dc permanent magnet motors a tutorial winch design

56
David Giandomenico - FIRST #846 DC Permanent Magnet Motors A tutorial winch design David Giandomenico Lynbrook High School Robotics FIRST Team #846 [email protected] (408)343-1183 August 10, 2013

Upload: verdad

Post on 23-Feb-2016

70 views

Category:

Documents


0 download

DESCRIPTION

DC Permanent Magnet Motors A tutorial winch design. David Giandomenico Lynbrook High School Robotics FIRST Team #846 [email protected] (408)343-1183. 2010 Breakaway. 2004 FIRST Frenzy: Raising the Bar. What We Want. Weight: Distance: Time (speed):. 130 lbs 1.5 feet - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: DC Permanent Magnet Motors A tutorial winch design

David Giandomenico - FIRST #846

DC Permanent Magnet MotorsA tutorial winch design

David Giandomenico

Lynbrook High School Robotics

FIRST Team #846

[email protected]

(408)343-1183

August 10, 2013

David Giandomenico
Start with:Robot features - what things move on a robot.Include drive train, arm, winch, lift.Winch is easy to specify.
Page 2: DC Permanent Magnet Motors A tutorial winch design

2010 Breakaway

August 10, 2013 David Giandomenico - FIRST #846

Page 3: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

2004 FIRST Frenzy: Raising the Bar

David Giandomenico
2004 FIRST CompetitionAttach to 10ft high bar andlift robot off ground
Page 4: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

What We Want.• Weight:

• Distance:

• Time (speed):

130 lbs

1.5 feet

5 seconds

Page 5: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

What We’ve Got:Some of the Motors supplied in FIRST Robotics Kit

Page 6: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Kit Motors – Which One?All Data at 12VDC 2013 choices (partial list!)

Make Model

Max Power (W)

Stall Torque (oz-in)

Free Speed (rpm)

Free Current (A)

Stall Current (A)

AndyMark am-0912 179 61 16000 1.2 64

AndyMark am-0915 45 1209 198 0.6 22

BaneBots M7-RS775-18 273 113 13000 1.8 87

BaneBots M5-RS550-12 M5-RS550-12-B

254 71 19300 1.4 85

BaneBots M5-RS540-12 123 39 16800 1 42

BaneBots M7-RS775-12 83 61 7300 1.1 30

BaneBots M5-RS545-12 74 24 16800 0.9 21

BaneBots M3-RS395-12 48 17 15500 0.5 15

CIM FR801-001 337 343 5310 2.7 133

VEX Mini CIM 217-3371 229 198 6200 1.8 86

VEX bag motor 217-3351 149 57 14000 1.8 41

Page 7: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Motors - Sorted by PowerMake Model

Max Power (W)

Stall Torque (oz-in)

Free Speed (rpm)

Free Current (A)

Stall Current (A)

CIM FR801-001 337 343 5310 2.7 133

BaneBots M7-RS775-18 273 113 13000 1.8 87

BaneBots M5-RS550-12 M5-RS550-12-B

254 71 19300 1.4 85

VEX Mini CIM 217-3371 229 198 6200 1.8 86

AndyMark am-0912 179 61 16000 1.2 64

VEX bag motor 217-3351 149 57 14000 1.8 41

BaneBots M5-RS540-12 123 39 16800 1 42

BaneBots M7-RS775-12 83 61 7300 1.1 30

BaneBots M5-RS545-12 74 24 16800 0.9 21

BaneBots M3-RS395-12 48 17 15500 0.5 15

AndyMark am-0915 45 1209 198 0.6 22

Page 8: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

“CIM” Motor Specification

Page 9: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

“CIM” Motor Performance

Page 10: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

“CIM” Motor Performance

StallTorque

No LoadCurrent

No Load Speed

StallCurrent

Page 11: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Current Limits (fuse) on Motor Power

StallCurrent

40 AFuse Limit

~100 Oz-In

Page 12: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Choosing a motor based onMaximum Output Power

1. Calculate Energy required to lift load.

2. Given the Time & Energy, calculate the mechanical Power required.

3. Boost Power requirement to adjust for Friction in the gearbox and elsewhere.

4. Choose a motor whose Maximum Output Power is at least 4/3 * (safety margin)

David Giandomenico
Design methodologyCoincidentally, a Motor at 75% speed delivers 75% of max output power. Since P(alpha) = 4* alpha(1-alpha)*Pmax, where alpha is %No load speed. So add factor of 1/75%, which is 4/3
Page 13: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

www.johnsonmotor.com

Page 14: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Winch DesignInput parameters

