dcm for evoked responses

57
DCM for evoked responses Ryszard Auksztulewicz SPM for M/EEG course, 2014

Upload: colton

Post on 19-Mar-2016

41 views

Category:

Documents


2 download

DESCRIPTION

DCM for evoked responses. Ryszard Auksztulewicz SPM for M/EEG course, 2014. ?. Does network XYZ explain my data better than network XY?. input. input. ?. Does network XYZ explain my data better than network XY? Which XYZ connectivity structure best explains my data?. input. input. ?. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: DCM for evoked responses

DCM for evoked responses

Ryszard Auksztulewicz

SPM for M/EEG course, 2014

Page 2: DCM for evoked responses

?Does network XYZ explain my data better than network XY?

inputinput

Page 3: DCM for evoked responses

?Does network XYZ explain my data better than network XY?

Which XYZ connectivity structure best explains my data?

inputinput

Page 4: DCM for evoked responses

?Does network XYZ explain my data better than network XY?

Which XYZ connectivity structure best explains my data?

Are X & Y linked in a bottom-up, top-down or recurrent fashion?

inputinput

Page 5: DCM for evoked responses

?Does network XYZ explain my data better than network XY?

Which XYZ connectivity structure best explains my data?

Are X & Y linked in a bottom-up, top-down or recurrent fashion?

Is my effect driven by extrinsic or intrinsic connections?

input

context

Page 6: DCM for evoked responses

?Does network XYZ explain my data better than network XY?

Which XYZ connectivity structure best explains my data?

Are X & Y linked in a bottom-up, top-down or recurrent fashion?

Is my effect driven by extrinsic or intrinsic connections?

Which neural populations are affected by contextual factors?

input

context

Page 7: DCM for evoked responses

?Does network XYZ explain my data better than network XY?

Which XYZ connectivity structure best explains my data?

Are X & Y linked in a bottom-up, top-down or recurrent fashion?

Is my effect driven by extrinsic or intrinsic connections?

Which neural populations are affected by contextual factors?

Which connections determine observed frequency coupling?

input

context

Page 8: DCM for evoked responses

?Does network XYZ explain my data better than network XY?

Which XYZ connectivity structure best explains my data?

Are X & Y linked in a bottom-up, top-down or recurrent fashion?

Is my effect driven by extrinsic or intrinsic connections?

Which neural populations are affected by contextual factors?

Which connections determine observed frequency coupling?

How changing a connection/parameter would influence data?

input

context

Page 9: DCM for evoked responses

Collect data

Build model(s)

Fit your model parameters to

the data

Pick the best model

Make an inference

(conclusion)

The DCM analysis pathway

Page 10: DCM for evoked responses

Collect data

Build model(s)

Fit your model parameters to

the data

Pick the best model

Make an inference

(conclusion)

The DCM analysis pathway

Page 11: DCM for evoked responses

Data for DCM for ERPs / ERFs1. Downsample2. Filter (e.g. 1-40Hz)3. Epoch4. Remove artefacts5. Average

• Per subject• Grand average

6. Plausible sources• Literature / a priori• Dipole fitting / 3D source

reconstruction

Page 12: DCM for evoked responses

Collect data

Build model(s)

Fit your model parameters to

the data

Pick the best model

Make an inference

(conclusion)

The DCM analysis pathway

Page 13: DCM for evoked responses

Collect data

Build model(s)

Fit your model parameters to

the data

Pick the best model

Make an inference

(conclusion)

The DCM analysis pathway

‘Hardwired’ model features

Page 14: DCM for evoked responses

Models

Page 15: DCM for evoked responses

Kiebel et al., 2008

Neuronal (source) model

Page 16: DCM for evoked responses

v

v

spm_fx_cmcspm_fx_erp

Inhib Inter

Spiny

Stell

Pyr

L2/3

L4

L5/6

NEURAL MASS MODEL CANONICAL MICROCIRCUIT

Pyr

Spiny

Stell

Inhib Inter

Pyr

Page 17: DCM for evoked responses

22

3

2

437187

2

24

43

2))()()(((

pppSpSpSAHp

pp

B

Canonical Microcircuit Model (‘CMC’)

