dc answers

217
Chapter 1 Quantities and Units Section 1-2 Scientific Notation 1. (a) 3000 = 3 10 3 (b) 75,000 = 7.5 10 4 (c) 2,000,000 = 2 10 6 2. (a) 500 1 = 0.002 = 2 10 3 (b) 2000 1 = 0.0005 = 5 10 4 (c) 000 , 000 , 5 1 = 0.0000002 = 2 10 7 3. (a) 8400 = 8.4 10 3 (b) 99,000 = 9.9 10 4 (c) 0.2 10 6 = 2 10 5 4. (a) 0.0002 = 2 10 4 (b) 0.6 = 6 10 1 (c) 7.8 10 2 (already in scientific notation) 5. (a) 32 10 3 = 3.2 10 4 (b) 6800 10 6 = 6.8 10 3 (c) 870 10 8 = 8.7 10 10 6. (a) 2 10 5 = 200,000 (b) 5.4 10 9 = 0.0000000054 (c) 1.0 10 1 = 10 7. (a) 2.5 10 6 = 0.0000025 (b) 5.0 10 2 = 500 (c) 3.9 10 1 = 0.39 8. (a) 4.5 10 6 = 0.0000045 (b) 8 10 9 = 0.000000008 (c) 4.0 10 12 = 0.0000000000040 2

Upload: conor-murphy

Post on 23-Aug-2014

731 views

Category:

Documents


49 download

TRANSCRIPT

Page 1: Dc Answers

Chapter 1

Chapter 1 Quantities and Units

Section 1-2 Scientific Notation

1. (a) 3000 = 3 103 (b) 75,000 = 7.5 104 (c) 2,000,000 = 2 106

2. (a) 500

1 = 0.002 = 2 103

(b) 2000

1 = 0.0005 = 5 104

(c) 000,000,5

1 = 0.0000002 = 2 107

3. (a) 8400 = 8.4 103 (b) 99,000 = 9.9 104 (c) 0.2 106 = 2 105 4. (a) 0.0002 = 2 104 (b) 0.6 = 6 101 (c) 7.8 102 (already in scientific notation) 5. (a) 32 103 = 3.2 104 (b) 6800 106 = 6.8 103 (c) 870 108 = 8.7 1010 6. (a) 2 105 = 200,000 (b) 5.4 109 = 0.0000000054 (c) 1.0 101 = 10 7. (a) 2.5 106 = 0.0000025 (b) 5.0 102 = 500 (c) 3.9 101 = 0.39 8. (a) 4.5 106 = 0.0000045 (b) 8 109 = 0.000000008 (c) 4.0 1012 = 0.0000000000040

2

Page 2: Dc Answers

Chapter 1

3

9. (a) 9.2 106 + 3.4 107 = 9.2 106 + 34 106 = 4.32 107 (b) 5 103 + 8.5 101 = 5 103 + 0.00085 103 = 5.00085 103 (c) 5.6 108 + 4.6 109 = 56 109 + 4.6 109 = 6.06 108 10. (a) 3.2 1012 1.1 1012 = 2.1 1012 (b) 2.6 108 1.3 107 = 26 107 1.3 107 = 24.7 107 (c) 1.5 1012 8 1013 = 15 1013

8 1013 = 7 1013 11. (a) (5 103)(4 105) = 5 4 103 + 5 = 20 108 = 2.0 109 (b) (1.2 1012)(3 102) = 1.2 3 1012 + 2 = 3.6 1014 (c) (2.2 109)(7 106) = 2.2 7 10 9 6 = 15.4 1015 = 1.54 1014

12. (a) 2

3

105.2

100.1

= 0.4 103 2 = 0.4 101 = 4

(b) 8

6

1050

105.2

= 0.05 106 (8) = 0.05 102 = 5

(c) 5

8

102

102.4

= 2.1 108 (5) = 2.1 1013

13.

4 2 3 2 3 2

7 5 12 12 12 12

2 4 4

(a) 8 10 4 2 10 80 10 4 2 10 84 10 2 10 4.20 10

(b) 3 10 5 10 9 10 15 10 9 10 6 10

(c) 2.2 10 1.1 5.5 10 11 10

2

Section 1-3 Engineering Notation and Metric Prefixes

14. The powers of ten used in engineering notation are multiples of 3: 10-12, 10-9, 10-6, 10-3, 103, 106, 109, 1012 15. (a) 89000 = 89 103 (b) 450,000 = 450 103 (c) 12,040,000,000,000 = 12.04 1012

Page 3: Dc Answers

Chapter 1

16. (a) 2.35 105 = 235 103 (b) 7.32 107 = 73.2 106 (c) 1.333 109 (already in engineering notation) 17. (a) 0.000345 = 345 106 (b) 0.025 = 25 103 (c) 0.00000000129 = 1.29 109 18. (a) 9.81 103 = 9.81 103 (b) 4.82 104 = 482 106 (c) 4.38 107 = 438 109 19. (a) 2.5 103 + 4.6 103 = (2.5 + 4.6) 103 = 7.1 103 (b) 68 106 + 33 106 = (68 + 33) 106 = 101 106 (c) 1.25 106 + 250 103 = 1.25 106 + 0.25 106 = (1.25 + 0.25) 106 = 1.50 106 20. (a) (32 103)(56 103) = 1792 10(3 + 3) = 1792 100 = 1.792 103 (b) (1.2 106)(1.2 106) = 1.44 10(6 6) = 1.44 1012 (c) (100)(55 103) = 5500 103 = 5.5

