, G., Sziklai, I.: Dendrodendritic connections between the cochlear efferent neurons in guinea pig. (2011) Neurosci Lett, 504 (3), pp. 195-198.

13. Szekely, G., Levai, G., Matesz, K.: Primary afferent terminals in the nucleus of the solitary tract of the frog - an electron-microscopic study. (1983) Experimental Brain Research, 53 (1), pp. 109-117.

14. Szekely, G., Matesz, C.: Topography and organization of cranial nerve nuclei in the sand lizard, lacerta-agilis. (1988) J Comp Neurol, 267 (4), pp. 525-544.

15. Szekely, G., Matesz, C.: Trigeminal motoneurons with disparate dendritic geometry innervate different muscle groups in the frog. (1987) Neurosci Lett, 77 (2), pp. 161-165.

Page 59: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

Könyvek (1)

Idegen nyelvű ( külföldön megjelent ) könyvek (1)

64. Székely, G., Matesz, K.: The efferent system of cranial nerve nuclei: A comparative

neuromorphological study. Springer Verlag, Berlin, Heidelberg, New York, 1993.

Idézetek összesen: 25

Független idézetek: 19 1. Anderson, C., Keifer, J.: Properties of conditioned abducens nerve responses

in a highly reduced in vitro brain stem preparation from the turtle. (1999) J Neurophysiol, 81 (3), pp. 1242-1250.

2. Atobe, Y., Nakano, M., Kadota, T., Hisajima, T., Goris, R., Funakoshi, K.: Medullary efferent and afferent neurons of the facial nerve of the pit viper gloydius brevicaudus. (2004) J Comp Neurol, 472 (3), pp. 345-357.

3. Billig, I., Balaban, C.: Zonal organization of the vestibulo-cerebellar pathways controlling the horizontal eye muscles using two recombinant strains of pseudorabies virus. (2005) Neuroscience, 133 (4), pp. 1047-1059.

4. Billig, I., Balaban, C.: Zonal organization of the vestibulo-cerebellum in the control of horizontal extraocular muscles using pseudorabies virus: I. Flocculus/ventral paraflocculus. (2004) Neuroscience, 125 (2), pp. 507-520.

5. Blessing, W., Gai, W.: Chapter III caudal pons and medulla oblongata. (1997) Handbook of Chemical Neuroanatomy, 13 , pp. 139-186.

6. Borla, M., Palecek, B., Budick, S., O'Malley, D.: Prey capture by larval zebrafish: Evidence for fine axial motor control. (2002) Brain Behavior and Evolution, 60 (4), pp. 207-229.

7. Colamarino, S., Tessierlavigne, M.: The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons. (1995) Cell, 81 (4), pp. 621-629.

8. Fritzsch, B.: Of mice and genes: Evolution of vertebrate brain development. (1998) Brain Behavior and Evolution, 52 (4-5), pp. 207-217.

9. Garel, S., Garcia-Dominguez, M., Charnay, P.: Control of the migratory pathway of facial branchiomotor neurones. (2000) Development, 127 (24), pp. 5297-5307.

10. Gilland, E., Baker, R.: Evolutionary patterns of cranial nerve efferent nuclei in vertebrates. (2005) Brain Behavior and Evolution, 66 (4), pp. 234-254.

11. Gonzalez, A., Lopez, J., Sanchez-Camacho, C., Marin, O.: Localization of choline acetyltransferase (ChAT) immunoreactivity in the brain of a caecilian amphibian, dermophis mexicanus (amphibia : Gymnophiona). (2002) J Comp Neurol, 448 (3), pp. 249-267.

12. Irving, C., Malhas, A., Guthrie, S., Mason, I.: Establishing the trochlear motor axon trajectory: Role of the isthmic organiser and Fgf8. (2002) Development, 129 (23), pp. 5389-5398.

13. Jones, M.P., Pierce, K.E., Jr., Ward, D.: Avian vision: A review of form and function with special consideration to birds of prey. (2007) Journal of Exotic Pet Medicine, 16 (2), pp. 69-87.

14. Landwehr, S., Dicke, U.: Distribution of GABA, glycine, and glutamate in neurons of the medulla oblongata and their projections to the midbrain tectum in plethodontid salamanders. (2005) J Comp Neurol, 490 (2), pp. 145-162.

15. Noden, D.M., Francis-West, P.: The differentiation and morphogenesis of craniofacial muscles. (2006) Developmental Dynamics, 235 (5), pp. 1194-1218.

Page 60: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

16. Schmidt, A., Wake, D., Wake, M.: Motor nuclei of nerves innervating the tongue and hypoglossal musculature in a caecilian (amphibia: Gymnophiona), as revealed by HRP transport. (1996) J Comp Neurol, 370 (3), pp. 342-349.

17. Straka, H., Baker, R., Gilland, E.: The frog as a unique vertebrate model for studying the rhombomeric organization of functionally identified hindbrain neurons. (2002) Brain Res Bull, 57 (3-4), pp. 301-305.

18. Studer, M.: Initiation of facial motoneurone migration is dependent on rhombomeres 5 and 6. (2001) Development, 128 (19), pp. 3707-3716.

19. Vasilakos, K., Wilson, R., Kimura, N., Remmers, J.: Ancient gill and lung oscillators may generate the respiratory rhythm of frogs and rats. (2005) J Neurobiol, 62 (3), pp. 369-385.

Függő idézetek: 6 1. Bacskai, T., Veress, G., Halasi, G., Matesz, C.: Crossing dendrites of the

hypoglossal motoneurons: Possible morphological substrate of coordinated and synchronized tongue movements of the frog, rana esculenta. (2010) Brain Res, 1313 , pp. 89-96.

2. Birinyi, A., Szekely, G., Csapo, K., Matesz, C.: Quantitative morphological analysis of the motoneurons innervating muscles involved in tongue movements of the frog rana esculenta. (2004) J Comp Neurol, 470 (4), pp. 409-421.

3. Deak, A., Bacskai, T., Veress, G., Matesz, C.: Vestibular afferents to the motoneurons of glossopharyngeal and vagus nerves in the frog, rana esculenta. (2009) Brain Res, 1286 , pp. 60-65.

4. Matesz, C., Szekely, G.: Organization of the ambiguus nucleus in the frog (rana esculenta). (1996) J Comp Neurol, 371 (2), pp. 258-269.

5. Matesz C, Bacskai T, Deak A, Racz E, Veress G, Szekely G. Using of confocal laser scanning microscope in the examination of neural network underlying the gaze and posture control. Kimura M, editor. ; 2009.

6. Matesz, C., Kovalecz, G., Veress, G., Deak, A., Racz, E., Bacskai, T.: Vestibulotrigeminal pathways in the frog, rana esculenta. (2008) Brain Res Bull, 75 (2-4), pp. 371-374.

Page 61: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

Könyvrészletek (9)

Idegen nyelvű ( külföldön megjelent ) könyvrészletek (9)

65. Matesz, K., Birinyi, A., Rácz, É., Székely, G., Bácskai, T.: Organization of the hypoglossal nucleus in

the frog, Rana exculenta.

In: Tongue: Anatomy, Kinematics, Disaeses. Ed.: Hiroto Kato, Taiga Shimizu, Nova Science

Publishers, Hauppauge, USA, 1-11, 2011.

66. Matesz, K.: Descending control of spinal motor functions.

In: Motor functions of the spinal cord. Ed.: Andras Birinyi, Research Signpost, [Trivandrum], 80-

100, 2011.

67. Matesz, K., Bácskai, T., Deák, Á., Rácz, É., Veress, G., Székely, G.: Using of confocal laser

scanning microscope in the examination of neural network underlying the gaze and posture

control.

In: Research, Technology and Applications. Ed.: M. Kimura, Nova Science Publishers,

Hauppauge, USA, 205-210, 2009.

68. Matesz, K., Székely, G.: Brainstem and cranial nerves.

In: Encyclopeda of Neuroscience. Ed.: Larry R. Squire, Academic Press, Oxford, 449-455, 2009.

69. Székely, G., Matesz, K.: Brainstem/cranial nerves.

In: Encyclopedia of Neuroscience. Elsevier, New York, CD-ROM, 2004.

70. Mikó, I., Furka, I., Serfőző, J., Joós, G., Telek, B., Matesz, K., Hauck, M., Békési, L., Ignáth, T.:

Comparative study of haemotological and micro-morphological results in long-surviving spleen

autotransplants.

In: Chirurgische Forschung. Ed.: Uranus S, Zuckschwerdt Verlag, München, Bern, Wien, New

York, 50-55, 1994.

71. Székely, G., Matesz, K.: Comparative anatomy of the neural control of mastication.

In: Complex organismal functions : integration and evolution in vertebrates. Ed.: Wake D. B.,

Roth G, John Wiley and Sons, New York, 41-52, 1989.

72. Mikó, I., Furka, I., Joós, G., Matesz, K., Kovács, G., Sefcsik, I.: Changes to save functioning renal

parenchyma using absorbable synthetic suture matierials.

In: Chirurgische Forschung. Ed.: Eranus S, Zuckschwerdt Verlag, München, Bern, Wien, New

York, 165-170, 1984.

Page 62: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

73. Módis, L., Matesz, K., Szabó, G., Pápay, A., Telek, B.: Functional fine structure of the osteocyte

capsule in exprimentally damaged bones.

In: Modern trends in orthopaedic surgery. Ed.: Bozdech Z., Horn V, Acta Fac. Med. Univ.

Brnensis, Purkyne Univ., Brno, Brno, 53-57, 1974.

Page 63: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

Összesített tudománymetriai értékek

Folyóiratcikkek száma és impakt faktora: 63 (IF:124.648)

magyar nyelvű: 1 (IF:0)

idegen nyelvű ( Magyarországon megjelent ): 12 (IF:2.5)

idegen nyelvű ( külföldön megjelent ): 50 (IF:122.148)

Könyvek száma: 1

magyar nyelvű: 0

idegen nyelvű ( Magyarországon megjelenet ): 0

idegen nyelvű ( külföldön megjelent ): 1

Könyvrészletek száma: 9

magyar nyelvű: 0

idegen nyelvű ( Magyarországon megjelent ): 0

idegen nyelvű ( külföldön megjelent ): 9

Konferenciacikkek száma: 0

magyar nyelvű: 0

idegen nyelvű ( Magyarországon megjelent ): 0

idegen nyelvű ( külföldön megjelent ): 0

Szabadalmak száma: 0

magyar nyelvű: 0

idegen nyelvű ( külföldön megjelent ): 0

Egyéb közlemények száma: 0

magyar nyelvű: 0

idegen nyelvű ( Magyarországon megjelent ): 0

idegen nyelvű ( külföldön megjelent ): 0

Page 64: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

Összes közlemény száma: 73

Összes közlemény száma ( utolsó 10 év ): 32

Összesített Impakt Faktor érték: 124.648

Összesített Impakt Faktor értek ( utolsó 10 év ): 69.357

Hivatkozások száma: 858

Hivatkozások száma ( utolsó 10 év ): 173

Összes független hivatkozások száma: 690

Összes független hivatkozások száma ( utolsó 10 év ): 131

Hirsch-index: 16

Page 65: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

Legfontosabb közlemények

Utóbbi 5 év 5 legfontosabb közleménye

1. Deák, Á., Bácskai, T., Gaál, B., Rácz, É., Matesz, K.: Effect of unilateral labyrinthectomy on the

molecular composition of perineuronal nets in the lateral vestibular nucleus of the rat.

Neurosci. Lett. [Epub ahead of Print], 2012.

IF:2.055 (2010)

2. Bácskai, T., Veress, G., Halasi, G., Matesz, K.: Crossing dendrites of the hypoglossal motoneurons:

Possible morphological substrate of coordinated and synchronized tongue movements of the

frog, Rana esculenta.

Brain Res. 1313, 89-96, 2010.

DOI: http://dx.doi.org/10.1016/j.brainres.2009.11.071

IF:2.623

Idézetek összesen: 2

Független idézetek: 1 2. Lanciego, J.L., Wouterlood, F.G.: A half century of experimental

neuroanatomical tracing (2011) Journal of Chemical Neuroanatomy, 42 (3), pp. 157-183.

Függő idézetek: 1 2. Szabó, Z., Bácskai, T., Deák, Á., Matesz, K., Veress, G., Sziklai, I.:

Dendrodendritic connections between the cochlear efferent neurons in guinea pig (2011) Neuroscience Letters, 504 (3), pp. 195-198.