Weight to lift (lbs) 130Height (ft) to lift in time T 1.5Time to lift seconds 5

Convert to MKS (metric system)Mass to lift (Kgs) 59.1Weight To lift (Newtons) 579.1Height (m) 0.457Time to Lift 5

Potential EnergyKp = mgh (Joules) 264.8

Power needed to gain above energy in time TP = Kp / T (Watts) 53.0

Weight & Mass conversions:1Kg = 2.2 lbs-mass

Weight in Newtons = mass x 'g'where g=9.8 m/s/sso a 1Kg mass weighs 9.8 Newtons

Page 15: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Motor SelectionMake Model

Max Power (W)

Stall Torque (oz-in)

Free Speed (rpm)

Free Current (A)

Stall Current (A)

CIM FR801-001 337 343 5310 2.7 133

BaneBots M7-RS775-18 273 113 13000 1.8 87

BaneBots M5-RS550-12 254 71 19300 1.4 85

VEX Mini CIM 217-3371 229 198 6200 1.8 86

AndyMark am-0912 179 61 16000 1.2 64

VEX bag motor 217-3351 149 57 14000 1.8 41

BaneBots M5-RS540-12 123 39 16800 1 42

BaneBots M7-RS775-12 83 61 7300 1.1 30

BaneBots M5-RS545-12 74 24 16800 0.9 21

BaneBots M3-RS395-12 48 17 15500 0.5 15

AndyMark am-0915 45 1209 198 0.6 22

Make Model

Max Power (W)

Stall Torque (oz-in)

Free Speed (rpm)

Free Current (A)

Stall Current (A)

CIM FR801-001 337 343 5310 2.7 133

BaneBots M7-RS775-18 273 113 13000 1.8 87

BaneBots M5-RS550-12 254 71 19300 1.4 85

VEX Mini CIM 217-3371 229 198 6200 1.8 86

AndyMark am-0912 179 61 16000 1.2 64

VEX bag motor 217-3351 149 57 14000 1.8 41

BaneBots M5-RS540-12 123 39 16800 1 42

BaneBots M7-RS775-12 83 61 7300 1.1 30

BaneBots M5-RS545-12 74 24 16800 0.9 21

BaneBots M3-RS395-12 48 17 15500 0.5 15

AndyMark am-0915 45 1209 198 0.6 22

Make Model

Max Power (W)

Stall Torque (oz-in)

Free Speed (rpm)

Free Current (A)

Stall Current (A)

CIM FR801-001 337 343 5310 2.7 133

BaneBots M7-RS775-18 273 113 13000 1.8 87

BaneBots M5-RS550-12 254 71 19300 1.4 85

VEX Mini CIM 217-3371 229 198 6200 1.8 86

AndyMark am-0912 179 61 16000 1.2 64

VEX bag motor 217-3351 149 57 14000 1.8 41

BaneBots M5-RS540-12 123 39 16800 1 42

BaneBots M7-RS775-12 83 61 7300 1.1 30

BaneBots M5-RS545-12 74 24 16800 0.9 21

BaneBots M3-RS395-12 48 17 15500 0.5 15

AndyMark am-0915 45 1209 198 0.6 22

Page 16: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

What is Torque?

dFW inline

dFT

But isn’t that “Work?”

David Giandomenico
Page 17: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Units of Work vs. Torque

• Work (Energy)

• Torquepound feet(lbf-ft), ft-lbf, oz-in, N-m …

ft-lbf, Joules (=N-m), KWh, …

Page 18: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Work in a Rotating System

Force

rT

David Giandomenico
Page 19: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Power, Torque & Speed

TP

60RPM 2TP

timedistForceP /

trFP /)( trFP /

Page 20: DC Permanent Magnet Motors A tutorial winch design

0.00 0.10 0.20 0.30 0.40 0.50 0.600

5000

10000

15000

20000

25000

Speed vs Torque

Torque (N-m)

Spee

d (R

PM)

August 10, 2013 David Giandomenico - FIRST #846From FIRST_MOTOR_CALC.xls

V=12VDC

(speed,torque)

Where is Max Power?Fisher Price Motor 2011

David Giandomenico
Introduce Torque - Speed characteristic.Key Note: Voltage is fixed. Brake (load) is applied to slow down motor while maintaining supply voltage.
Page 21: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846From FIRST_MOTOR_CALC.xls

V=12VDC

0.00 0.10 0.20 0.30 0.40 0.50 0.600

50

100

150

200

250

300

350

Output Power vs Torque

Torque (N-m)

Mec

hani

cal P

ower

(Wat

ts)

Maximum PowerFisher Price Motor 2011

Page 22: DC Permanent Magnet Motors A tutorial winch design

Standardize through Normalization

August 10, 2013 David Giandomenico - FIRST #846

http://www.mabuchi-motor.co.jp http://www.johnsonmotor.com

Page 23: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

http://www.mabuchi-motor.co.jp

http://www.johnsonmotor.com

Simplified through Standardization

Page 24: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Normalized Speed vs Torque