21. (a) 3102.2

50

= 22.7 103

(b) 6

3

1025

105

= 0.2 10(3 (6)) = 0.2 109 = 200 106

(c) 3

3

10660

10560

= 0.848 10(3 3) = 0.848 100 = 848 103

22. (a) 89,000 = 89 103 = 89 k (b) 450,000 = 450 103 = 450 k (c) 12,040,000,000,000 = 12.04 1012 = 12.04 T

4

Page 4: Dc Answers

Chapter 1

23. (a) 0.000345 A = 345 106 A = 345 A (b) 0.025 A = 25 103 A = 25 mA (c) 0.00000000129 A = 1.29 109 A = 1.29 nA 24. (a) 31 103 A = 31 mA (b) 5.5 103 V = 5.5 kV (c) 20 1012 F = 20 pF 25. (a) 3 106 F = 3 F (b) 3.3 106 = 3.3 M (c) 350 109 A = 350 nA 26. (a) 2.5 1012 A = 2.5 pA (b) 8 109 Hz = 8 GHz (c) 4.7 103 = 4.7 k 27. (a) 7.5 pA = 7.5 1012 A (b) 3.3 GHz = 3.3 109 Hz (c) 280 nW = 2.8 107 W 28. (a) 5 A = 5 106 A (b) 43 mV = 43 103 V (c) 275 k = 275 103 (d) 10 MW = 10 106 W

Section 1-4 Metric Unit Conversions

29. (a) (5 mA) (1 103 A/mA) = 5 103 A = 5000 A (b) (3200 W)(1 103 W/W) = 3.2 mW (c) (5000 kV)(1 103) MV/kV = 5 MV (d) (10 MW)(1 103 kW/MW) = 10 103 kW = 10,000 kW

30. (a) A101

A101

A1

mA16

3

= 1 103 = 1000

(b) V101

V1005.0

mV1

kV05.03

3

= 0.05 106 = 50,000

(c)

6

3

101

1002.0

M 1

k02.0 = 0.02 103 = 2 105

(d) W101

W10155

kW1

mW1553

3

= 155 106 = 1.55 104

5

Page 5: Dc Answers

Chapter 1

31. (a) 50 mA + 680 A = 50 mA + 0.68 mA = 50.68 mA

(b) 120 k + 2.2 M = 0.12 M + 2.2 M = 2.32 M

(c) 0.02 F + 3300 pF = 0.02 F + 0.0033 F = 0.0233 F

32. (a)

k 2.12

k10

k 10k 2.2

k 10 = 0.8197

(b) 6

3

1050

10250

V50

mV250

= 5000

(c) 3

6

102

101

kW 2

MW 1

= 500

Section 1-5 Measured Numbers 33. The significant digits are shown in bold face. (a) Three: 1.00 x 103 (b) Two: 0.0057 (c) Five: 1502.0 (d) Two: 0.000036 (e) Three: 0.105 (f) Two: 2.6 x 102 34. (a) 50,505 rounds to 5.05 x 104 (b) 220.45 rounds to 220 (c) 4646 rounds to 4.65 x 103 (d) 10.99 rounds to 11.0 (e) 1.005 rounds to 1.00

6

Page 6: Dc Answers

Chapter 2 Voltage, Current, and Resistance Note: Solutions show conventional current direction.

Section 2-2 Electrical Charge 1. 29 e 1.6 1019 C/e = 4.64 1018 C 2. 17 e 1.6 1019 C/e = 2.72 1018 C 3. Q = (charge per electron)(number of electrons) = (1.6 1019 C/e)(50 1031e) = 80 1012 C 4. (6.25 1018 e/C)(80 106 C) = 5 1014 electrons

Section 2-3 Voltage

5. (a) C 1

J 10

Q

WV = 10 V (b)

C 2

J 5

Q

WV = 2.5 V

(c) C 25

J 100

Q

WV = 4 V

6. C 100

J 500

Q

WV = 5 V

7. C 40

J 800

Q

WV = 20 V

8. W = VQ = (12 V)(2.5 C) = 30 J

9. I = t

Q

Q = It = (2 A)(15 s) = 30 C

V = C 30

J 1000

Q

W = 33.3 V

10. Four common sources of voltage are dc power supply, solar cell, generator, and battery. 11. The operation of electrical generators is based on the principle of electromagnetic induction. 12. A power supply converts electricity in one form (ac) to another form (dc). The other sources

convert other forms of energy into electrical energy.

7

Page 7: Dc Answers

Chapter 2

Section 2-4 Current 13. A current source provides a constant current of 100 mA regardless of the load value.

14. (a) s 1

C 75

t

QI = 75 A

(b) s0.5

C 10

t

QI = 20 A

(c) s 2

C 5

t

QI = 2.5 A

15. s 3

C 0.6

t

QI = 0.2 A

16. t

QI

t = A 5

C 10

I

Q = 2 s

17. Q = It = (1.5 A)(0.1 s) = 0.15 C

18. I = t

Q

Q = Celectrons/ 1025.6

electrons 1057418

15

= 9.18 102 C

I = s 10250

C1018.93

2

= 367 mA

Section 2-5 Resistance

19. (a) G =

5

11

R = 0.2 S = 200 mS

(b) G =

25

11

R = 0.04 S = 40 mS

(c) G =

100

11

R = 0.01 S = 10 mS

20. (a) R = S 1.0

11

G = 10

(b) R = S 5.0

11

G = 2

(c) R = S 02.0

11

G = 50

8

Page 8: Dc Answers

Chapter 2

21. (a) Red, violet, orange, gold: 27 k 5% (b) Brown, gray, red, silver: 1.8 k 10% 22. (a) Rmin = 27 k 0.05(27 k) = 27 k 1350 = 25.65 k Rmax = 27 k + 0.05(27 k) = 27 k + 1350 = 28.35 k