3. Deák, Á., Bácskai, T., Veress, G., Matesz, K.: Vestibular afferents to the motoneurons of

glossopharyngeal and vagus nerves in the frog, Rana esculenta.

Brain Res. 1286, 60-65, 2009.

DOI: http://dx.doi.org/10.1016/j.brainres.2009.06.048

IF:2.463

Idézetek összesen: 2

Független idézetek: 1 2. Терзян, Д.: Нейронные Механизмы Вестибуло-Мозжечковой

Проекционной Системы Лягушки.(2011) Биолог. Журн. Армении, 2 (63), Pp. 43-47

Függő idézetek: 1 2. Szabó, Z., Bácskai, T., Deák, Á., Matesz, K., Veress, G., Sziklai, I.:

Dendrodendritic connections between the cochlear efferent neurons in guinea pig. (2011) Neurosci Lett, 504 (3), pp. 195-198 .

Page 66: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

4. Bácskai, T., Veress, G., Halasi, G., Deák, Á., Rácz, É., Székely, G., Matesz, K.: Dendrodendritic and

dendrosomatic contacts between oculomotor and trochlear motoneurons of the frog, Rana

esculenta.

Brain Res. Bull. 75 (2-4), 419-423, 2008.

DOI: http://dx.doi.org/10.1016/j.brainresbull.2007.10.050

IF:2.281

Idézetek összesen: 6

Független idézetek: 3 4. Campbell, R.E., Gaidamaka, G., Han, S.-., Herbison, A.E.: Dendro-dendritic

bundling and shared synapses between gonadotropin- releasing hormone neurons. (2009) Proc Natl Acad Sci U S A, 106 (26), pp. 10835-10840.

5. Campbell, R.E., Suter, K.J.: Redefining the gonadotrophin-releasing hormone neurone dendrite. (2010) J Neuroendocrinol, 22 (7), pp. 650-658.

6. Gottesman-Davis, A., Peusner, K.D.: Identification of vestibuloocular projection neurons in the developing chicken medial vestibular nucleus. (2010) J Neurosci Res, 88 (2), pp. 290-303.

Függő idézetek: 3 4. Matesz C, Bacskai T, Deak A, Racz E, Veress G, Szekely G. Using of

confocal laser scanning microscope in the examination of neural network underlying the gaze and posture control. Kimura M, editor. ; 2009.

5. Bácskai, T., Veress, G., Halasi, G., Matesz, C.: Crossing dendrites of the hypoglossal motoneurons: Possible morphological substrate of coordinated and synchronized tongue movements of the frog, rana esculenta. (2010) Brain Res, 1313 , pp. 89-96.

6. Szabó, Z., Bácskai, T., Deák, Á., Matesz, K., Veress, G., Sziklai, I.: Dendrodendritic connections between the cochlear efferent neurons in guinea pig. (2011) Neurosci Lett, 504 (3), pp. 195-198.

5. Mészár, Z., Felszeghy, S., Veress, G., Matesz, K., Székely, G., Módis, L.: Hyaluronan accumulates

around differentiating neurons in spinal cord of chicken embryos.

Brain Res. Bull. 75 (2-4), 414-418, 2008.

DOI: http://dx.doi.org/10.1016/j.brainresbull.2007.10.052

IF:2.281

Idézetek összesen: 6

Független idézetek: 6 1. Krishnan, L.: Design of a biomimetic niche for adult progenitor cell selection

and differentiation. Adult Stem Cell Standardization, , pp. 149. 2. Hartwell, R., Lai, A., Ghahary, A.: Modulation of extracellular matrix through

keratinocyte-fbroblast crosstalk. (2009) Expert Review of Dermatology, 4 (6), pp. 623-635.

3. Eng, D., Caplan, M., Preul, M., Panitch, A.: Hyaluronan scaffolds: A balance between backbone functionalization and bioactivity. (2010) Acta Biomaterialia, 6 (7), pp. 2407-2414.

4. Jose, A., Krishnan, L.K.: Effect of matrix composition on differentiation of nestin-positive neural progenitors from circulation into neurons. (2010) Journal of neural engineering, 7 , pp. 036009.

5. Seidlits, S.K., Khaing, Z.Z., Petersen, R.R., Nickels, J.D., Vanscoy, J.E., Shear, J.B., Schmidt, C.E.: The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation. (2010) Biomaterials, 31 (14), pp. 3930-3940.

Page 67: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

6. Astachov, L., Nevo, Z., Aviv, M., Vago, R.: Crystalline calcium carbonate and hydrogels as microenvironment for stem cells. (2011) Frontiers in Bioscience, 16 (2), pp. 458-471.

Összesített Impakt Faktor érték: 11,703

Hivatkozások száma: 16

Független hivatkozások száma: 11

Page 68: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

Teljes életmű további 5 legfontosabb közleménye

1. Matesz, K., Székely, G.: The dorsomedial nuclear group of cranial nerve in the frog.

Acta Biol. Acad. Sci. Hung. 28 (4), 461-474, 1977.

IF:0.149

Idézetek összesen: 51

Független idézetek: 40 1. Lázár, G.: Long-term persistence, after eye-removal, of unmyelinated fibres in

the frog visual pathway. (1980) Brain Res, 199 (1), pp. 219-224. 2. Destombes, J., Durand, J., Gogan, P., Gueritaud, J., Horcholle-Bossavit, G.,

Tyc-Dumont, S.: Ultrastructural and electrophysiological properties of accessory abducens nucleus motoneurones: An intracellular horseradish peroxidase study in the cat. (1983) Neuroscience, 10 (4), pp. 1317-1332.

3. Lazar, G., Toth, P., Csank, G., Kicliter, E.: Morphology and location of tectal projection neurons in frogs: A study with hrp and cobalt‐filling. (1983) J Comp Neurol, 215 (1), pp. 108-120.

4. Schönenberger, N., Escher, G., Van Der Loos, H.: Axon number in oculomotor nerves in xenopus: Removal of one eye primordium affects both sides. (1983) Neurosci Lett, 41 (3), pp. 239-245.

5. Cochran, S., Dieringer, N., Precht, W.: Basic optokinetic-ocular reflex pathways in the frog. (1984) The Journal of neuroscience, 4 (1), pp. 43-57.

6. Knöpfel, T., Hess, B., Precht, W.: Responses of frog trochlear motoneurons to linear acceleration. (1984) Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 154 (2), pp. 233-240.

7. Donkelaar, H., Bangma, G., Boer-van Huizen, R.: The fasciculus longitudinalis medialis in the lizard varanus exanthematicus. (1985) Anat Embryol, 172 (2), pp. 205-215.

8. Roth, G., Wake, D.B.: The structure of the brainstem and cervical spinal cord in lungless salamanders (family plethodontidae) and its relation to feeding. (1985) J Comp Neurol, 241 (1), pp. 99-110.

9. Satou, M., Matsushima, T., Takeuchi, H., Ueda, K.: Tongue-muscle-controlling motoneurons in the japanese toad: Topography, morphology and neuronal pathways from the ‘snapping-evoking area’in the optic tectum. (1985) Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 157 (6), pp. 717-737.

10. Dieringer, N., Precht, W.: Functional organization of eye velocity and eye position signals in abducens motoneurons of the frog. (1986) Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 158 (2), pp. 179-194.

11. Naujoks‐Manteuffel, C., Manteuffel, G., Himstedt, W.: Localization of motoneurons innervating the extraocular muscles in salamandra salamandra L.(amphibia, urodela). (1986) J Comp Neurol, 254 (1), pp. 133-141.

12. Fritzsch, B., Sonntag, R.: The trochlear nerve of amphibians and its relation to proprioceptive fibers: A qualitative and quantitative HRP study. (1987) Anat Embryol, 177 (2), pp. 105-114.

13. Gonzalez, A., Munoz, M.: Distribution and morphology of abducens motoneurons innervating the lateral rectus and retractor bulbi muscles in the frog rana ridibunda. (1987) Neurosci Lett, 79 (1-2), pp. 29-34.

14. Oka, Y., Satou, M., Ueda, K.: An improved method for correlative light and electron microscopic examination of cobaltic-lysine-labelled neurons. (1987) Neurosci Lett, 73 (2), pp. 187-191.

15. Oka, Y., Takeuchi, H., Satou, M., Ueda, K.: Morphology and distribution of the preganglionic parasympathetic neurons of the facial, glossopharyngeal and vagus nerves in the japanese toad: A cobaltic lysine study. (1987) Brain Res, 400 (2), pp. 389-395.

Page 69: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

16. Szabo, T., Lazar, G., Libouban, S., Toth, P., Ravaille, M.: Oculomotor system of the weakly electric fish gnathonemus petersii. (1987) J Comp Neurol, 264 (4), pp. 480-493.

17. Takei, K., Oka, Y., Satou, M., Ueda, K.: Distribution of motoneurons involved in the prey-catching behavior in the japanese toad, bufo japonicus. (1987) Brain Res, 410 (2), pp. 395-400.

18. Fritzsch, B., Sonntag, R.: The trochlear motoneurons of lampreys (lampetra fluviatilis): Location, morphology and numbers as revealed with horseradish peroxidase. (1988) Cell Tissue Res, 252 (2), pp. 223-229.

19. Roth, G., Nishikawa, K., Dicke, U., Wake, D.B.: Topography and cytoarchitecture of the motor nuclei in the brainstem of salamanders. (1988) J Comp Neurol, 278 (2), pp. 181-194.

20. Wake, D.B., Nishikawa, K.C., Dicke, U., Roth, G.: Organization of the motor nuclei in the cervical spinal cord of salamanders. (1988) J Comp Neurol, 278 (2), pp. 195-208.

21. Lazar, G., Bennani, S., Toth, P.: Neuronal pathways involved in the optokinetic head nystagmus of the frog. (1989) Acta Biol Hung, 40 (1-2), pp. 107-120.

22. Montgomery, N.M.: Somatomotor connectivity in the midbrain of< i> rana pipiens</i>(part 1 of 2). (1989) Brain Behav Evol, 34 (2), pp. 96-102.

23. Fritzsch, B., Sonntag, R.: Oculomotor (N III) motoneurons can innervate the superior oblique muscle of xenopus after larval trochlear (N IV) nerve surgery. (1990) Neurosci Lett, 114 (2), pp. 129-134.

24. Sokoloff, A.J.: Musculotopic organization of the hypoglossal nucleus in the grass frog, rana pipiens. (1991) J Comp Neurol, 308 (4), pp. 505-512.

25. Straka, H., Dieringer, N.: Internuclear neurons in the ocular motor system of frogs. (1991) J Comp Neurol, 312 (4), pp. 537-548.

26. Weerasuriya, A. In: Motor pattern generators in anuran prey capture. Visual structures and integrated functions; Springer-Verlag New York, Inc., (1991) pp. 255-70.

27. Straka, H., Dieringer, N.: Electrophysiological and pharmacological characterization of vestibular inputs to identified frog abducens motoneurons and internuclear neurons in vitro. (1993) Eur J Neurosci, 5 (3), pp. 251-260.

28. Puzdrowski, R., Leonard, R.: Vestibulo‐oculomotor connections in an elasmobranch fish, the atlantic stingray, dasyatis sabina. (1994) J Comp Neurol, 339 (4), pp. 587-597.

29. Muñoz, M., González, A.: The trochlear nucleus of the frog rana ridibunda: Localization, morphology and ultrastructure of identified motoneurons. (1995) Brain Res Bull, 36 (5), pp. 433-441.

30. Lázár, G., Pál, E.: Removal of cobalt-labeled neurons and nerve fibers by microglia from the frog's brain and spinal cord. (1996) Glia, 16 (2), pp. 101-107.

31. Schmidt, A., Wake, D.B., Wake, M.H.: Motor nuclei of nerves innervating the tongue and hypoglossal musculature in a caecilian (amphibia: Gymnophiona), as revealed by HRP transport. (1996) J Comp Neurol, 370 (3), pp. 342-349.

32. Marín, O., Smeets, W.J.A.J., González, A.: Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (rana perezi, xenopus laevis) and urodele (pleurodeles waltl) amphibians. (1997) J Comp Neurol, 382 (4), pp. 499-534.