GranularLayer

Supra-granular

Layer

Infra-granular

Layer

4

3

1

2

)( 3pSAF

24

7

4

8597102

4

48

87

2))()()((

pppSpSpSAHp

pp

F

23

5

3

65476157

3

36

65

2))()()()((

pppSpSpSpSAHp

pp

B

21

1

1

23253113

1

12

21

2))()()()(((

ppCupSpSpSpSAHp

pp

F

10

7

5

6

89

)( 7pSAB

)( 3pSAF

)( 7pSAB

)( 3pSAF

)( 7pSAB

)( 7pS

U

3Lp y Output equation:

Pinotsis et al., 2012

Page 18: DCM for evoked responses

Canonical Microcircuit Model (‘CMC’)

Bastos et al. (2012) Pinotsis et al. (2012)

Page 19: DCM for evoked responses

Canonical Microcircuit Model (‘CMC’)

Supra-granular

Layer

Infra-granular

Layer

GranularLayer

Page 20: DCM for evoked responses

Superficial Pyramidal Cells

GranularLayer

Supra-granular

Layer

Infra-granular

Layer

Spiny Stellate Cells

Deep PyramidalCells

Inhibitory Interneurons

Pinotsis et al., 2012

Canonical Microcircuit Model (‘CMC’)

Page 21: DCM for evoked responses

GranularLayer

Supra-granular

Layer

Infra-granular

Layer

Superficial Pyramidal Cells

Spiny Stellate Cells

Deep PyramidalCells

Inhibitory Interneurons

Pinotsis et al., 2012

Canonical Microcircuit Model (‘CMC’)

Page 22: DCM for evoked responses

GranularLayer

Supra-granular

Layer

Infra-granular

Layer

32

5

6

89

Superficial Pyramidal Cells

Spiny Stellate Cells

Deep PyramidalCells

Inhibitory Interneurons

Pinotsis et al., 2012

Canonical Microcircuit Model (‘CMC’)

Page 23: DCM for evoked responses

Canonical Microcircuit Model (‘CMC’)

GranularLayer

Supra-granular

Layer

Infra-granular

Layer

4

3

1

2

10

7

5

6

89

Superficial Pyramidal Cells

Spiny Stellate Cells

Deep PyramidalCells

Inhibitory Interneurons

Pinotsis et al., 2012

Page 24: DCM for evoked responses

Canonical Microcircuit Model (‘CMC’)

GranularLayer

Supra-granular

Layer

Infra-granular

Layer

4

3

1

2

)( 3pSAF

10

7

5

6

89

)( 7pSAB

Superficial Pyramidal Cells

Spiny Stellate Cells

Deep PyramidalCells

Inhibitory Interneurons

Pinotsis et al., 2012

Page 25: DCM for evoked responses

Canonical Microcircuit Model (‘CMC’)

GranularLayer

Supra-granular

Layer

Infra-granular

Layer

4

3

1

2

)( 3pSAF

10

7

5

6

89

)( 7pSAB

)( 3pSAF

)( 7pSAB

)( 3pSAF

)( 7pSAB

Superficial Pyramidal Cells

Spiny Stellate Cells

Deep PyramidalCells

Inhibitory Interneurons

Pinotsis et al., 2012

Page 26: DCM for evoked responses

Canonical Microcircuit Model (‘CMC’)

GranularLayer

Supra-granular

Layer

Infra-granular

Layer

4

3

1

2

)( 3pSAF

10

7

5

6

89

)( 7pSAB

)( 3pSAF

)( 7pSAB

)( 3pSAF

)( 7pSAB

U

Superficial Pyramidal Cells

Spiny Stellate Cells

Deep PyramidalCells

Inhibitory Interneurons

Pinotsis et al., 2012

Page 27: DCM for evoked responses

Canonical Microcircuit Model (‘CMC’)