(b) Rmin = 1.8 k 0.1(1.8 k) = 1.8 k 180 = 1.62 k Rmax = 1.8 k + 0.1(1.8 k) = 1.8 k + 180 = 1.98 k 23. 330 : orange, orange, brown. gold 2.2 k: red, red, red, gold 56 k: green, blue, orange, gold 100 k: brown, black, yellow, gold 39 k: orange, white, orange, gold 24. (a) brown, black, black, gold: 10 5% (b) green, brown, green, silver: 5.1 M 10% (c) blue, gray, black, gold: 68 5% 25. (a) red, violet, orange, silver : 27 k + 10% (b) brown, black, brown, silver: 100 + 10% (c) green, blue, green , gold: 5.6 M + 5% (d) blue, gray, red, silver: 6.8 k + 10% (e) orange, orange, black, silver: 33 + 10% (f) yellow, violet, orange, gold: 47 k + 5% 26. 330 : (b) orange, orange, brown; 2..2 k: (d) red, red, red; 56 k: (l) green, blue, orange; 100 k: (f) brown, black, yellow; 39 k: (a) orange, white, orange 27. (a) 0.47 : yellow, violet, silver, gold (b) 270 k: red, violet, yellow, gold (c) 5.1 M: green, brown, green, gold 28. (a) red, gray, violet, red, brown: 28.7 k 1% (b) blue, black, yellow, gold, brown: 60.4 1% (c) white, orange, brown, brown, brown: 9.31 k 1% 29. (a) 14.7 k 1%: brown, yellow, violet, red, brown (b) 39.2 1%: orange, white, red, gold, brown (c) 9.76 k 1%: white, violet, blue, brown, brown

9

Page 9: Dc Answers

Chapter 2

30. 500 , There is equal resistance on each side of the contact.

31. 4K7 = 4.7 k 32. (a) 4R7J = 4.7 5% (b) 5602M = 56 k 20% (c) 1501F = 1500 1%

Section 2-6 The Electric Circuit

Figure 2-1

33. See Figure 2-1. 34. See Figure 2-2.

Figure 2-2

35. Circuit (b) in Figure 2-68 can have both lamps on at the same time. 36. There is always current through R5. 37. See Figure 2-3.

10Figure 2-3

Page 10: Dc Answers

Chapter 2

38. See Figure 2-4.

Figure 2-4

Section 2-7 Basic Circuit Measurements 39. See Figure 2-5.

Figure 2-5

Figure 2-6

40. See Figure 2-6. 41. Position 1: V1 = 0 V, V2 = VS Position 2: V1 = VS, V2= 0 V 42. See Figure 2-7.

Figure 2-7

11

Page 11: Dc Answers

Chapter 2

43. See Figure 2-8.

Figure 2-8

44. See Figure 2-8. 45. On the 600 V scale (middle AC/DC scale): 250 V 46. R = 10 10 = 100 47. (a) 2 10 = 20 (b) 15 100 k = 1.50 M (c) 45 100 = 4.5 k 48. 0.9999 + 0.0001 = 1.0000 Resolution = 0.00001 V

12

Page 12: Dc Answers

Chapter 2

13

See Figure 2-9. 49.

Figure 2-9

Page 13: Dc Answers

Chapter 3 Ohm’s Law Note: Solutions show conventional current direction.

Section 3-1 The Relationship of Current, Voltage, and Resistance 1. (a) When voltage triples, current triples. (b) When voltage is reduced 75%, current is reduced 75%. (c) When resistance is doubled, current is halved. (d) When resistance is reduced 35%, current increases 54%. (e) When voltage is doubled and resistance is halved, current quadruples. (f) When voltage and resistance are both doubled, current is unchanged.

2. I = R

V

3. V = IR

4. R = I

V

5. See Figure 3-1.

I = 100

V 0 = 0 A

I = 100

V 10 = 100 mA

I = 100

V 20 = 200 mA

I = 100

V 30 = 300 mA

I = 100

V 40 = 400 mA

I = 100

V 50 = 500 mA

I = 100

V 60 = 600 mA

I = 100

V 70 = 700 mA

I = 100

V 80 = 800 mA

I = 100

V 90 = 900 mA

Figure 3-1

The graph is a straight line indicating a linear relationship between V and I.

I = 100

V 100 = 1 A

14

Page 14: Dc Answers

Chapter 3

6. R = mA 15

V 1 = 200

(a) I = 200

V 1.5 = 7.5 mA

(b) I = 200

V 2 = 10 mA

(c) I = 200

V 3 = 15 mA

(d) I = 200

V 4 = 20 mA

(e) I = 200

V 10 = 50 mA

7. Pick a voltage value and find the corresponding value of current by projecting a line up from the voltage value on the horizontal axis to the resistance line and then across to the vertical axis.