33. González, M.J., Pombal, M.A., Rodicio, M.C., Anadón, R.: Internuclear neurons of the ocular motor system of the larval sea lamprey. (1998) J Comp Neurol, 401 (1), pp. 1-15.

34. Puzdrowski, R.L.: Innervation of the medial rectus muscle in the ratfish, hydrolagus colliei. (1998) J Comp Neurol, 400 (4), pp. 571-579.

35. El Hassni, M., Bennis, M., Rio, J.P., Repérant, J.: Localization of motoneurons innervating the extraocular muscles in the chameleon (chamaeleo chameleon). (2000) Anat Embryol, 201 (1), pp. 63-74.

36. Hassni, M.E., Bennis, M., Rio, J., Reperant, J.: Localization of motoneurons innervating the extraocular muscles in the chameleon (chamaeleo chameleon). (2000) Brain Structure and Function, 201 (1), pp. 63-74.

Page 70: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

37. Sánchez-Camacho, C., Marín, O., Ten Donkelaar, H.J., González, A.: Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin. (2001) J Comp Neurol, 434 (2), pp. 186-208.

38. Straka, H., Dieringer, N.: Basic organization principles of the VOR: Lessons from frogs. (2004) Prog Neurobiol, 73 (4), pp. 259-309.

39. Morona, R., González, A.: Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians. (2009) J Comp Neurol, 515 (5), pp. 503-537.

40. Neuhuber, W., Schrödl, F.: Autonomic control of the eye and the iris. (2011) Autonomic Neuroscience: Basic and Clinical, 165 (1), pp. 67-79.

Függő idézetek: 11 1. Matesz, C.: Central projection of the VIIIth cranial nerve in the frog. (1979)

Neuroscience, 4 (12), pp. 2061-2071. 2. Szekely, G.: Order and plasticity in the nervous system. (1979) Trends

Neurosci, 2 , pp. 245-248. 3. Székely, G., Matesz, C.: The accessory motor nuclei of the trigeminal, facial,

and abducens nerves in the rat. (1982) J Comp Neurol, 210 (3), pp. 258-264. 4. Székely, G., Matesz, C.: Trigeminal motoneurons with disparate dendritic

geometry innervate different muscle groups in the frog. (1987) Neurosci Lett, 77 (2), pp. 161-165.

5. Matesz, C.: Development of the oculomotor and trochlear nuclei in the xenopus toad. (1990) Neurosci Lett, 116 (1-2), pp. 1-6.

6. Matesz, C., Birinyi, A., Kothalawala, D., Szekely, G.: Investigation of the dendritic geometry of brain stem motoneurons with different functions using multivariant statistical techniques in the frog. (1995) Neuroscience, 65 (4), pp. 1129-1144.

7. Matesz, C., Székely, G.: Organization of the ambiguus nucleus in the frog (rana esculenta). (1996) J Comp Neurol, 371 (2), pp. 258-269.

8. Birinyi, A., Szekely, G., Csapó, K., Matesz, C.: Quantitative morphological analysis of the motoneurons innervating muscles involved in tongue movements of the frog rana esculenta. (2004) J Comp Neurol, 470 (4), pp. 409-421.

9. Bacskai, T., Veress, G., Halasi, G., Deak, A., Racz, E., Szekely, G., Matesz, C.: Dendrodendritic and dendrosomatic contacts between oculomotor and trochlear motoneurons of the frog, rana esculenta. (2008) Brain Res Bull, 75 (2-4), pp. 419-423.

10. Bácskai, T., Veress, G., Halasi, G., Matesz, C.: Crossing dendrites of the hypoglossal motoneurons: Possible morphological substrate of coordinated and synchronized tongue movements of the frog, rana esculenta. (2010) Brain Res, 1313 , pp. 89-96.

11. Szabó, Z., Bácskai, T., Deák, Á., Matesz, K., Veress, G., Sziklai, I.: Dendrodendritic connections between the cochlear efferent neurons in guinea pig. (2011) Neurosci Lett, 504 (3), pp. 195-198.

2. Matesz, K.: Peripheral and central distribution of fibers of the mesencephalic trigeminal root in the rat.

Neurosci. Lett. 27 (1), 13-17, 1981.

DOI: http://dx.doi.org/10.1016/0304-3940(81)90198-1

IF:2.873

Idézetek összesen: 79

Független idézetek: 77 1. Anadon, R., Demiguel, E., Gonzalezfuentes, M., Rodicio, C.: Hrp study of the

central components of the trigeminal nerve in the larval sea lamprey - organization and homology of the primary medullary and spinal nucleus of the trigeminus. (1989) J Comp Neurol, 283 (4), pp. 602-610.

2. Appenteng, K., Donga, R., Williams, R.: Morphological and electrophysiological determination of the projections of jaw-elevator muscle-

Page 71: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

spindle afferents in rats. (1985) Journal of Physiology-London, 369 (DEC), pp. 93-113.

3. Arends, J., Dubbeldam, J.: Exteroceptive And Proprioceptive Afferents Of The Trigeminal And Facial Motor Nuclei In The Mallard (Anas-Platyrhynchos L). (1982) J Comp Neurol, 209 (3), Pp. 313-329.

4. Arvidsson, J., Pfaller, K.: Central projections of C4-C8 dorsal-root ganglia in the rat studied by anterograde transport of wga-hrp. (1990) J Comp Neurol, 292 (3), pp. 349-362.

5. Arvidsson, J., Raappana, P.: An hrp study of the central projections from primary sensory neurons innervating the rat masseter muscle. (1989) Brain Res, 480 (1-2), pp. 111-118.

6. Barbashenry, H., Lohman, A.: The motor complex and primary projections of the trigeminal nerve in the monitor lizard, varanus-exanthematicus. (1986) J Comp Neurol, 254 (3), pp. 314-329.

7. Barnett, E., Perlman, S.: The olfactory nerve and not the trigeminal nerve is the major site of cns entry for mouse hepatitis-virus, strain jhm. (1993) Virology, 194 (1), pp. 185-191.

8. Borke, R., Nau, M., Ringler, R.: Brain-stem afferents of hypoglossal neurons in the rat. (1983) Brain Res, 269 (1), pp. 47-55.

9. Bout, R., Tellegen, A., Dubbeldam, J.: Central connections of the nucleus mesencephalicus nervi trigemini in the mallard (anas platyrhynchos L). (1997) Anat Rec, 248 (4), pp. 554-565.

10. Buisseretdelmas, C., Epelbaum, M., Buisseret, P.: The vestibular nuclei of the cat receive a primary afferent projection from receptors in extraocular-muscles. (1990) Experimental Brain Research, 81 (3), pp. 654-658.

11. BuisseretDelmas, C., Pinganaud, G., Compoint, C., Buisseret, P.: Projection from trigeminal nuclei to neurons of the mesencephalic trigeminal nucleus in rat. (1997) Neurosci Lett, 229 (3), pp. 189-192.

12. Byers, M., Dong, W.: Comparison of trigeminal receptor location and structure in the periodontal-ligament of different types of teeth from the rat, cat, and monkey. (1989) J Comp Neurol, 279 (1), pp. 117-127.

13. Chapotat, B., Stuart, M., Buda, C., Woda, A.: Demonstration with [C-14] 2-deoxyglucose of brain structures involved in the masticatory activity of the hedgehog (erinaceus-europaeus). (1990) Brain Res, 536 (1-2), pp. 139-145.

14. Cruccu, G., Truini, A., Priori, A.: Excitability of the human trigeminal motoneuronal pool and interactions with other brainstem reflex pathways. (2001) Journal of Physiology-London, 531 (2), pp. 559-571.

15. Dacey, D.: Axon morphology of mesencephalic trigeminal neurons in a snake, thamnophis-sirtalis. (1982) J Comp Neurol, 204 (3), pp. 268-279.

16. Dessem, D., Luo, P.: Jaw-muscle spindle afferent feedback to the cervical spinal cord in the rat. (1999) Experimental Brain Research, 128 (4), pp. 451-459.

17. Dessem, D., Taylor, A.: Morphology of jaw-muscle spindle afferents in the rat. (1989) J Comp Neurol, 282 (3), pp. 389-403.

18. Donga, R., Ishizuka, K., Satoh, Y., Scott, J., Murakami, T.: Physiological evidence in support of a direct projection by jaw muscle spindle afferents to the caudal medulla in the anaesthetized rat. (1999) Neurobiology of Mastication - from Molecular to Systems Approach, 1186 , pp. 270-274.

19. Gonzalez, A., Munoz, M.: Central distribution of the efferent cells and the primary afferent-fibers of the trigeminal nerve in pleurodeles-waltlii (amphibia, urodela). (1988) J Comp Neurol, 270 (4), pp. 517-527.

20. Herbert, H., Moga, M., Saper, C.: Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular-formation in the rat. (1990) J Comp Neurol, 293 (4), pp. 540-580.

21. Hummel, G., Hild, A., Wenisch, S.: Development, cytoarchitecture and ultrastructure of the mesencephalic trigeminal nucleus in domestic ruminants. (1997) Anatomia Histologia Embryologia-Journal of Veterinary Medicine Series C-Zentralblatt Fur Veterinarmedizin Reihe C, 26 (2), pp. 99-106.

22. Iida, C., Oka, A., Moritani, M., Kato, T., Haque, T., Sato, F., Nakamura, M., Uchino, K., Seki, S., Bae, Y.C., Takada, K., Yoshida, A.: Corticofugal direct

Page 72: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

projections to primary afferent neurons in the trigeminal mesencephalic nucleus of rats. (2010) Neuroscience, 169 (4), pp. 1739-1757.

23. Jacquin, M., Chiaia, N., Haring, J., Rhoades, R.: Intersubnuclear connections within the rat trigeminal brain-stem complex. (1990) Somatosensory and Motor Research, 7 (4), pp. 399-420.

24. Jacquin, M., Semba, K., Egger, M., Rhoades, R.: Organization of hrp-labeled trigeminal mandibular primary afferent neurons in the rat. (1983) J Comp Neurol, 215 (4), pp. 397-420.

25. Jacquin, M., Semba, K., Rhoades, R., Egger, M.: Trigeminal primary afferents project bilaterally to dorsal horn and ipsilaterally to cerebellum, reticular-formation, and cuneate, solitary, supratrigeminal and vagal nuclei. (1982) Brain Res, 246 (2), pp. 285-291.

26. Juch, P., Rokx, J.: Efferent Projections Of The Parvocellular Reticular Nucleus To The Mesencephalic Trigeminal Nucleus In Rat. (1988) Brain Res, 462 (1), Pp. 185-189.

27. Kirzinger, A., Jurgens, U.: Vocalization-Correlated Single-Unit Activity In The Brain-Stem Of The Squirrel-Monkey. (1991) Experimental Brain Research, 84 (3), Pp. 545-560.

28. Kubota, K., Narita, N., Ohkubo, K., Hosaka, K., Nagae, K., Lee, M., Kawamoto, T., Kubota, M., Odagiri, N.: Central projection of proprioceptive afferents arising from maxillo-facial regions in some animals studied by hrp-labeling technique. (1988) Anat Anz, 165 (2-3), pp. 229-251.

29. Kunzle, H.: Meso-diencephalic regions projecting to spinal-cord and dorsal column nuclear-complex in the hedgehog-tenrec, echinops-telfairi. (1992) Anat Embryol, 185 (1), pp. 57-68.

30. Kunzle, H., Rehkamper, G.: Distribution of cortical-neurons projecting to dorsal column nuclear-complex and spinal-cord in the hedgehog tenrec, echinops-telfairi. (1992) Somatosensory and Motor Research, 9 (3), pp. 185-197.

31. Lazarov, N.: Comparative analysis of the chemical neuroanatomy of the mammalian trigeminal ganglion and mesencephalic trigeminal nucleus. (2002) Prog Neurobiol, 66 (1), pp. 19-59.

32. Lazarov, N.: The mesencephalic trigeminal nucleus in the cat. (2000) Mesencephalic Trigeminal Nucleus in the Cat, 153 , pp. 1-+.

33. Lingenhohl, K., Friauf, E.: Sensory neurons and motoneurons of the jaw-closing reflex pathway in rats - a combined morphological and physiological study using the intracellular horseradish-peroxidase technique. (1991) Experimental Brain Research, 83 (2), pp. 385-396.