GranularLayer

Supra-granular

Layer

Infra-granular

Layer

4

3

1

2

)( 3pSAF

10

7

5

6

89

)( 7pSAB

)( 3pSAF

)( 7pSAB

)( 3pSAF

)( 7pSAB

)( 7pS

U

Superficial Pyramidal Cells

Spiny Stellate Cells

Deep PyramidalCells

Inhibitory Interneurons

Pinotsis et al., 2012

Page 28: DCM for evoked responses

24

7

4

8597102

4

48

87

2))()()((

pppSpSpSAHp

pp

F

Voltage change rate: f(current)Current change rate: f(voltage,current)

Pinotsis et al., 2012

Canonical Microcircuit Model (‘CMC’)

Page 29: DCM for evoked responses

24

7

4

8597102

4

48

87

2))()()((

pppSpSpSAHp

pp

F

David et al., 2006; Pinotsis et al., 2012

Voltage change rate: f(current)Current change rate: f(voltage,current)

H, τ Kernels: pre-synaptic inputs -> post-synaptic membrane potentials[ H: max PSP; τ: rate constant ]

S Sigmoid operator: PSP -> firing rate

Canonical Microcircuit Model (‘CMC’)

Page 30: DCM for evoked responses

22

3

2

437187

2

24

43

2))()()(((

pppSpSpSAHp

pp

B

Canonical Microcircuit Model (‘CMC’)

GranularLayer

Supra-granular

Layer

Infra-granular

Layer

4

3

1

2

)( 3pSAF

24

7

4

8597102

4

48

87

2))()()((

pppSpSpSAHp

pp

F

23

5

3

65476157

3

36

65

2))()()()((

pppSpSpSpSAHp

pp

B

21

1

1

23253113

1

12

21

2))()()()(((

ppCupSpSpSpSAHp

pp

F

10

7

5

6

89

)( 7pSAB

)( 3pSAF

)( 7pSAB

)( 3pSAF

)( 7pSAB

)( 7pS

U

3Lp y

Pinotsis et al., 2012

Page 31: DCM for evoked responses

Collect data

Build model(s)

Fit your model parameters to

the data

Pick the best model

Make an inference

(conclusion)

The DCM analysis pathway

‘Hardwired’ model features

Page 32: DCM for evoked responses

2 1

4 3

5

Page 33: DCM for evoked responses

2 1

4 3

5

Input

Page 34: DCM for evoked responses

2 1

4 3

5

Input

Page 35: DCM for evoked responses

2 1

4 3

5

Input

Page 36: DCM for evoked responses

2 1

4 3

5

Input

Page 37: DCM for evoked responses

2 1

4 3

5

Input

Factor 1

Page 38: DCM for evoked responses

2 1

4 3

5

Input

Factor 1 Factor 2

Page 39: DCM for evoked responses

Collect data

Build model(s)

Fit your model parameters to

the data

Pick the best model

Make an inference

(conclusion)

The DCM analysis pathway

Fixed parameters

Page 40: DCM for evoked responses

Fitting DCMs to data

Page 41: DCM for evoked responses

Fitting DCMs to data

50 100 150 200-1.5

-1

-0.5

0

0.5

1

1.5mode 1

50 100 150 200-1.5

-1

-0.5

0

0.5

1

1.5mode 2

50 100 150 200-1.5

-1

-0.5

0

0.5

1

1.5mode 3

50 100 150 200-1.5

-1

-0.5

0

0.5

1

1.5mode 4

50 100 150 200-1.5

-1

-0.5

0

0.5

1

1.5mode 5

50 100 150 200-1.5

-1

-0.5

0

0.5

1

1.5mode 6

50 100 150 200-1.5

-1

-0.5

0

0.5

1

1.5mode 7

50 100 150 200-1.5

-1

-0.5

0

0.5

1

1.5mode 8

time (ms)

trial 1 (predicted)trial 1 (observed)trial 2 (predicted)trial 2 (observed)

0 50 100 150 200 250-0.01

-0.005

0

0.005

0.01

time (ms)

Observed (adjusted) 1

0 50 100 150 200 250-0.01

-0.005

0

0.005

0.01

channels

time

(ms)

Predicted

0 50 100 150 200 250-0.01

-0.005

0

0.005

0.01

time (ms)

Observed (adjusted) 2

0 50 100 150 200 250-0.01

-0.005

0

0.005

0.01

channels

time

(ms)