R1 = A 2

V 1

I

V = 500 m

R2 = A 1

V 1

I

V = 1

R3 = A 0.5

V 1

I

V = 2

8. See Figure 3-2.

Figure 3-2

15

Page 15: Dc Answers

Chapter 3

I = 2 V

8.2 k = 0.244 mA

I = 4 V

8.2 k = 0.488 mA

I = 6 V

8.2 k = 0.732 mA

I = 8 V

8.2 k = 0.976 mA

I = 10 V

8.2 k = 1.22 mA

9. See Figure 3-3.

Figure 3-3

I = 2 V

1.58 k = 1.27 mA

I = 4 V

1.58 k = 2.53 mA

I = 6 V

1.58 k = 3.80 mA

I = 8 V

1.58 k = 5.06 mA

I = 10 V

1.58 k = 6.33 mA

16

Page 16: Dc Answers

Chapter 3

10. (a) I = k 3.3

V 50 = 15.2 mA

(b) I = k 3.9

V 75 = 19.2 mA

(c) I = k 4.7

V 100 = 21.3 mA

Circuit (c) has the most current and circuit (a) has the least current.

11. R = mA 50

V 10

mA 30S

V = 0.2 k = 200

VS = (200 )(30 mA) = 6 V (new value) The battery voltage decreased by 4 V (from 10 V to 6 V). 12. The current increase is 50%, so the voltage increase must also be 50%. VINC = (0.5)(20 V) = 10 V V2 = 20 V + VINC = 20 V + 10 V = 30 V (new value) 13. See Figure 3-4.

(a) I = 1V 10

= 10 A (b) I = 5

V 10 = 2 A (c) I =

20

V 10 = 0.5 A

I = 1

V 20 = 20 A I =

5

V 20 = 4 A I =

20

V 20 = 1 A

I = 1

V 30 = 30 A I =

5

V 30 = 6 A I =

20

V 30 = 1.5 A

I = 1V 40

= 40 A I = 5

V 40 = 8 A I =

20

V 40 = 2 A

I = 1V 50

= 50 A I = 5

V 50 = 10 A I =

20

V 50 = 2.5 A

I = 1V 60

= 60 A I = 5

V 60 = 12 A I =

20

V 60 = 3 A

I = 1V 70

= 70 A I = 5

V 70 = 14 A I =

20

V 70 = 3.5 A

I = 1

V 80 = 80 A I =

5

V 80 = 16 A I =

20

V 80 = 4 A

I = 1V 90

= 90 A I = 5

V 90 = 18 A I =

20

V 90 = 4.5 A

I = 1

V 100 = 100 A I =

5

V 100 = 20 A I =

20

V 100 = 5 A

17

Page 17: Dc Answers

Chapter 3

(d) I = 100

V 10 = 0.1 A

Figure 3-4

I = 100

V 20 = 0.2 A

I = 100

V 30 = 0.3 A

I = 100

V 40 = 0.4 A

I = 100

V 50 = 0.5 A

I = 100

V 60 = 0.6 A

I = 100

V 70 = 0.7 A

I = 100

V 80 = 0.8 A

I = 100

V 90 = 0.9 A

I = 100

V 100 = 1 A

14. Yes, the lines on the IV graph are straight lines.

Section 3-2 Current Calculations

15. (a) I =

1

V5

R

V = 5 A

(b) I =

10

V15

R

V = 1.5 A

(c) I =

100

V50

R

V = 500 mA

(d) I =

k15

V30

R

V = 2 mA

(e) I =

M6.5

V250

R

V = 44.6 A

18

Page 18: Dc Answers

Chapter 3

16. (a) I =

k7.2

V9

R

V = 3.33 mA

(b) I =

k10

V5.5

R

V = 550 A

(c) I =

k68

V40

R

V = 588 A

(d) I =

k2.2

kV1

R

V = 455 mA

(e) I =

M10

kV66

R

V = 6.6 mA

17. I =

10

V12

R

V = 1.2 A

18. R = 3300 5% Rmax = 3300 + (0.5)(3300 ) = 3465 Rmin = 3300 (0.5)(3300 ) = 3135

Imax =

3135

V 12

min

s

R

V = 3.83 mA

Imin =

3465

V 12

max

s

R

V = 3.46 mA

19. R = 47 k 10% Rmin = 47 k 0.1(4.7 k) = 42.3 k Rmax = 47 k + 0.1(4.7 k) = 51.7 k

Imin =

k 51.7

V 25

maxR

V = 484 A

Imax =

k 42.3

V 25

minR

V = 591 A

Inom =

k 47

V 25

R

V = 532 A

20. R = 37.4

I = 12 V

37.4

V

R

= 0.321 A

21. I = 0.642 A Yes, the current exceeds the 0.5 A rating of the fuse. 22. VR(max) = 120 V 100 V = 20 V

Imax =

8

V 20)(

min

maxR

R

V = 2.5 A

A fuse with a rating of less than 2.5 A must be used. A 2-A fuse is suggested.

19

Page 19: Dc Answers

Chapter 3

23. 3 V

9.1 mA330

VI

R

Section 3-3 Voltage Calculations

24. 180 A 27 k 4.86 VV IR 25. (a) V = IR = (2 A)(18 ) = 36 V

(b) V = IR = (5 A)(56 ) = 280 V (c) V = IR = (2.5 A)(680 ) = 1.7 kV

(d) V = IR = (0.6 A)(47 ) = 28.2 V (e) V = IR = (0.1 A)(560 ) = 56 V 26. (a) V = IR = (1 mA)(10 ) = 10 mV

(b) V = IR = (50 mA)(33 ) = 1.65 V (c) V = IR = (3 A)(5.6 k) = 16.8 kV

(d) V = IR = (1.6 mA)(2.2 k) = 3.52 V (e) V = IR = (250 A)(1 k) = 250 mV

(f) V = IR = (500 mA)(1.5 M) = 750 kV (g) V = IR = (850 A)(10 M) = 8.5 kV

(h) V = IR = (75 A)(47 ) = 3.53 mV 27. VS = IR = (3 A)(27 ) = 81 V 28. (a) V = IR = (3 mA)(27 k) = 81 V (b) V = IR = (5 A)(100 M) = 500 V (c) V = IR = (2.5 A)(47 ) = 117.5 V