34. Lowe, D., Russell, I.: The relation between soma position and fiber trajectory of neurons in the mesencephalic trigeminal nucleus of xenopus-laevis. (1984) Proceedings of the Royal Society of London Series B-Biological Sciences, 221 (1225), pp. 437-&.

35. Lucier, G., Egizii, R.: Central projections of the ethmoidal nerve of the cat as determined by the horseradish-peroxidase tracer technique. (1986) J Comp Neurol, 247 (1), pp. 123-132.

36. Luo, P., Dessem, D.: Inputs from identified jaw-muscle spindle afferents to trigeminothalamic neurons in the rat - a double-labeling study using retrograde hrp and intracellular biotinamide. (1995) J Comp Neurol, 353 (1), pp. 50-66.

37. Luo, P., Wang, B., Peng, Z., Li, J.: Morphological-characteristics and terminating patterns of masseteric neurons of the mesencephalic trigeminal nucleus in the rat - an intracellular horseradish-peroxidase labeling study. (1991) J Comp Neurol, 303 (2), pp. 286-299.

38. Luo, P., Wong, R., Dessem, D.: Projection of jaw-muscle spindle afferents to the caudal brain-stem in rats demonstrated using intracellular biotinamide. (1995) J Comp Neurol, 358 (1), pp. 63-78.

39. Luo, P., Zhang, J., Yang, R., Pendlebury, W.: Neuronal circuitry and synaptic organization of trigeminal proprioceptive afferents mediating tongue movement and jaw-tongue coordination via hypoglossal premotor neurons. (2006) Eur J Neurosci, 23 (12), pp. 3269-3283.

Page 73: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

40. Luschei, E.: Central projections of the mesencephalic nucleus of the 5th nerve - an autoradiographic study. (1987) J Comp Neurol, 263 (1), pp. 137-145.

41. Marfurt, C., Rajchert, D.: Trigeminal primary afferent-projections to non-trigeminal areas of the rat central-nervous-system. (1991) J Comp Neurol, 303 (3), pp. 489-511.

42. Matsuo, S., Ichikawa, H., Silos-Santiago, I., Arends, J., Henderson, T., Kiyomiya, K., Kurebe, M., Jacquin, M.: Proprioceptive afferents survive in the masseter muscle of trkC knockout mice. (2000) Neuroscience, 95 (1), pp. 209-216.

43. Munoz, M., Gonzalez, A.: Electron-Microscopic Observations Of The Trigeminal Mesencephalic Nucleus In The Frog, Rana-Ridibunda. (1990) J Hirnforsch, 31 (3), Pp. 341-348.

44. Munoz, M., Munoz, A., Gonzalez, A.: Distribution, morphology, and central projections of mesencephalic trigeminal neurons in the frog rana-ridibunda. (1993) Anat Rec, 235 (1), pp. 165-177.

45. Nagy, I., Sik, A., Polgar, E., Petko, M., Antal, M.: Combination of cobalt labeling with immunocytochemical reactions for electron-microscopic investigations on frog spinal-cord. (1994) Microsc Res Tech, 28 (1), pp. 60-66.

46. Nagy, J., Buss, M., Daddona, P.: On the innervation of trigeminal mesencephalic primary afferent neurons by adenosine deaminase-containing projections from the hypothalamus in the rat. (1986) Neuroscience, 17 (1), pp. 141-156.

47. Nomura, S., Mizuno, N.: Differential distribution of cell-bodies and central axons of mesencephalic trigeminal nucleus neurons supplying the jaw-closing muscles and periodontal tissue - a transganglionic tracer study in the cat. (1985) Brain Res, 359 (1-2), pp. 311-319.

48. Panneton, W.M., Gan, Q., Juric, R.: Brainstem projections from recipient zones of the anterior ethmoidal nerve in the medullary dorsal horn. (2006) Neuroscience, 141 (2), pp. 889-906.

49. Panneton, W.: Primary Afferent-Projections From The Upper Respiratory-Tract In The Muskrat. (1991) J Comp Neurol, 308 (1), Pp. 51-65.

50. Pfaller, K., Arvidsson, J.: Central distribution of trigeminal and upper cervical primary afferents in the rat studied by anterograde transport of horseradish-peroxidase conjugated to wheat-germ agglutinin. (1988) J Comp Neurol, 268 (1), pp. 91-108.

51. Pombal, M., AlvarezOtero, R., Rodicio, M., Anadon, R.: A tract-tracing study of the central projections of the mesencephalic nucleus of the trigeminus in the guppy (lebistes reticulatus, teleostei), with some observations on the descending trigeminal tract. (1997) Brain Res Bull, 42 (2), pp. 111-118.

52. Puzdrowski, R.: Afferent-projections of the trigeminal nerve in the goldfish, carassius-auratus. (1988) J Morphol, 198 (2), pp. 131-147.

53. Raappana, P., Arvidsson, J.: Location, morphology, and central projections of mesencephalic trigeminal neurons innervating rat masticatory muscles studied by axonal-transport of choleragenoid-horseradish peroxidase. (1993) J Comp Neurol, 328 (1), pp. 103-114.

54. Raappana, P., Arvidsson, J.: The reaction of mesencephalic trigeminal neurons to peripheral-nerve transection in the adult-rat. (1992) Experimental Brain Research, 90 (3), pp. 567-571.

55. Ro, J., Capra, N.: Receptive-Field Properties Of Trigeminothalamic Neurons In The Rostral Trigeminal Sensory Nuclei Of Cats. (1994) Somatosensory And Motor Research, 11 (2), Pp. 119-130.

56. Rokx, J., Juch, P., Vanwilligen, J.: Arrangement and connections of mesencephalic trigeminal neurons in the rat. (1986) Acta Anat, 127 (1), pp. 7-15.

57. Rokx, J., Luiten, P., Vanwilligen, J.: Afferent-projections to the mesencephalic trigeminal nucleus in the rat - anterograde tracing with phaseolus-vulgaris leukoagglutinin. (1988) Acta Anat, 132 (3), pp. 260-264.

58. Rokx, J., Vanwilligen, J., Juch, P.: Bilateral brain-stem connections of the rat supratrigeminal region. (1986) Acta Anat, 127 (1), pp. 16-21.

Page 74: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

59. Ryu, K., Watanabe, K., Kawana, E.: The Mesencephalic Root Fibers Of The Trigeminal Nerve In The Dog. (1983) Acta Anat, 116 (1), Pp. 26-36.

60. Segade, L., Quintanilla, D., Nunez, J.: The postganglionic parasympathetic fibers originating in the otic ganglion are distributed in several branches of the trigeminal mandibular nerve - an hrp study in the guinea-Pig. (1987) Brain Res, 411 (2), Pp. 386-390.

61. Segade, L., Quintanilla, J., Cobos, A.: Contralateral projections of trigeminal mandibular primary afferents in the guinea-pig as seen by transganglionic transport of horseradish-peroxidase. (1990) Brain Res, 506 (2), pp. 267-280.

62. Seng, K., Jeng, Y., Wai, C.: Localizing spinal-cord-projecting neurons in adult albino-rats. (1984) J Comp Neurol, 228 (1), pp. 1-17.

63. Shammahlagnado, S., Costa, M., Ricardo, J.: Afferent connections of the parvocellular reticular-formation - a horseradish-peroxidase study in the rat. (1992) Neuroscience, 50 (2), pp. 403-425.

64. Shigenaga, Y., Mitsuhiro, Y., Shirana, Y., Tsuru, H.: 2 Types Of Jaw-Muscle Spindle Afferents In The Cat As Demonstrated By Intraaxonal Staining With Hrp. (1990) Brain Res, 514 (2), Pp. 219-237.

65. Shigenaga, Y., Sera, M., Nishimori, T., Suemune, S., Nishimura, M., Yoshida, A., Tsuru, K.: The central projection of masticatory afferent-fibers to the trigeminal sensory nuclear-complex and upper cervical spinal-cord. (1988) J Comp Neurol, 268 (4), pp. 489-507.

66. Shortland, P., DeMaro, J., Jacquin, M.: Trigeminal structure-function relationships: A reevaluation based on long-range staining of a large sample of brainstem A beta fibers. (1995) Somatosensory and Motor Research, 12 (3-4), pp. 249-275.

67. Sirkin, D., Feng, A.: Autoradiographic study of descending pathways from the pontine reticular-formation and the mesencephalic trigeminal nucleus in the rat. (1987) J Comp Neurol, 256 (4), pp. 483-493.

68. Takada, M., Itoh, K., Yasui, Y., Mitani, A., Nomura, S., Mizuno, N.: Distribution of premotor neurons for the hypoglossal nucleus in the cat. (1984) Neurosci Lett, 52 (1-2), pp. 141-146.

69. Ugolini, G.: Specificity of rabies virus as a transneuronal tracer of motor networks - transfer from hypoglossal motoneurons to connected 2nd-order and higher-order central-nervous-system cell groups. (1995) J Comp Neurol, 356 (3), pp. 457-480.

70. Vornov, J., Sutin, J.: Noradrenergic hyperinnervation of the motor trigeminal nucleus - alterations in membrane-properties and responses to synaptic input. (1986) Journal of Neuroscience, 6 (1), pp. 30-37.

71. Vornov, J., Sutin, J.: Brain-stem projections to the normal and noradrenergically hyperinnervated trigeminal motor nucleus. (1983) J Comp Neurol, 214 (2), pp. 198-208.

72. Walberg, F., Dietrichs, E., Nordby, T.: The medullary projection from the mesencephalic trigeminal nucleus - an experimental-study with comments on the intrinsic trigeminal connections. (1984) Experimental Brain Research, 56 (2), pp. 377-383.

73. Yasuda, K., Furusawa, K., Tanaka, M., Yamaoka, M.: The distribution of afferent neurons in the trigeminal mesencephalic nucleus and the central projection of afferent fibers of the mylohyoid nerve in the rat. (1995) Somatosensory and Motor Research, 12 (3-4), pp. 309-315.

74. Yoshida, A., Mukai, N., Moritani, M., Nagase, Y., Hirose, Y., Honma, S., Fukami, H., Takagi, K., Matsuya, T., Shigenaga, Y.: Physiologic and morphologic properties of motoneurons and spindle afferents innervating the temporal muscle in the cat. (1999) J Comp Neurol, 406 (1), pp. 29-50.

75. Zhang, J., Luo, P.: Ultrastructural features of synapse from dorsal parvocellular reticular formation neurons to hypoglossal motoneurons of the rat. (2003) Brain Res, 963 (1-2), pp. 262-273.

76. Zhang, J., Luo, P., Pendlebury, W.: Light and electron microscopic observations of a direct projection from mesencephalic trigeminal nucleus neurons to hypoglossal motoneurons in the rat. (2001) Brain Res, 917 (1), pp. 67-80.

Page 75: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

77. Zhang, J., Wang, B., Li, H., Li, J.: Projections from neurons innervating the masseter muscle to the subnucleus oralis of the spinal trigeminal nucleus and adjacent lateral reticular-formation in the rat. (1991) J Hirnforsch, 32 (5), pp. 641-646.

Függő idézetek: 2 1. Matesz, C.: Termination areas of primary afferent-fibers of the trigeminal

nerve in the rat. (1983) Acta Biol Hung, 34 (1), pp. 31-43. 2. Szekely, G., Matesz, C.: Topography and organization of cranial nerve nuclei

in the sand lizard, lacerta-agilis. (1988) J Comp Neurol, 267 (4), pp. 525-544.

3. Matesz, K.: Central projections of the VIIIth cranial nerve in the frog.

Neuroscience. 4 (12), 2061-2071, 1979.

DOI: http://dx.doi.org/10.1016/0306-4522(79)90078-2

IF:3.373

Idézetek összesen: 94

Független idézetek: 84 1. Aitken, P.: Autoradiographic demonstration of viiith nerve projections in rana-

pipiens. (1981) Neurosci Lett, 24 (3), pp. 237-242. 2. Altman, J., Dawes, E.: A cobalt study of medullary sensory projections from

lateral line nerves, associated cutaneous nerves, and the viiith nerve in adult xenopus. (1983) J Comp Neurol, 213 (3), pp. 310-326.

3. Anderson, C.: Anatomical evidence for brainstem circuits mediating feeding motor programs in the leopard frog, rana pipiens. (2001) Experimental Brain Research, 140 (1), pp. 12-19.