Predicted

H. Brown

Page 42: DCM for evoked responses

Fitting DCMs to data

50 100 150 200-1.5

-1

-0.5

0

0.5

1mode 1

50 100 150 200-1.5

-1

-0.5

0

0.5

1mode 2

50 100 150 200-1.5

-1

-0.5

0

0.5

1mode 3

50 100 150 200-1.5

-1

-0.5

0

0.5

1mode 4

50 100 150 200-1.5

-1

-0.5

0

0.5

1mode 5

50 100 150 200-1.5

-1

-0.5

0

0.5

1mode 6

50 100 150 200-1.5

-1

-0.5

0

0.5

1mode 7

50 100 150 200-1.5

-1

-0.5

0

0.5

1mode 8

time (ms)

trial 1 (predicted)trial 1 (observed)trial 2 (predicted)trial 2 (observed)

0 50 100 150 200 250-0.01

-0.005

0

0.005

0.01

time (ms)

Observed (adjusted) 1

0 50 100 150 200 250-0.01

-0.005

0

0.005

0.01

channels

time

(ms)

Predicted

0 50 100 150 200 250-0.01

-0.005

0

0.005

0.01

time (ms)

Observed (adjusted) 2

0 50 100 150 200 250-0.01

-0.005

0

0.005

0.01

channels

time

(ms)

Predicted

H. Brown

Page 43: DCM for evoked responses

Fitting DCMs to data

1. Check your data

0 50 100 150 200-5

0

5x 10

-14

time (ms)

Observed response 1

channels

peri-

stim

ulus t

ime

(ms)

Observed response 1

50 100 150 200 250

0

50

100

150

200

0 50 100 150 200-5

0

5x 10

-14

time (ms)

Observed response 2

channels

peri-

stim

ulus t

ime

(ms)

Observed response 2

50 100 150 200 250

0

50

100

150

200

H. Brown

Page 44: DCM for evoked responses

Fitting DCMs to data

1. Check your data

2. Check your sources

H. Brown

Page 45: DCM for evoked responses

1. Check your data

2. Check your sources

3. Check your model

Model 1

V4

IPLA19

OFC

V4

IPLA19

OFC

V4

IPL

Model 2

V4

IPL

H. Brown

Fitting DCMs to data

Page 46: DCM for evoked responses

Fitting DCMs to data

1. Check your data

2. Check your sources

3. Check your model

4. Re-run model fitting

H. Brown

Page 47: DCM for evoked responses

Collect data

Build model(s)

Fit your model parameters to

the data

Pick the best model

Make an inference

(conclusion)

The DCM analysis pathway

Fixed parameters

Page 48: DCM for evoked responses

?Does network XYZ explain my data better than network XY?

Which XYZ connectivity structure best explains my data?

Are X & Y linked in a bottom-up, top-down or recurrent fashion?

Is my effect driven by extrinsic or intrinsic connections?

Which connections/populations are affected by contextual factors?

input

context

Page 49: DCM for evoked responses

Garrido et al., 2008

Example #1: Architecture of MMN

Page 50: DCM for evoked responses

Garrido et al., 2007

Example #2: Role of feedback connections

Page 51: DCM for evoked responses

Boly et al., 2011

Example #3: Group differences

Page 52: DCM for evoked responses

Auksztulewicz & Blankenburg, 2013

Example #4: Parametric effects

Page 53: DCM for evoked responses

Auksztulewicz & Blankenburg, 2013

Page 54: DCM for evoked responses

Auksztulewicz & Blankenburg, 2013

Page 55: DCM for evoked responses

Moran et al., 2013

Example #5: Specific CMC populations

Page 56: DCM for evoked responses

Rubbish data

Perfect model

Rubbish results

Perfectdata

Rubbishmodel

Rubbish results

Motivate your assumptions!

Page 57: DCM for evoked responses

Thank you!

Karl FristonGareth BarnesAndre BastosHarriet Brown

Jean DaunizeauMarta GarridoStefan Kiebel

Vladimir LitvakRosalyn Moran

Will PennyDimitris Pinotsis

Bernadette van Wijk