29. Wire resistance = RW = CM1624.3

ft) ft)(24/ CM 4.10( = 0.154

(a) I =

100.154

V 6

WRR

V = 59.9 mA

(b) VR = (59.9 mA)(100 ) = 5.99 V

(c) VRW =

2WR

I = (59.9 mA)(0.154 /2) = 4.61 mV

Section 3-4 Resistance Calculations

30. (a) R = A 2

V 10

I

V = 5

(b) R = A 45

V 90

I

V = 2

(c) R = A 5

V 50

I

V = 10

20

Page 20: Dc Answers

Chapter 3

(d) R = A 10

V 5.5

I

V = 550 m

(e) R = A 0.5

V 150

I

V = 300

31. (a) R = A 5

kV 10

I

V = 2 k

(b) R = mA 2

V 7

I

V = 3.5 k

(c) R = mA 250

V 500

I

V = 2 k

(d) R = A 500

V 50

I

V = 100 k

(e) R = mA 1

kV 1

I

V = 1 M

32. R = mA 2

V 6

I

V = 3 k

33. (a) RFIL: = A 0.8

V 120

I

V = 150

34. Measure the current with an ammeter connected as shown in Figure 3-5, then calculate the

unknown resistance as R = 12 V/I.

Figure 3-5

35. R = mA 750

V 100

I

V = 133

R = A 1

V 100

I

V = 100

The source can be shorted if the rheostat is set to 0 .

36. Rmin + 15 = A 2

V 120 = 60 . Thus Rmin = 60 15 = 45

The rheostat must actually be set to slightly greater than 45 so that the current is limited to slightly less than 2 A.

37. Rmin + 15 = 110 V

1 A = 110

Rmin = 110 15 = 95

21

Page 21: Dc Answers

Chapter 3

22

Section 3-5 Introduction to Troubleshooting 38. The 4th bulb from the left is open. 39. It should take five (maximum) resistance measurements.

Multisim Troubleshooting and Analysis 40. RB is open. 41. RA = 560 k, RB = 2.2 M, RC = 1.8 k, RD = 33 42. No fault. I = 1.915 mA, V = 9.00 V 43. V = 18 V, I = 5.455 mA, R = 3.3 k 44. R is leaky.

Page 22: Dc Answers

23

Chapter 4 Energy and Power

Section 4-1 Energy and Power 1. volt = joule/coulomb ampere = coulomb/s VI = (joule/coulomb)(coulomb/s) = joule/s

2. 1 kWh = (1000 joules/s)(3600 s) = 3.6 106 joules 3. 1 watt = 1 joule/s P = 350 J/s = 350 W

4. P = h 5

J 7500

t

W

s 18000

J 7500

s/h) h)(3600 (5

J 7500 = 417 mW

5. P = ms 50

J 1000 = 20 kW

6. (a) 1000 W = 1 103 W = 1 kW (b) 3750 W = 3.75 103 W = 3.75 kW (c) 160 W = 0.160 103 W = 0.160 kW (d) 50,000 W = 50 103 W = 50 kW

7. (a) 1,000,000 W = 1 106 W = 1 MW (b) 3 106 W = 3 MW (c) 15 107 W = 150 106 = 150 MW (d) 8700 kW = 8700 103 W = 8.7 106 W = 8.7 MW

8. (a) 1 W = 1000 103 W = 1000 mW (b) 0.4 W = 400 103 W = 400 mW (c) 0.002 W = 2 103 = 2 mW (d) 0.0125 W = 12.5 103 W = 12.5 mW

9. (a) 2 W = 2,000,000 W (b) 0.0005 W = 500 W (c) 0.25 mW = 250 W (d) 0.00667 mW = 6.67 W

10. (a) 1.5 kW = 1.5 103 W = 1500 W (b) 0.5 MW = 0.5 106 W = 500,000 W (c) 350 mW = 350 103 W = 0.350 W (d) 9000 W = 9000 106 W = 0.009 W 11. Energy = W = Pt = (100 mW)(24 h)(3600 s/h) = 8.64 103 J

Page 23: Dc Answers

Chapter 4

24

12. 300 W = 0.3 kW (30 days)(24 h/day) = 720 h (0.3 kW)(720 h) = 216 kWh 13. 1500 kWh/31 days = 48.39 kWh/day (48.39 kWh/day)/24 h) = 2.02 kW/day

14. 5 106 watt-minutes = 5 103 kWminutes (5 103 kWmin)(1 h/60 min) = 83.3 kWh

15. s/h) 0 W/kW)(360(1000

Ws6700 = 0.00186 kWh

16. W = Pt P = I2R = (5 A)2(47 ) = 1175 W

t = W1175

J 25

P

W = 0.0213 s = 21.3 ms

Section 4-2 Power in an Electric Circuit

17. RL = A 2

V 75

I

V = 37.5

18. P = VI = (5.5 V)(3 mA) = 16.5 mW 19. P = VI = (120 V)(3 A) = 360 W

20. P = I2R = (500 mA)2(4.7 k) = 1.175 kW

21. P = I2R = (100 A)2(10 k) = 100 W

22. P =

680

V) 60( 22

R

V= 5.29 W

23. P =

56

V) 5.1( 22

R

V = 40.2 mW

24. P = I2R

R = 22 A) (2

W100

I

P = 25

25. (a) P =

10

V) 12( 22

R

V = 14.4 W

W = Pt = (14.4 W)(2 min)(1/60 h/min) = 0.48 Wh

(b) If the resistor is disconnected after 1 minute, the power during the first minute is equal to the power during the two minute interval. Only energy changes with time.