4. Antal, M., Tornai, I., Szekely, G.: Longitudinal extent of dorsal-root fibers in the spinal-cord and brain-stem of the frog. (1980) Neuroscience, 5 (7), pp. 1311-1322.

5. Ashton, J., Boddy, A., Donaldson, I.: Input from proprioceptors in the extrinsic ocular muscles to the vestibular nuclei in the giant toad, bufo-marinus. (1984) Experimental Brain Research, 53 (2), pp. 409-419.

6. Barbashenry, H., Lohman, A.: Primary projections and efferent cells of the viiith cranial nerve in the monitor lizard, varanus-exanthematicus. (1988) J Comp Neurol, 277 (2), pp. 234-249.

7. Burian, M., Gstoettner, W., Mayr, R.: Brain-stem projection of the vestibular nerve in the guinea-pig - an hrp (horseradish-peroxidase) and wga-hrp (wheat-germ agglutinin-hrp) study. (1990) J Comp Neurol, 293 (2), pp. 165-177.

8. Christensendalsgaard, J., Jorgensen, M.: The response characteristics of vibration-sensitive saccular fibers in the grassfrog, rana-temporaria. (1988) Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology, 162 (5), pp. 633-638.

9. Christensen-Dalsgaard, J., Walkowiak, W.: In vitro and in vivo responses of saccular and caudal nucleus neurons in the grassfrog (rana temporaria). (1999) Eur J Morphol, 37 (2-3), pp. 206-210.

10. Dickman, J., Fang, Q.: Differential central projections of vestibular afferents in pigeons. (1996) J Comp Neurol, 367 (1), pp. 110-131.

11. Dieringer, N.: Vestibular compensation - neural plasticity and its relations to functional recovery after labyrinthine lesions in frogs and other vertebrates. (1995) Prog Neurobiol, 46 (2-3), pp. 97-&.

12. Dieringer, N., Kunzle, H., Precht, W.: Increased projection of ascending dorsal-root fibers to vestibular nuclei after hemilabyrinthectomy in the frog. (1984) Experimental Brain Research, 55 (3), pp. 574-578.

13. Don, D., Newman, A., Micevych, P., Popper, P.: Expression of brain-derived neurotrophic factor and its receptor mRNA in the vestibuloauditory system of the bullfrog. (1997) Hear Res, 114 (1-2), pp. 10-20.

Page 76: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

14. Edwards, C., Kelley, D.: Auditory and lateral line inputs to the midbrain of an aquatic anuran; neuroanatomic studies in xenopus laevis. (2001) J Comp Neurol, 438 (2), pp. 148-162.

15. Fanardjian, V., Manvelyan, L., Nasoyan, A.: Spatial distribution of the vestibulospinal neurons in the frog vestibular nuclei. (2001) Neuroscience, 104 (3), pp. 853-862.

16. Fanardjian, V., Manvelyan, L., Zakarian, V., Pogossian, V., Nasoyan, A.: Electrophysiological properties of the somatotopic organization of the vestibulospinal system in the frog. (1999) Neuroscience, 94 (3), pp. 845-857.

17. Fanardzhyan, V., Manvelyan, L., Pogosyan, V., Zakaryan, V., Arutyunyan, E., Nasoyan, A.: Specific functional features of the correlation between vestibular input and the vestibulospinal system in the frog rana ridibunda. (1998) Journal of Evolutionary Biochemistry and Physiology, 34 (4), pp. 330-335.

18. Fanardzhyan, V., Manvelyan, L., Zakaryan, V., Nasoyan, A.: Electrophysiological analysis of the topical organization of vestibulospinal neurons in the frogs. (1999) Doklady Akademii Nauk, 366 (5), pp. 708-711.

19. Feng, A.: Afferent and efferent innervation patterns of the cochlear nucleus (dorsal medullary nucleus) of the leopard frog. (1986) Brain Res, 367 (1-2), pp. 183-191.

20. Feng, A., Lin, W.: Neuronal architecture of the dorsal nucleus (cochlear nucleus) of the frog, rana pipiens pipiens. (1996) J Comp Neurol, 366 (2), pp. 320-334.

21. Fritzsch, B.: Experimental reorganization in the alar plate of the clawed toad, xenopus-laevis .1. quantitative and qualitative effects of embryonic otocyst extirpation. (1990) Dev Brain Res, 51 (1), pp. 113-122.

22. Fritzsch, B.: The lateral-line and inner-ear afferents in larval and adult urodeles. (1988) Brain Behavior and Evolution, 31 (6), pp. 325-348.

23. Fritzsch, B.: The pattern of lateral-line afferents in urodeles - a horseradish-peroxidase study. (1981) Cell Tissue Res, 218 (3), pp. 581-594.

24. Fritzsch, B., Nikundiwe, A.: Studying nervous connectivity in whole mounted brains of small animals using horseradish-peroxidase. (1984) Mikroskopie, 41 (5-6), pp. 145-149.

25. Fritzsch, B., Nikundiwe, A., Will, U.: Projection patterns of lateral-line afferents in anurans - a comparative hrp study. (1984) J Comp Neurol, 229 (3), pp. 451-469.

26. Fritzsch, B., Will, U., Nikundiwe, A.: The area octavo-lateralis of amphibians - a reinterpretation. (1985) Fortschr Zool, 30 , pp. 603-606.

27. Fuzessery, Z., Feng, A.: Frequency-selectivity in the anuran medulla - excitatory and inhibitory tuning properties of single neurons in the dorsal medullary and superior olivary nuclei. (1983) Journal of Comparative Physiology, 150 (1), pp. 107-119.

28. Fuzessery, Z., Feng, A.: Frequency representation in the dorsal medullary nucleus of the leopard frog, rana P pipiens. (1981) Journal of Comparative Physiology, 143 (3), pp. 339-347.

29. Gonzalez, A., Munoz, M.: The area acustico-vestibularis of discoglossus-pictus .1. cytoarchitecture and ultrastructure features. (1988) J Hirnforsch, 29 (4), pp. 411-419.

30. Gonzalez, A., Munoz, M.: The area acustico-vestibularis of discoglossus-pictus .2. the primary afferent-projections. (1988) J Hirnforsch, 29 (4), pp. 421-434.

31. Gonzalez, A., Munoz, M.: Distribution and morphology of abducens motoneurons innervating the lateral rectus and retractor bulbi muscles in the frog rana-ridibunda. (1987) Neurosci Lett, 79 (1-2), pp. 29-34.

32. Gonzalez, A., Tendonkelaar, H., Deboervanhuizen, R.: Cerebellar connections in xenopus-laevis - an hrp study. (1984) Anat Embryol, 169 (2), pp. 167-176.

33. Gonzalez, M., Manso, M., Anadon, R.: Octavolateral neurons projecting to the middle and posterior rhombencephalic reticular nuclei of larval lamprey: A retrograde horseradish peroxidase labeling study. (1997) J Comp Neurol, 384 (3), pp. 396-408.

Page 77: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

34. Grover, B., Grussercornehls, U.: Cerebellar afferents in the frogs, rana-esculenta and rana temporaria. (1984) Cell Tissue Res, 237 (2), pp. 259-267.

35. Hall, J., Feng, A.: Temporal processing in the dorsal medullary nucleus of the northern leopard frog (rana-pipiens-pipiens). (1991) J Neurophysiol, 66 (3), pp. 955-973.

36. Hall, J., Feng, A.: Classification of the temporal discharge patterns of single auditory neurons in the dorsal medullary nucleus of the northern leopard frog. (1990) J Neurophysiol, 64 (5), pp. 1460-1473.

37. Hall, J., Feng, A.: Evidence for parallel processing in the frogs auditory thalamus. (1987) J Comp Neurol, 258 (3), pp. 407-419.

38. Honrubia, V., Suarez, C., Kuruvilla, A., Sitko, S.: Central projections of primary vestibular fibers in the bullfrog .3. the anterior semicircular canal afferents. (1985) Laryngoscope, 95 (12), pp. 1526-1535.

39. Horn, E., Lang, H., Rayer, B.: The development of the static vestibuloocular reflex in the southern clawed toad, xenopus-laevis .1. intact animals. (1986) Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology, 159 (6), pp. 869-878.

40. Horn, E., Mack, R., Lang, H.: The development of the static vestibuloocular reflex in the southern clawed toad, xenopus-laevis .2. animals with acute vestibular lesions. (1986) Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology, 159 (6), pp. 879-885.

41. Horowitz, S.S., Chapman, J.A., Simmons, A.M.: Plasticity of auditory medullary-midbrain connectivity across metamorphic development in the bullfrog, rana catesbeiana. (2007) Brain Behavior and Evolution, 69 (1), pp. 1-19.

42. Horowitz, S.S., Tanyu, L.H., Simmons, A.M.: Multiple mechanosensory modalities influence development of auditory function. (2007) Journal of Neuroscience, 27 (4), pp. 782-790.

43. Housley, G., Montgomery, J.: Central projections of vestibular afferents from the horizontal semicircular canal in the carpet shark cephaloscyllium-isabella. (1983) J Comp Neurol, 221 (2), pp. 154-162.

44. Jacoby, J., Rubinson, K.: The acoustic and lateral line nuclei are distinct in the premetamorphic frog, rana-catesbeiana. (1983) J Comp Neurol, 216 (2), pp. 152-161.

45. Khorevin, V.I.: Central projections of the lagena (the third otolith endorgan of the inner ear) in the pigeon. (2008) Neurophysiology, 40 (3), pp. 167-177.

46. Khorevin, V.I.: The lagena (the third otolith endorgan in vertebrates). (2008) Neurophysiology, 40 (2), pp. 142-159.

47. Knopfel, T.: Evidence for N-methyl-D-aspartic acid receptor-mediated modulation of the commissural input to central vestibular neurons of the frog. (1987) Brain Res, 426 (2), pp. 212-224.

48. Kunkel, A., Dieringer, N.: Morphological and electrophysiological consequences of unilateral preganglionic versus postganglionic vestibular lesions in the frog. (1994) Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology, 174 (5), pp. 621-632.

49. Kuruvilla, A., Sitko, S., Schwartz, I., Honrubia, V.: Central projections of primary vestibular fibers in the bullfrog .1. the vestibular nuclei. (1985) Laryngoscope, 95 (6), pp. 692-707.

50. Lazar, G.: Long-term persistence, after eye-removal, of unmyelinated fibers in the frog visual pathway. (1980) Brain Res, 199 (1), pp. 219-224.

51. Lazar, G., Losonczy, A.: NADPH-diaphorase-positive neurons and pathways in the brain of the frog rana esculenta. (1999) Anat Embryol, 199 (2), pp. 185-198.

52. Lazar, G., Maderdrut, J., Trasti, S., Liposits, Z., Toth, P., Kozicz, T., Merchenthaler, I.: Distribution of proneuropeptide Y-derived peptides in the brain of rana-esculenta and xenopus-laevis. (1993) J Comp Neurol, 327 (4), pp. 551-571.

53. Lee, W., Newman, A., Honrubia, V.: Afferent innervation of the vestibular nuclei in the chinchilla .1. a method for labeling individual vestibular receptors with horseradish-peroxidase. (1992) Brain Res, 597 (2), pp. 269-277.

Page 78: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

54. Malinvaud, D., Vassias, I., Reichenberger, I., Roessert, C., Straka, H.: Functional organization of vestibular commissural connections in frog. (2010) Journal of Neuroscience, 30 (9), pp. 3310-3325.

55. Mandal, R., Anderson, C.W.: Anatomical organization of brainstem circuits mediating feeding motor programs in the marine toad, bufo marinus. (2009) Brain Res, 1298 , pp. 99-110.

56. Manteuffel, G., Naujoksmanteuffel, C.: Anatomical connections and electrophysiological properties of toral and dorsal tegmental neurons in the terrestrial urodele salamandra-salamandra. (1990) J Hirnforsch, 31 (1), pp. 65-76.

57. Marin, O., Smeets, W., Gonzalez, A.: Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (rana perezi, xenopus laevis) and urodele (pleurodeles waltl) amphibians. (1997) J Comp Neurol, 382 (4), pp. 499-534.

58. Meredith, G.: Comparative view of the central organization of afferent and efferent circuitry for the inner-ear. (1988) Acta Biol Hung, 39 (2-3), pp. 229-249.

59. Montgomery, J., Housley, G.: The abducens nucleus in the carpet shark cephaloscyllium-isabella. (1983) J Comp Neurol, 221 (2), pp. 163-168.