0%10%20%30%40%50%60%70%80%90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Torque (% Stall Torque)

% N

o Lo

ad S

peed

V=Rated Voltage

85%+15%=100%

30%+70%=100%

50%+50%=100%

David Giandomenico
Which point is greatest power?Which box has greatest area?
Page 25: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Speed & Torque in a DC PM Motor

• Let ={0,100%}

such that

)1()(

)()(

s

s

s

TT

NN

Page 26: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Speed & Torque in a DC PM Motor

Or, w/o calculus, Max occurs between two roots of quadratic, at =0, =1 that is,

=½ or equivalently, when =50%

)()()( TP

Using calculus, Max Power occurs when:

Page 27: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Max Power in a DC PM Motor

604 2 max

RPMs

MaxNTP

Page 28: DC Permanent Magnet Motors A tutorial winch design

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%0%

20%

40%

60%

80%

100%

120%

Output Power vs % Stall Torque

Torque (% Stall Torque)

Pow

er O

ut (%

Max

Pow

er)

August 10, 2013 David Giandomenico - FIRST #846

V=Rated Voltage

75%

David Giandomenico
Normalized "Generic" power characteristics*) Max Power at 50%*) Power at 25% torque (75% no load speed) yields 75% of Max Power out.
David Giandomenico
Haven't defined Max Power yet, but I refer to it below.
Page 29: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

2011 Fisher Price Motor

All Data at 12VDC

Make / Model Max Power(Watts)

Stall Torque(N-m)

Free Speed(RPM)

Free Current(A)

Stall Current(A)

Fisher-Price 00801-0673-(2011) 291.6 0.532 20,770 0.82 108.7

Page 30: DC Permanent Magnet Motors A tutorial winch design

0.00 0.10 0.20 0.30 0.40 0.50 0.600

50

100

150

200

250

300

350

Output Power vs Torque

Torque (N-m)

Mec

hani

cal P

ower

(Wat

ts)

August 10, 2013 David Giandomenico - FIRST #846

Fisher Price Motor 2011

From FIRST_MOTOR_CALC.xls

V=12VDC

Page 31: DC Permanent Magnet Motors A tutorial winch design

0.00 0.10 0.20 0.30 0.40 0.50 0.600

200400600800

10001200140016001800

Input Power vs Torque

Torque (N-m)

Inpu

t Ele

ctric

al P

ower

(Wat

ts)

August 10, 2013 David Giandomenico - FIRST #846

Fisher Price Motor 2011

From FIRST_MOTOR_CALC.xls

V=12VDC

Current rises linearly with Torque

Page 32: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Motor Current

Where α is the % No Load speed

)1)(()( oso IIII

Page 33: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Electrical Power

VIP

Page 34: DC Permanent Magnet Motors A tutorial winch design

0.00 0.10 0.20 0.30 0.40 0.50 0.600

200

400

600

800

1000

1200

1400

Input Power vs Torque

Torque (N-m)

Inpu

t Ele

ctric

al P

ower

(Wat

ts)

August 10, 2013 David Giandomenico - FIRST #846

Fisher Price Motor 2011

From FIRST_MOTOR_CALC.xls

V=12VDC

Input power is Current X Voltage

Page 35: DC Permanent Magnet Motors A tutorial winch design

0.00 0.10 0.20 0.30 0.40 0.50 0.600

50

100

150

200

250

300

350

Output Power vs Torque

Torque (N-m)

Mec

hani

cal P

ower

(Wat

ts)

August 10, 2013 David Giandomenico - FIRST #846

Fisher Price Motor 2011

From FIRST_MOTOR_CALC.xls

V=12VDC

Page 36: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Fisher Price Motor 2011

From FIRST_MOTOR_CALC.xls

V=12VDC

0.00 0.10 0.20 0.30 0.40 0.50 0.600

200

400

600

800

1000

1200

1400

Electrical Power In & Mechanical Power Out vs Torque

Torque (N-m)

Elec

trica

l Pow

er In

&

Mec

hani

cal P

ower

Out

(Wat

ts)

Page 37: DC Permanent Magnet Motors A tutorial winch design

0.00 0.10 0.20 0.30 0.40 0.50 0.600%

10%20%30%40%50%60%70%80%

Efficiency vs Torque

Torque (N-m)

Effic

ienc

y

August 10, 2013 David Giandomenico - FIRST #846

Fisher Price Motor 2011

From FIRST_MOTOR_CALC.xls

V=12VDC

Page 38: DC Permanent Magnet Motors A tutorial winch design

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%0%

10%20%30%40%50%60%70%80%

Efficiency vs Normalized Torque

Torque (% Stall Torque)