Page 24: Dc Answers

Chapter 4

25

Section 4-3 Resistor Power Ratings 26. From Activity 1: VR1 = 3.25 V and R1 = 18 VR2 = 6.5 V and R2 = 39 VR3 = 10 V and R3 = 68 The power rating for each resistor is determined as follows:

221

11

222

22

223

33

3.25 V0.59 W Choose next highest standard value of 1 W.

18

6.5 V1.1W Choose next highest standard value of 2 W.

39

10 V1.5 W Choose next highest stand

68

RR

RR

RR

VP

R

VP

R

VP

R

ard value of 2 W.

27. A 2 W resistor should be used to provide a margin of safety. A resistor rating greater than the actual maximum power should always be used. 28. P = I2R = (10 mA)2(6.8 k) = 0.68 W Use at least the next highest standard rating of 1 W. 29. Use the 12 W resistor to allow a minimum safety margin of greater than 20%. If the 8 W

resistor is used, it will be operating in a marginal condition and its useful life will be reduced.

Section 4-4 Energy Conversion and Voltage Drop in Resistance 30. See Figure 4-1.

Section 4-5 Power Supplies and Batteries

31. VOUT = ) W)(501( LLRP = 7.07 V

32. PAVG = 22 (1.25) V

10

V

R

= 156 mW

Figure 4-1

Page 25: Dc Answers

Chapter 4

26

33. W = Pt = (0.156 W)(90 h) = (0.156 W)(324,000 s) = 50,544 J 34. Ampere-hour rating = (1.5 A)(24 h) = 36 Ah

35. I = h 10

Ah 80 = 8 A

36. I = h 48

mAh 650 = 13.5 mA

37. PLost = PIN POUT = 500 mW 400 mW = 100 mW

% efficiency = OUT

IN

400 mW100% 100%

500 mW

P

P

= 80%

38. POUT = (efficiency)PIN = (0.85)(5 W) = 4.25 W 39. Assume that the total consumption of the power supply is the input power plus the power lost. POUT = 2 W

% efficiency = OUT

IN

100%P

P

PIN = OUT 2 W100% 100%

% efficiency 60%

P

= 3.33 W

Energy = W = Pt = (3.33 W)(24 h) = 79.9 Wh 0.08 kWh

Multisim Troubleshooting and Analysis 40. V = 24 V, I = 0.035 A, R = 680 41. V = 5 V, I = 5 mA, R = 1 k 42. I = 833.3 mA

Page 26: Dc Answers

Chapter 5 Series Circuits Note: Solutions show conventional current direction.

Section 5-1 Resistors in Series 1. See Figure 5-1.

Figure 5-1

2. R1, R2, R3, R4, and R9 are in series (pin 5 to 6).

Figure 5-2

R7, R13, R14 and R16 are in series (pin 1 to 8). R6, R8, and R12 are in series (pin 2 to 3). R5, R10, R11, and R15 are in series (pin 4 to 7). See Figure 5-2. 3. R1-8 = R13 + R7 + R14 + R16 = 68 k + 33 k + 47 k + 22 k = 170 k 4. R2-3 = R12 + R8 + R6 = 10 + 18 + 22 = 50 5. R1, R7, R8, and R10 are in series. R2, R4, R6, and R11 are in series. R3, R5, R9, and R12 are in series.

27

Page 27: Dc Answers

Chapter 5

Section 5-2 Total Series Resistance 6. RT = 1 + 2.2 + 5.6 + 12 + 22 = 42.8 7. (a) RT = 560 + 1000 = 1560

(b) RT = 47 + 56 = 103

(c) RT = 1.5 k + 2.2 k + 10 k = 13.7 k

(d) RT = 1 M + 470 k + 1 k + 2.2 M = 3.671 M 8. (a) RT = 1 k + 5.6 k + 2.2 k = 8.8 k (b) RT = 4.7 + 10 + 12 + 1 = 27.7 (c) RT = 1 M + 560 k + 5.6 M + 680 k + 10 M = 17.84 M 9. RT = 12(5.6 k) = 67.2 k 10. RT = 6(56 ) + 8(100 ) + 2(22 ) = 336 + 800 + 44 = 1180 11. RT = R1 + R2 + R3 + R4 + R5 R5 = RT (R1 + R2 + R3 + R4) = 17.4 k (5.6 k + 1 k + 2.2 k + 4.7 k) = 17.4 k 13.5 k = 3.9 k 12. RT = 3(5.6 k) + 1 k + 2(100 ) = 16.8 k + 1 k + 200 = 18 k Three 5.6 k resistors, one 1 k resistor, and two 100 resistors. Other combinations are possible. 13. RT = 1 k + 5.6 k + 2.2 k + 4.7 + 10 + 12 + 1 + 1 M + 560 k + 5.6 M + 680 k + 10 M = 17.848827.7 M 17.8 M 14. Position 1: RT = R1 + R3 + R5 = 510 + 820 + 680 = 2.01 k Position 2: RT = R1 + R2 + R3 + R4 + R5 = 510 + 910 + 820 + 750 + 680 = 3.67 k

Section 5-3 Current in a Series Circuit

15. I = T

12 V

120

V

R

= 100 mA

16. I = 5 mA at all points in the series circuit. 17. See Figure 5-3. The current through R2, R3, R4, and R9 is also measured by this set-up.