60. Montgomery, N.: Projections of the vestibular and cerebellar nuclei in rana-pipiens. (1988) Brain Behavior and Evolution, 31 (2), pp. 82-95.

61. Morona, R., Gonzalez, A.: Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians. (2009) J Comp Neurol, 515 (5), pp. 503-537.

62. Newman, A., Suarez, C., Lee, W., Honrubia, V.: Afferent innervation of the vestibular nuclei in the chinchilla .2. description of the vestibular nerve and nuclei. (1992) Brain Res, 597 (2), pp. 278-297.

63. Nikundiwe, A., Nieuwenhuys, R.: The cell masses in the brain-stem of the south-african clawed frog xenopus-laevis - a topographical and topological analysis. (1983) J Comp Neurol, 213 (2), pp. 199-219.

64. Petko, M., Santa, A.: Distribution of calcitonin gene-related peptide immunoreactivity in the central-nervous-system of the frog, rana-esculenta. (1992) Cell Tissue Res, 269 (3), pp. 525-534.

65. Pogosyan, V., Arutyunyan, T., Aglintsyan, T., Danielyan, M., Fanardjian, V.: Morphological study of spatial distribution of vestibulospinal neurons in the frog rana ridibunda. (2002) Journal of Evolutionary Biochemistry and Physiology, 38 (6), pp. 773-780.

66. Reichenberger, I., Straka, H., Ottersen, O., Streit, P., Gerrits, N., Dieringer, N.: Distribution of GABA, glycine, and glutamate immunoreactivities in the vestibular nuclear complex of the frog. (1997) J Comp Neurol, 377 (2), pp. 149-164.

67. Roth, G., Nishikawa, K., Naujoksmanteuffel, C., Schmidt, A., Wake, D.: Pedomorphosis and simplification in the nervous-system of salamanders. (1993) Brain Behavior and Evolution, 42 (3), pp. 137-170.

68. Sanchez-Camacho, C., Marin, O., Ten Donkelaar, H., Gonzalez, A.: Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin. (2001) J Comp Neurol, 434 (2), pp. 186-208.

69. 79. Schweitzer, J., Lowe, D.: Mesencephalic and diencephalic cobalt-lysine injections in an elasmobranch - evidence for 2 parallel electrosensory pathways. (1984) Neurosci Lett, 44 (3), pp. 317-322.

70. 80. Straka, H., Baker, R., Gilland, E.: Rhombomeric organization of vestibular pathways in larval frogs. (2001) J Comp Neurol, 437 (1), pp. 42-55.

71. 81. Straka, H., Biesdorf, S., Dieringer, N.: Spatial distribution of semicircular canal nerve evoked monosynaptic response components in frog vestibular nuclei. (2000) Brain Res, 880 (1-2), pp. 70-83.

72. Straka, H., Dieringer, N.: Basic organization principles of the VOR: Lessons from frogs. (2004) Prog Neurobiol, 73 (4), pp. 259-309.

73. Straka, H., Dieringer, N.: Uncrossed disynaptic inhibition of second-order vestibular neurons and its interaction with monosynaptic excitation from

Page 79: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

vestibular nerve afferent fibers in the frog. (1996) J Neurophysiol, 76 (5), pp. 3087-3101.

74. Straka, H., Holler, S., Goto, F., Kolb, F., Gilland, E.: Differential spatial organization of otolith signals in frog vestibular nuclei. (2003) J Neurophysiol, 90 (5), pp. 3501-3512.

75. Straka, H., Reichenberger, I., Dieringer, N.: Size-related properties of vestibular afferent fibers in the frog: Uptake of and immunoreactivity for glycine and aspartate glutamate. (1996) Neuroscience, 70 (3), pp. 685-696.

76. Stuesse, S., Cruce, W., Powell, K.: Organization within the cranial ix-X complex in ranid frogs - a horseradish-peroxidase transport study. (1984) J Comp Neurol, 222 (3), pp. 358-365.

77. Suarez, C., Kuruvilla, A., Sitko, S., Schwartz, I., Honrubia, V.: Central projections of primary vestibular fibers in the bullfrog .2. nerve branches from individual receptors. (1985) Laryngoscope, 95 (10), pp. 1238-1250.

78. Tendonkelaar, H., Deboervanhuizen, R., Schouten, F.: Cells of origin of descending pathways to the spinal-cord in the clawed toad (xenopus-laevis). (1981) Neuroscience, 6 (11), pp. 2297-2312.

79. Toth, P., Csank, G., Lazar, G.: Morphology of the cells of origin of descending pathways to the spinal-cord in rana-esculenta - a tracing study using cobaltic-lysine complex. (1985) J Hirnforsch, 26 (4), pp. 365-383.

80. Voitenko, L.: Vestibulospinal system organization in vertebrates. (1992) Neurophysiology, 24 (2), pp. 139-158.

81. Wilczynski, W., Capranica, R.: The auditory-system of anuran amphibians. (1984) Prog Neurobiol, 22 (1), pp. 1-&.

82. Will, U., Luhede, G., Gorner, P.: The area octavo-lateralis in xenopus-laevis .1. the primary afferent-projections. (1985) Cell Tissue Res, 239 (1), pp. 147-161.

83. Will, U., Luhede, G., Gorner, P.: The area octavo-lateralis in xenopus-laevis .2. 2nd order projections and cytoarchitecture. (1985) Cell Tissue Res, 239 (1), pp. 163-175.

84. Wold, J.: The vestibular nuclei in the domestic hen (gallus-domesticus) .6. afferents from the cerebellum. (1981) J Comp Neurol, 201 (3), pp. 319-341.

Függő idézetek: 10 1. Birinyi, A., Straka, H., Matesz, C., Dieringer, N.: Location of dye-coupled

second order and of efferent vestibular neurons labeled from individual semicircular canal or otolith organs in the frog. (2001) Brain Res, 921 (1-2), pp. 44-59.

2. Deak, A., Bacskai, T., Veress, G., Matesz, C.: Vestibular afferents to the motoneurons of glossopharyngeal and vagus nerves in the frog, rana esculenta. (2009) Brain Res, 1286 , pp. 60-65.

3. Halasi, G., Wolf, E., Bacskai, T., Szekely, G., Modis, L., Szigeti, Z.M., Meszar, Z., Felszeghy, S., Matesz, C.: The effect of vestibular nerve section on the expression of the hyaluronan in the frog, rana esculenta. (2007) Brain Structure & Function, 212 (3-4), pp. 321-334.

4. Kulik, A., Matesz, K., Szekely, G.: Mesencephalic projections of the cochlear nucleus in the frog, rana-esculenta. (1994) Acta Biol Hung, 45 (2-4), pp. 323-335.

5. Matesz, C.: Fine-structure of the primary afferent vestibulocochlear terminals in the frog. (1988) Acta Biol Hung, 39 (2-3), pp. 267-277.

6. Matesz, C.: Termination areas of primary afferent-fibers of the trigeminal nerve in the rat. (1983) Acta Biol Hung, 34 (1), pp. 31-43.

7. Matesz, C., Kulik, A., Bacskai, T.: Ascending and descending projections of the lateral vestibular nucleus in the frog rana esculenta. (2002) J Comp Neurol, 444 (2), pp. 115-128.

8. Matesz C, Bacskai T, Deak A, Racz E, Veress G, Szekely G. Using of confocal laser scanning microscope in the examination of neural network underlying the gaze and posture control. Kimura M, editor. ; 2009.

Page 80: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

9. Matesz, C., Kovalecz, G., Veress, G., Deak, A., Racz, E., Bacskai, T.: Vestibulotrigeminal pathways in the frog, rana esculenta (2008) Brain Res Bull, 75 (2-4), pp. 371-374.

10. Racz, E., Bacskai, T., Halasi, G., Kovacs, E., Matesz, C.: Organization of dye-coupled cerebellar granule cells labeled from afferent vestibular and dorsal root fibers in the frog rana esculenta. (2006) J Comp Neurol, 496 (3), pp. 382-394.

4. Matesz, K.: The motor column and sensory projections of the branchial cranial nerves in the frog.

J. Comp. Neurol. 178 (1), 157-176, 1978.

DOI: http://dx.doi.org/10.1002/cne.901780109

IF:5.198

Idézetek összesen: 98

Független idézetek: 83 1. Altman, J., Dawes, E.: A cobalt study of medullary sensory projections from

lateral line nerves, associated cutaneous nerves, and the viiith nerve in adult xenopus. (1983) J Comp Neurol, 213 (3), pp. 310-326.

2. Anadon, R., Demiguel, E., Gonzalezfuentes, M., Rodicio, C.: Hrp study of the central components of the trigeminal nerve in the larval sea lamprey - organization and homology of the primary medullary and spinal nucleus of the trigeminus. (1989) J Comp Neurol, 283 (4), pp. 602-610.

3. Antal, M.: Termination areas of corticobulbar and corticospinal fibers in the rat. (1984) J Hirnforsch, 25 (6), pp. 647-659.

4. Antal, M., Tornai, I., Szekely, G.: Longitudinal extent of dorsal-root fibers in the spinal-cord and brain-stem of the frog. (1980) Neuroscience, 5 (7), pp. 1311-1322.

5. Barbashenry, H.: The motor nuclei and primary projections of the facial-nerve in the monitor lizard varanus-exanthematicus. (1982) J Comp Neurol, 207 (2), pp. 105-113.

6. Bout, R., Tellegen, A., Dubbeldam, J.: Central connections of the nucleus mesencephalicus nervi trigemini in the mallard (anas platyrhynchos L). (1997) Anat Rec, 248 (4), pp. 554-565.

7. Dacey, D.: Axon morphology of mesencephalic trigeminal neurons in a snake, thamnophis-sirtalis. (1982) J Comp Neurol, 204 (3), pp. 268-279.

8. Davis, G., Farel, P.: Mauthner cells maintain their lumbar projection in adult frog. (1990) Neurosci Lett, 113 (2), pp. 139-143.

9. Dicke, U., Muhlenbrock-Lenter, S.: Primary and secondary somatosensory projections in direct-developing plethodontid salamanders. (1998) J Morphol, 238 (3), pp. 307-326.

10. Dieringer, N., Kunzle, H., Precht, W.: Increased projection of ascending dorsal-root fibers to vestibular nuclei after hemilabyrinthectomy in the frog. (1984) Experimental Brain Research, 55 (3), pp. 574-578.

11. Dubbeldam, J., Brus, E., Menken, S., Zeilstra, S.: Central projections of glossopharyngeal and vagus ganglia in mallard, anas-platyrhynchos L. (1979) J Comp Neurol, 183 (1), pp. 149-168.

12. Ewert, J.: Neural correlates of key stimulus and releasing mechanism: A case study and two concepts. (1997) Trends Neurosci, 20 (8), pp. 332-339.

13. Ewert, J.: Concepts in vertebrate neuroethology. (1985) Anim Behav, 33 (FEB), pp. 1-&.

14. Font, E.: Localization of brain-stem motoneurons involved in dewlap extension in the lizard, anolis-equestris. (1991) Behav Brain Res, 45 (2), pp. 171-176.

15. Fritzsch, B., Nikundiwe, A., Will, U.: Projection patterns of lateral-line afferents in anurans - a comparative hrp study. (1984) J Comp Neurol, 229 (3), pp. 451-469.

16. Gonzalez, A., Lopez, J., Sanchez-Camacho, C., Marin, O.: Localization of choline acetyltransferase (ChAT) immunoreactivity in the brain of a caecilian

Page 81: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

amphibian, dermophis mexicanus (amphibia : Gymnophiona). (2002) J Comp Neurol, 448 (3), pp. 249-267.

17. Gonzalez, A., Munoz, A., Munoz, M.: Trigeminal primary afferent-projections to the spinal-cord of the frog, rana-ridibunda. (1993) J Morphol, 217 (2), pp. 137-146.

18. Gonzalez, A., Tendonkelaar, H., Deboervanhuizen, R.: Cerebellar connections in xenopus-laevis - an hrp study. (1984) Anat Embryol, 169 (2), pp. 167-176.

19. Gorcs, T., Antal, M., Olah, E., Szekely, G.: An improved cobalt labeling technique with complex-compounds. (1979) Acta Biologica Academiae Scientiarum Hungaricae, 30 (1-2), pp. 79-86.