Effic

ienc

y

7%-15%

August 10, 2013 David Giandomenico - FIRST #846

Fisher Price Motor 2011

V=12VDC

Page 39: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Normalized Efficiency for IDEAL motor

Page 40: DC Permanent Magnet Motors A tutorial winch design

Max Efficiency

August 10, 2013 David Giandomenico - FIRST #846

Operating Point:

Efficiency:

0% 2% 4% 6% 8% 10%50%

60%

70%

80%

90%

100%

Io / Is

Bes

t Ope

ratin

g Po

int

Page 41: DC Permanent Magnet Motors A tutorial winch design

...simplifying yields:

Derivation of: Max Efficiency

August 10, 2013 David Giandomenico - FIRST #846

Find Maximum :

Efficiency: Where:

Use Quadratic Formula to find roots:

Page 42: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Derivation of: Max Efficiency continued

Substitute for (1-α) to get:

Page 43: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

DC PM Motor Summary• Max Power occurs at 50% No-Load Speed

• Best efficiency typically occurs at about 80%-93% No-Load Speed

• Most DC PM Motors will overheat if operated continuously at speeds less than 50% when full voltage is applied.

Page 44: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Gear Loss Estimate

Suppose we have n=3 inline sets of gears, each with a 4:1reduction. What is the total efficiency if each gear set loses 4%?

T = in

or T = (100%-4%)3 = 88.5%

David Giandomenico
Transistion Topic - Cut if short for time
Page 45: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

When x is small, 1x

David
Commonly, I am asked why we don't just add the losses. The following slides explain why adding is a reasonable approximation.
Page 46: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Estimate of how many gear sets.

• Suppose we want a gear reduction of 1200. How many gear sets with a reduction of 3 do we need?

• Solve 3N = 1200• N = ln(1200)/ln(3) = 6.45

David Giandomenico
In the final design, N must be an integer, but for the interim design, this method conveniently allows us to estimate the loss without committing to a specific gear selection.
Page 47: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Gear loss estimate

We need 6.45 3:1 gear sets. Assuming a loss of 5% for each gear set,

T = in

or

T = (1-5%)6.45 = 71.8%

Page 48: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Putting it all together1. Choose a winch drum size

2. Calculate the drum rpm

3. Choose the % motor operating speed

4. Calculate the required gear reduction to operate at that speed

5. Verify the output winch line force meets or exceeds the original specification, including gear box losses

Page 49: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Winch Design SpecificationInput parameters

Weight to lift (lbs) 130Height (ft) to lift in time T 1.5Time to lift seconds 5

Convert to MKS (metric system)Mass to lift (Kgs) 59.1Weight To lift (Newtons) 579.1Height (m) 0.457Time to Lift 5

Page 50: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Winch Drum SpeedWinch Line Speed

Distance (m) 0.4572Time 5Speed (m/s) 0.0914

Drum size (dictated by factors such as cable)Diameter (inches) 6Diameter (m) 0.152Circumference (m) 0.479

Drum speedRevolutions / second 0.191Revolutions / minute (rpm) 11.46

Page 51: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Determine the Gear Reduction

Page 52: DC Permanent Magnet Motors A tutorial winch design

Required Gear Reduction 1021.0

Loss estimate assuming 'n' small gear sets

Individual gear set reduction ratio 4 times% Loss per gear set 5%

Number of gear reductions 4.998 setsTotal estimated gear efficiency 77.39%

August 10, 2013 David Giandomenico - FIRST #846

Gear Loss Estimate

Page 53: DC Permanent Magnet Motors A tutorial winch design

Winch line output at speedMotor torque at speed (above) 0.0798 N-mTorque after gearbox (no loss) 81.47 N-m

After gear box losses 63.05 N-mForce on Line 827.41 NForce on Line (lb) 185.75 lb

Margin

Weight of load 130 lbMargin (force:load at target speed) 1.43 : 1

August 10, 2013 David Giandomenico - FIRST #846

Verify We Meet or ExceedPull Strength Specification

Page 54: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Feat Accomplished!185 lb exceeds required spec of 130lbs

Page 55: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

More than you wanted to know about

Robot Winch Design

David Giandomenico

Lynbrook High School Robotics

FIRST Team #846

[email protected]

(408)343-1183

Page 56: DC Permanent Magnet Motors A tutorial winch design

August 10, 2013 David Giandomenico - FIRST #846

Addendum: Interest or Time permitting

David Giandomenico
Expand binomial polynomials to show second binomial coefficents, are 0,1,2,3,4...n