28

Page 28: Dc Answers

Chapter 5

Figure 5-3

18. See Figure 5-4.

Figure 5-4

Section 5-4 Application of Ohm’s Law 19. (a) RT = R1 + R2 + R3 = 2.2 k + 5.6 k + 1 k = 8.8 k

I = T

5.5 V

8.8 k

V

R

= 625 A

(b) RT = R1 + R2 + R3 = 1 M + 2.2 M + 560 k = 3.76 M

I = T

16 V

3.76 M

V

R

= 4.26 A

20. (a) I = 625 A V1 = IR1 = (625 A)(2.2 k) = 1.375 V V2 = IR2 = (625 A)(5.6 k) = 3.5 V V3 = IR3 = (625 A)(1 k) = 0.625 V (b) I = 4.26 A V1 = IR1 = (4.26 A)(1 M) = 4.26 V V2 = IR2 = (4.26 A)(2.2 M) = 9.36 V V3 = IR3 = (4.26 A)(560 k) = 2.38 V

29

Page 29: Dc Answers

Chapter 5

21. RT = 3(470 ) = 1.41 k

(a) I = T

48 V

1.41 k

V

R

= 34 mA

(b) VR = 48 V

3 = 16 V

(c) P = (34 mA)2(470 ) = 0.543 W

22. RT = mA 2.23

V 5

I

V = 2.24 k

Reach = T 2.24 k

4 4

R = 560

23. R1 = mA 65.8

V 21.71 I

V = 330 R2 =

mA65.8

V 14.52 I

V = 220

R1 = mA 65.8

V 6.583 I

V = 100 R4 =

mA65.8

V 30.94 I

V = 470

24. V1 = IR1 = (12.3 mA)(82 ) = 1.01 V

R2 = 2 12 V 2.21 V 1.01 V

12.3 mA

V

I

= 714

R3 = 3 2.21 V

12.3 mA

V

I = 180

25. (a) RT = R1 + R2 + R3 + R4

R4 = 12 V

7.84 mA (R1 + R2 + R3) =

12 V

7.84 mA 1200 = 1531 1200 = 331

(b) Position B: I = 2 3 4

12 V 12 V

1311 R R R

= 9.15 mA

Position C: I = 3 4

12 V 12 V

841 R R

= 14.3 mA

Position D: I = 4

12 V 12 V

331 R

= 36.3 mA

(c) No

26. Position A: RT = R1 = 1 k

I = T

9 V

1 k

V

R

= 9 mA

Position B: RT = R1 + R2 + R5 = 1 k + 33 k + 22 k = 56 k

I = T

9 V

56 k

V

R

= 161 A

Position C:

30

Page 30: Dc Answers

Chapter 5

RT = R1 + R2 + R3 + R4 + R5 = 1 k + 33 k + 68 k + 27 k + 22 k = 151 k

I = T

9 V

151 k

V

R

= 59.6 A

Section 5-5 Voltage Sources in Series 27. VT = 5 V + 9 V = 14 V 28. VT = 12 V 3 V = 9 V 29. (a) VT = 10 V + 8 V + 5 V = 23 V (b) VT = 50 V + 10 V + 25 V = 85 V

Section 5-6 Kirchhoff’s Voltage Law 30. VS = 5.5 V + 8.2 V + 12.3 V = 26 V 31. VS = V1 + V2 + V3 + V4 + V5 20 V = 1.5 V + 5.5 V + 3 V + 6 V + V5 V5 = 20 V (1.5 V + 5.5 V + 3 V + 6 V) = 20 V 16 V = 4 V 32. (a) By Kirchhoff’s voltage law: 15 V = 2 V + V2 + 3.2 V + 1 V + 1.5 V + 0.5 V V2 = 15 V (2 V + 3.2 V + 1 V + 1.5 V + 0.5 V) = 15 V 8.2 V = 6.8 V (b) VR = 8 V, V2R = 2(8 V) = 16 V, V3R = 3(8 V) = 24 V, V4R = 4(8 V) = 32 V

VS = VR + VR + V2R + V3R + V4R = 11(VR) = 88 V

33. I = 56

V 11.2 = 200 mA

R4 = mA 200

V 4.4 = 22

34. R1 = mA 10

V 5.61 I

V = 560

R2 = 22

2

mA) (10

mW 22

I

P = 220

RT = mA 10

V 9 = 900

R3 = RT R1 R2 = 900 560 200 = 120 35. Position A: RT = R1 + R2 + R3 + R4 = 1.8 k + 1 k + 820 + 560 = 4.18 k Voltage drop across R1 through R4: V = IRT = (3.35 mA)(4.18 k) = 14 V V5 = 18 V 14 V = 4 V

31

Page 31: Dc Answers

Chapter 5

Position B:

1.8 k + 1 k + 820 = 3.62 k

5 V

= 1.8 k + 1 k = 2.8 k

.6 V

k s R :

6. A)(1.8 k) = 6.03 V

)(1.8 k) = 6.71 V

: )(1.8 k) = 8.1 V

1.8 k) = 10.8 V

ection 5-7 Voltage Dividers

RT = R1 + R2 + R3 = Voltage drop across R1 through R3: V = IRT = (3.73 mA)(3.62 k) = 13. V5 = 18 V 13.5 V = 4.5 V Position C: RT = R1 + R2 Voltage drop across R1 and R2: V = IRT = (4.5 mA)(2.8 k) = 12 V5 = 18 V 12.6 V = 5.4 V Position D: RT = R1 = 1.8 Voltage drop acros 1