20. Grover, B., Grussercornehls, U.: Cerebellar afferents in the frogs, rana-esculenta and rana temporaria. (1984) Cell Tissue Res, 237 (2), pp. 259-267.

21. Hall, J., Feng, A.: Evidence for parallel processing in the frogs auditory thalamus. (1987) J Comp Neurol, 258 (3), pp. 407-419.

22. Hanamori, T., Ishiko, N.: Intraganglionic distribution of the primary afferent neurons in the frog glossopharyngeal nerve and its transganglionic projection to the rhombencephalon studied by hpr method. (1983) Brain Res, 260 (2), pp. 191-199.

23. Hanamori, T., Ishiko, N.: Surface and intramedullary potentials-evoked by stimulation of the glossopharyngeal nerve in frogs. (1983) Brain Res, 260 (1), pp. 51-60.

24. Hiscock, J., Straznicky, C.: Peripheral and central terminations of axons of the mesencephalic trigeminal neurons in xenopus. (1982) Neurosci Lett, 32 (3), pp. 235-240.

25. Jacobs, V.: Sensory component of the facial-nerve of a reptile (lacerta-viridis). (1979) J Comp Neurol, 184 (3), pp. 537-546.

26. Kanwal, J., Caprio, J.: Central projections of the glossopharyngeal and vagal nerves in the channel catfish, ictalurus-punctatus - clues to differential processing of visceral inputs. (1987) J Comp Neurol, 264 (2), pp. 216-230.

27. Kerem, G., Yoshimoto, M., Yamamoto, N., Yang, C., Xue, H., Ito, H.: Somatotopic organization of the trigeminal ganglion cells in a cichlid fish, oreochromis (tilapia) niloticus. (2005) Brain Behavior and Evolution, 65 (2), pp. 109-126.

28. Kishida, R., Onishi, H., Nishizawa, H., Kadota, T., Goris, R., Kusunoki, T.: Organization of the trigeminal and facial motor nuclei in the hagfish, eptatretus-burgeri - a retrograde hrp study. (1986) Brain Res, 385 (2), pp. 263-272.

29. Kogo, N., Remmers, J.: Neural organization of the ventilatory activity in the frog, rana-catesbeiana .2. (1994) J Neurobiol, 25 (9), pp. 1080-1094.

30. Koyama, H.: Organization of the sensory and motor nuclei of the glossopharyngeal and vagal nerves in lampreys. (2005) Zool Sci, 22 (4), pp. 469-476.

31. Lazar, G.: Long-term persistence, after eye-removal, of unmyelinated fibers in the frog visual pathway. (1980) Brain Res, 199 (1), pp. 219-224.

32. Lazar, G., Losonczy, A.: NADPH-diaphorase-positive neurons and pathways in the brain of the frog rana esculenta. (1999) Anat Embryol, 199 (2), pp. 185-198.

33. Lazar, G., Toth, P., Csank, G., Kicliter, E.: Morphology and location of tectal projection neurons in frogs - a study with hrp and cobalt-filling. (1983) J Comp Neurol, 215 (1), pp. 108-120.

34. Lazar, G., Liposits, Z., Toth, P., Trasti, S., Maderdrut, J., Merchenthaler, I.: Distribution of galanin-like immunoreactivity in the brain of rana-esculenta and xenopus-laevis. (1991) J Comp Neurol, 310 (1), pp. 45-67.

35. Lowe, D., Russell, I.: The relation between soma position and fiber trajectory of neurons in the mesencephalic trigeminal nucleus of xenopus-laevis. (1984) Proceedings of the Royal Society of London Series B-Biological Sciences, 221 (1225), pp. 437-&.

Page 82: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

36. Lowe, D., Russell, I.: The central projections of lateral line and cutaneous sensory fibers (vii and X) in xenopus-laevis. (1982) Proceedings of the Royal Society of London Series B-Biological Sciences, 216 (1204), pp. 279-&.

37. Marin, O., Gonzalez, A., Smeets, W.: Basal ganglia organization in amphibians: Afferent connections to the striatum and the nucleus accumbens. (1997) J Comp Neurol, 378 (1), pp. 16-49.

38. Marin, O., Smeets, W., Gonzalez, A.: Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (rana perezi, xenopus laevis) and urodele (pleurodeles waltl) amphibians. (1997) J Comp Neurol, 382 (4), pp. 499-534.

39. Marin, O., Smeets, W., Gonzalez, A.: Basal ganglia organization in amphibians: Catecholaminergic innervation of the striatum and the nucleus accumbens. (1997) J Comp Neurol, 378 (1), pp. 50-69.

40. Matsuda, H., Goris, R., Kishida, R.: Afferent and efferent projections of the glossopharyngeal-vagal nerve in the hagfish. (1991) J Comp Neurol, 311 (4), pp. 520-530.

41. Matsushima, T., Satou, M., Ueda, K.: Medullary reticular neurons in the japanese toad - morphologies and excitatory inputs from the optic tectum. (1989) Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology, 166 (1), pp. 7-22.

42. Matsushima, T., Satou, M., Ueda, K.: Neuronal pathways for the lingual reflex in the japanese toad. (1988) Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology, 164 (2), pp. 173-193.

43. Matsushima, T., Satou, M., Ueda, K.: Direct contacts between glossopharyngeal afferent terminals and hypoglossal motoneurons revealed by double labeling with cobaltic-lysine and horseradish-peroxidase in the japanese toad. (1987) Neurosci Lett, 80 (3), pp. 241-245.

44. Montgomery, N.: Projections of the vestibular and cerebellar nuclei in rana-pipiens. (1988) Brain Behavior and Evolution, 31 (2), pp. 82-95.

45. Morita, Y., Ito, H., Masai, H.: Central gustatory paths in the crucian carp, carassius-carassius. (1980) J Comp Neurol, 191 (1), pp. 119-132.

46. Munoz, A., Munoz, M., Gonzalez, A., tenDonkelaar, H.: Spinal ascending pathways in amphibians: Cells of origin and main targets. (1997) J Comp Neurol, 378 (2), pp. 205-228.

47. Munoz, A., Munoz, M., Gonzalez, A., Tendonkelaar, H.: Anuran dorsal column nucleus - organization, immunohistochemical characterization, and fiber-connections in rana-perezi and xenopus-laevis. (1995) J Comp Neurol, 363 (2), pp. 197-220.

48. Munoz, M., Munoz, A., Gonzalez, A.: Distribution, morphology, and central projections of mesencephalic trigeminal neurons in the frog rana-ridibunda. (1993) Anat Rec, 235 (1), pp. 165-177.

49. Munoz, M., Munoz, A., Marin, O., Gonzalez, A.: Primary afferents and 2nd-order projections of the trigeminal system in a frog (rana-ridibunda). (1994) Eur J Morphol, 32 (2-4), pp. 288-292.

50. Nikundiwe, A., Nieuwenhuys, R.: The cell masses in the brain-stem of the south-african clawed frog xenopus-laevis - a topographical and topological analysis. (1983) J Comp Neurol, 213 (2), pp. 199-219.

51. Oka, Y., Satou, M., Ueda, K.: An improved method for correlative light and electron-microscopic examination of cobaltic-lysine-labeled neurons. (1987) Neurosci Lett, 73 (2), pp. 187-191.

52. Oka, Y., Satou, M., Ueda, K.: Morphology and distribution of the motor neurons of the accessory nerve (nxi) in the japanese toad - a cobaltic lysine study. (1987) Brain Res, 400 (2), pp. 383-388.

53. Oka, Y., Takeuchi, H., Satou, M., Ueda, K.: Cobaltic lysine study of the morphology and distribution of the cranial nerve efferent neurons (motoneurons and preganglionic parasympathetic neurons) and rostral spinal motoneurons in the japanese toad. (1987) J Comp Neurol, 259 (3), pp. 400-423.

54. Oka, Y., Takeuchi, H., Satou, M., Ueda, K.: Morphology and distribution of the preganglionic parasympathetic neurons of the facial, glossopharyngeal and

Page 83: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

vagus nerves in the japanese toad - a cobaltic lysine study. (1987) Brain Res, 400 (2), pp. 389-395.

55. Papalopulu, N., Clarke, J., Bradley, L., Wilkinson, D., Krumlauf, R., Holder, N.: Retinoic acid causes abnormal-development and segmental patterning of the anterior hindbrain in xenopus embryos rid C-5347-2009. (1991) Development, 113 (4), pp. 1145-&.

56. Petko, M., Santa, A.: Distribution of calcitonin gene-related peptide immunoreactivity in the central-nervous-system of the frog, rana-esculenta. (1992) Cell Tissue Res, 269 (3), pp. 525-534.

57. Roth, G., Naujoksmanteuffel, C., Grunwald, W.: Cytoarchitecture Of The Tectum Mesencephali In Salamanders - A Golgi And Hrp Study. (1990) J Comp Neurol, 291 (1), Pp. 27-42.

58. Roth, G., Nishikawa, K., Wake, D., Dicke, U., Matsushima, T.: Mechanics and neuromorphology of feeding in amphibians. (1990) Neth J Zool, 40 (1-2), pp. 115-135.

59. Satou, M., Matsushima, T., Takeuchi, H., Ueda, K.: Tongue-muscle-controlling motoneurons in the japanese toad - topography, morphology and neuronal pathways from the snapping-evoking area in the optic tectum. (1985) Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology, 157 (6), pp. 717-737.

60. Schlosser, G., Roth, G.: Evolution of nerve development in frogs .1. the development of the peripheral nervous system in discoglossus pictus (discoglossidae). (1997) Brain Behavior and Evolution, 50 (2), pp. 61-93.

61. Schlosser, G., Roth, G.: Distribution of cranial and rostral spinal nerves in tadpoles of the frog discoglossus-pictus (discoglossidae). (1995) J Morphol, 226 (2), pp. 189-212.

62. Schwippert, W., Beneke, T., Ewert, J.: Responses of medullary neurons to moving visual-stimuli in the common toad .2. an intracellular-recording and cobalt-lysine labeling study. (1990) Journal of Comparative Physiology A-Sensory Neural and Behavioral Physiology, 167 (4), pp. 509-520.

63. Sewards, T., Sewards, M.: Innate visual object recognition in vertebrates: Some proposed pathways and mechanisms. (2002) Comparative Biochemistry and Physiology A-Molecular and Integrative Physiology, 132 (4), pp. 861-891.

64. Simpson, H., Tobias, M., Kelley, D.: Origin and identification of fibers in the cranial nerve ix-X complex of xenopus-laevis - lucifer yellow backfills invitro. (1986) J Comp Neurol, 244 (4), pp. 430-444.

65. Sirkin, D., Feng, A.: Autoradiographic study of descending pathways from the pontine reticular-formation and the mesencephalic trigeminal nucleus in the rat. (1987) J Comp Neurol, 256 (4), pp. 483-493.

66. Song, J., Boord, R.: Motor components of the trigeminal nerve and organization of the mandibular arch muscles in vertebrates - phylogenetically conservative patterns and their ontogenic basis. (1993) Acta Anat, 148 (2-3), pp. 139-149.

67. Sperry, D., Boord, R.: Central location of the motoneurons that supply the cucullaris (trapezius) of the clearnose skate, raja-eglanteria. (1992) Brain Res, 582 (2), pp. 312-319.

68. Straka, H., Baker, R., Gilland, E.: The frog as a unique vertebrate model for studying the rhombomeric organization of functionally identified hindbrain neurons. (2002) Brain Res Bull, 57 (3-4), pp. 301-305.

69. Straka, H., Bayer, R., Gilland, E.: Preservation of segmental hindbrain organization in adult frogs. (2006) J Comp Neurol, 494 (2), pp. 228-245.

70. Strake, J., Luksch, H., Walkowiak, W.: Audio-motor interface in anurans. (1994) Eur J Morphol, 32 (2-4), pp. 122-126.

71. Stuesse, S., Cruce, W.: Afferent and efferent components of the facial-nerve in a frog, rana-pipiens. (1986) Cell Tissue Res, 244 (1), pp. 147-151.

72. Szekely, G.: Order and plasticity in the nervous-system. (1979) Trends Neurosci, 2 (10), pp. 245-248.

73. Szekely, G., Antal, N., Gorcs, T.: Direct dorsal-root projection onto the cerebellum in the frog. (1980) Neurosci Lett, 19 (2), pp. 161-165.

Page 84: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

74. Takei, K., Oka, Y., Satou, M., Ueda, K.: Horseradish-peroxidase study of the localization of motoneurons in the accessory nucleus (xi) of the japanese toad. (1987) Neurosci Lett, 79 (3), pp. 241-245.

75. Takei, K., Oka, Y., Satou, M., Ueda, K.: Distribution of motoneurons involved in the prey-catching behavior in the japanese toad, bufo-japonicus. (1987) Brain Res, 410 (2), pp. 395-400.

76. Taylor, B., Finger, T., Darcy, G., Roper, S.: Accuracy of regeneration of vagal parasympathetic axons. (1983) J Comp Neurol, 221 (2), pp. 145-153.

77. Tendonkelaar, H., Bangma, G., Barbashenry, H., Deboervanhuizen, R., Wolters, J.: The brain-stem in a lizard, varanus-exanthematicus. (1987) Advances in Anatomy Embryology and Cell Biology, 107 , pp. 1-168.

78. Tendonkelaar, H., Deboervanhuizen, R.: Observations on the development of ascending spinal pathways in the clawed toad, xenopus-laevis. (1991) Anat Embryol, 183 (6), pp. 589-603.

79. Toth, P., Csank, G., Lazar, G.: Morphology of the cells of origin of descending pathways to the spinal-cord in rana-esculenta - a tracing study using cobaltic-lysine complex. (1985) J Hirnforsch, 26 (4), pp. 365-383.

80. Wake, D.: Brain-stem organization and branchiomeric nerves. (1993) Acta Anat, 148 (2-3), pp. 124-131.

81. Will, U.: Amphibian mauthner cells. (1991) Brain Behavior and Evolution, 37 (5), pp. 317-332.

82. Will, U.: Mauthner neurons survive metamorphosis in anurans - a comparative hrp study on the cytoarchitecture of mauthner neurons in amphibians. (1986) J Comp Neurol, 244 (1), pp. 111-120.

83. Will, U.: Efferent neurons of the lateral-line system and the viii-cranial nerve in the brain-stem of anurans - a comparative-study using retrograde tracer methods. (1982) Cell Tissue Res, 225 (3), pp. 673-685.

Függő idézetek: 15 1. Bacskai, T., Matesz, C.: Primary afferent fibers establish dye-coupled

connections in the frog central nervous system. (2002) Brain Res Bull, 57 (3-4), pp. 317-319.

2. Bacskai, T., Veress, G., Halasi, G., Matesz, C.: Crossing dendrites of the hypoglossal motoneurons: Possible morphological substrate of coordinated and synchronized tongue movements of the frog, rana esculenta. (2010) Brain Res, 1313 , pp. 89-96.

3. Matesz, C.: Synaptic relations of the trigeminal motoneurons in a frog (rana-esculenta). (1994) Eur J Morphol, 32 (2-4), pp. 117-121.

4. Matesz, C.: Termination areas of primary afferent-fibers of the trigeminal nerve in the rat. (1983) Acta Biol Hung, 34 (1), pp. 31-43.

5. Matesz, C.: Peripheral and central distribution of fibers of the mesencephalic trigeminal root in the rat. (1981) Neurosci Lett, 27 (1), pp. 13-17.

6. Matesz, C.: Central projection of the viiith-cranial nerve in the frog. (1979) Neuroscience, 4 (12), pp. 2061-&.

7. Matesz, C., Birinyi, A., Kothalawala, D., Szekely, G.: Investigation of the dendritic geometry of brain-stem motoneurons with different functions using multivariant statistical techniques in the frog. (1995) Neuroscience, 65 (4), pp. 1129-1144.

8. Matesz, C., Szekely, G.: Organization of the ambiguus nucleus in the frog (rana esculenta). (1996) J Comp Neurol, 371 (2), pp. 258-269.

9. Matesz, C., Szekely, G.: Dorsomedial nuclear group of cranial nerves in frog. (1977) Acta Biologica Academiae Scientiarum Hungaricae, 28 (4), pp. 461-474.

10. Matesz, C., Kovalecz, G., Veress, G., Deak, A., Racz, E., Bacskai, T.: Vestibulotrigeminal pathways in the frog, rana esculenta. (2008) Brain Res Bull, 75 (2-4), pp. 371-374.

11. Racz, E., Bacskai, T., Szabo, G., Szekely, G., Matesz, C.: Organization of last-order premotor interneurons related to the protraction of tongue in the frog, rana esculenta. (2008) Brain Res, 1187 , pp. 111-115.

Page 85: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

12. Szabo, Z., Bacskai, T., Deak, A., Matesz, K., Veress, G., Sziklai, I.: Dendrodendritic connections between the cochlear efferent neurons in guinea pig. (2011) Neurosci Lett, 504 (3), pp. 195-198.

13. Szekely, G., Levai, G., Matesz, K.: Primary afferent terminals in the nucleus of the solitary tract of the frog - an electron-microscopic study. (1983) Experimental Brain Research, 53 (1), pp. 109-117.

14. Szekely, G., Matesz, C.: Topography and organization of cranial nerve nuclei in the sand lizard, lacerta-agilis. (1988) J Comp Neurol, 267 (4), pp. 525-544.

15. Szekely, G., Matesz, C.: Trigeminal motoneurons with disparate dendritic geometry innervate different muscle groups in the frog. (1987) Neurosci Lett, 77 (2), pp. 161-165.

5. Székely, G., Matesz, K.: The efferent system of cranial nerve nuclei: A comparative

neuromorphological study. Springer Verlag, Berlin, Heidelberg, New York, 1993.

Idézetek összesen: 25

Független idézetek: 19 1. Anderson, C., Keifer, J.: Properties of conditioned abducens nerve responses

in a highly reduced in vitro brain stem preparation from the turtle. (1999) J Neurophysiol, 81 (3), pp. 1242-1250.

2. Atobe, Y., Nakano, M., Kadota, T., Hisajima, T., Goris, R., Funakoshi, K.: Medullary efferent and afferent neurons of the facial nerve of the pit viper gloydius brevicaudus. (2004) J Comp Neurol, 472 (3), pp. 345-357.

3. Billig, I., Balaban, C.: Zonal organization of the vestibulo-cerebellar pathways controlling the horizontal eye muscles using two recombinant strains of pseudorabies virus. (2005) Neuroscience, 133 (4), pp. 1047-1059.

4. Billig, I., Balaban, C.: Zonal organization of the vestibulo-cerebellum in the control of horizontal extraocular muscles using pseudorabies virus: I. Flocculus/ventral paraflocculus. (2004) Neuroscience, 125 (2), pp. 507-520.

5. Blessing, W., Gai, W.: Chapter III caudal pons and medulla oblongata. (1997) Handbook of Chemical Neuroanatomy, 13 , pp. 139-186.

6. Borla, M., Palecek, B., Budick, S., O'Malley, D.: Prey capture by larval zebrafish: Evidence for fine axial motor control. (2002) Brain Behavior and Evolution, 60 (4), pp. 207-229.

7. Colamarino, S., Tessierlavigne, M.: The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons. (1995) Cell, 81 (4), pp. 621-629.

8. Fritzsch, B.: Of mice and genes: Evolution of vertebrate brain development. (1998) Brain Behavior and Evolution, 52 (4-5), pp. 207-217.

9. Garel, S., Garcia-Dominguez, M., Charnay, P.: Control of the migratory pathway of facial branchiomotor neurones. (2000) Development, 127 (24), pp. 5297-5307.

10. Gilland, E., Baker, R.: Evolutionary patterns of cranial nerve efferent nuclei in vertebrates. (2005) Brain Behavior and Evolution, 66 (4), pp. 234-254.

11. Gonzalez, A., Lopez, J., Sanchez-Camacho, C., Marin, O.: Localization of choline acetyltransferase (ChAT) immunoreactivity in the brain of a caecilian amphibian, dermophis mexicanus (amphibia : Gymnophiona). (2002) J Comp Neurol, 448 (3), pp. 249-267.

12. Irving, C., Malhas, A., Guthrie, S., Mason, I.: Establishing the trochlear motor axon trajectory: Role of the isthmic organiser and Fgf8. (2002) Development, 129 (23), pp. 5389-5398.

13. Jones, M.P., Pierce, K.E., Jr., Ward, D.: Avian vision: A review of form and function with special consideration to birds of prey. (2007) Journal of Exotic Pet Medicine, 16 (2), pp. 69-87.

14. Landwehr, S., Dicke, U.: Distribution of GABA, glycine, and glutamate in neurons of the medulla oblongata and their projections to the midbrain tectum in plethodontid salamanders. (2005) J Comp Neurol, 490 (2), pp. 145-162.

Page 86: DEBRECENI EGYETEM EGYETEMI KENÉZY ÉLETTUDOMÁNYI KÖNYVTÁRAdental.med.unideb.hu/fodi/matesz_publist.pdfDEBRECENI EGYETEM EGYETEMI ÉS NEMZETI KÖNYVTÁR ... KENÉZY ÉLETTUDOMÁNYI

DEBRECENI  EGYETEM  EGYETEMI  ÉS  NEMZETI  KÖNYVTÁR  KENÉZY  ÉLETTUDOMÁNYI  KÖNYVTÁRA  

4032  Debrecen,  Egyetem   tér  1.        e ‐mail :  publ ikac iok@l ib.unideb.hu  

15. Noden, D.M., Francis-West, P.: The differentiation and morphogenesis of craniofacial muscles. (2006) Developmental Dynamics, 235 (5), pp. 1194-1218.

16. Schmidt, A., Wake, D., Wake, M.: Motor nuclei of nerves innervating the tongue and hypoglossal musculature in a caecilian (amphibia: Gymnophiona), as revealed by HRP transport. (1996) J Comp Neurol, 370 (3), pp. 342-349.

17. Straka, H., Baker, R., Gilland, E.: The frog as a unique vertebrate model for studying the rhombomeric organization of functionally identified hindbrain neurons. (2002) Brain Res Bull, 57 (3-4), pp. 301-305.

18. Studer, M.: Initiation of facial motoneurone migration is dependent on rhombomeres 5 and 6. (2001) Development, 128 (19), pp. 3707-3716.

19. Vasilakos, K., Wilson, R., Kimura, N., Remmers, J.: Ancient gill and lung oscillators may generate the respiratory rhythm of frogs and rats. (2005) J Neurobiol, 62 (3), pp. 369-385.

Függő idézetek: 6 1. Bacskai, T., Veress, G., Halasi, G., Matesz, C.: Crossing dendrites of the

hypoglossal motoneurons: Possible morphological substrate of coordinated and synchronized tongue movements of the frog, rana esculenta. (2010) Brain Res, 1313 , pp. 89-96.

2. Birinyi, A., Szekely, G., Csapo, K., Matesz, C.: Quantitative morphological analysis of the motoneurons innervating muscles involved in tongue movements of the frog rana esculenta. (2004) J Comp Neurol, 470 (4), pp. 409-421.

3. Deak, A., Bacskai, T., Veress, G., Matesz, C.: Vestibular afferents to the motoneurons of glossopharyngeal and vagus nerves in the frog, rana esculenta. (2009) Brain Res, 1286 , pp. 60-65.

4. Matesz, C., Szekely, G.: Organization of the ambiguus nucleus in the frog (rana esculenta). (1996) J Comp Neurol, 371 (2), pp. 258-269.

5. Matesz C, Bacskai T, Deak A, Racz E, Veress G, Szekely G. Using of confocal laser scanning microscope in the examination of neural network underlying the gaze and posture control. Kimura M, editor. ; 2009.

6. Matesz, C., Kovalecz, G., Veress, G., Deak, A., Racz, E., Bacskai, T.: Vestibulotrigeminal pathways in the frog, rana esculenta. (2008) Brain Res Bull, 75 (2-4), pp. 371-374.

Összesített Impakt Faktor érték: 11,593

Hivatkozások száma: 347

Független hivatkozások száma: 303

A DEENK Kenézy Élettudományi Könyvtár a Pályázó által a Publikációs Adatbázisba feltöltött adatok

bibliográfiai és tudománymetriai ellenőrzését a tudományos adatbázisok, a Journal Citation Reports

Impact Factor lista és a Scopus, ISI Web of Knowledge és a Google Scholar citációs listái alapján

elvégezte.

Debrecen, 2012.02.16