V = IRT = (6 mA)(1.8 k) = 10.8 V V5 = 18 V 10.8 V = 7.2 V 3 Position A: V1 = (3.35 m V2 = (3.35 mA)(1 k) = 3.35 V V3 = (3.35 mA)(820 ) = 2.75 V V4 = (3.35 mA)(560 ) = 1.88 V V5 = 4.0 V Position B: V1 = (3.73 mA V2 = (3.73 mA)(1 k) = 3.73 V V3 = (3.73 mA)(820 ) = 3.06 V V5 = 4.5 V Position C V1 = (4.5 mA V2 = (4.5 mA)(1 k) = 4.5 V V5 = 5.4 V Position D: V1 = (6 mA)( V5 = 7.2 V

S

27

T

27100

560

V

V

37. = 4.82%

VAB = V 12156

56

38. (a) = 4.31 V

(b) VAB = V 8k5.6

k5.5

= 6.77 V

9. VA = VS = 15 V 3

32

Page 32: Dc Answers

Chapter 5

2 3S

1 2 3

13.3 k

18.9 k

R R V

R R R

VB =

15 V = 10.6 V

VC =

3S

1 2 3

3.3 k15 V

18.9 k

RV

R R R

= 2.62 V

VOUT(min) = 3S

1 2 3

680 12 V

2150

RV

R R R

40. = 3.80 V

VOUT(max) = 2 3S

1 2 3

1680 12 V

2150

R RV

R R R

= 9.38 V

1. RT = 15R

R

4

V 9015

R

V = R

= 6 V

V2R = V 9015

2

R

R = 12 V

V3R = V 9015

3

R

R = 18 V

V4R = V 9015

4

R

R = 24 V

V5R = V 9015

5

R

R = 30 V

2. VAF = 100 V 4

V 100k 6.108

k 6.86

BFR

VBF =

AFAF

VR

= 79.7 V

VCF = V 100k 6.108

k 6.76

AF

AF

CF VR

R = 70.5 V

VDF = V 100k 6.108

k 6.20

AF

AF

DF VR

R = 19.0 V

VEF = V 100k 6.108

k 6.5

AF

AF

EF VR

R = 5.16 V

3. I =

k 5.6

V 10

1

1

R

V4 = 1.79 mA

2 IR2 = (1.79 m 1.79 V

V = A)(1 k) = V3 = IR3 = (1.79 mA)(560 ) = 1.0 V

V4 = IR4 = (1.79 mA)(10 k) = 17.9 V

33

Page 33: Dc Answers

Chapter 5

44. See Figure 5-5 for one possible solution: 00 k

T

Figure 5-5

RT = 18 k + 33 k + 22 k + 27 k = 1

I = k 100

V 30 = 300 A

V 30k 100

k 82

VA = = 24.6 V

VB = V 30k 100

k 49

= 14.7 V

VC = V 30k 100

k 27

= 8.1 V

P1 = = (300 A)2 27 k = 2.43 mW

5. See Figure 5-6 for one possible solution.

OUT(max)

2T 1I R

P2 = = (300 A)2 22 k = 1.98 mW 2T 2I R

P3 = = (300 A)2 33 k = 2.97 mW 2T 3I R

P4 = = (300 A)2 18 k = 1.62 mW 2T 4I R

All resistors can be 1/8 W. 4 RT = 12.1 k

V 120k 12.1

k 10

V = .1

= 100.2 V

VOUT(min) =

V 120k 12.1

k 1

= 9.92 V

These values are within 1% of the specified values.

IMAX = T

120 V 120 V = 9.9 mA Figure 5-6 12.1 kR

ection 5-8 Power in Series Circuits

S 46. PT = 5(50 mW) = 250 mW

7. VT = V1 + V2 + V3 + V4 = 10 V + 1.79 V + 1 V + 17.9 V = 30.69 V

8. Since P = I R and since each resistor has the same current, the 5.6 k resistor is the limiting

Imax =

4 PT = VTI = (30.69 V)(1.79 mA) = 54. 9 mW

24element in terms of power dissipation.

k 5.6

W0.25

k 5.6maxP

= 6.68 mA

5.6 k ) = 37.4 V

6.1 V = 86.2 V

V = (6.68 mA)(5.6 k V1.2 k = (6.68 mA)(1.2 k) = 8.02 V V2.2 k = (6.68 mA)(2.2 k) = 14.7 V V3.9 k = (6.68 mA)(3.9 k) = 26.1 V VT(max) = 37.4 V + 8.02 V + 14.7 V + 2

34

Page 34: Dc Answers

Chapter 5

M 5.6

V 12

1

1

R

V49. I = = 2.14 A

R2 = A 2.14

V 4.82

I

V

2

= 2.2 M

P3 = I R

3

3

3P R =

22 A)142

W 5.21

I = 4.7 M

RT = R1 + R2 + R3 = 5.6 M + 2.2 M + 4.7 M = 12.5 M

0. (a) P = I2R

5

R = 2I

P

R + 1 2 3R + R = 2400

222

W2

1 W

1W

1

48

I I I

= 2400

2

W8

7

I

= 2400

I 2 =

2400

W8

7

= 0.0003646 A2

I = 2A 0003646.0 = 19.1 mA

(b) VT = IRT = (19.1 mA)(2400 ) = 45.8 V

R1 =

221

mA) (19.1

W0.125

I

P (c) = 343

R2 = 22

2

mA) (19.1

W0.25

I

P = 686

R3 = 22

3

mA) (19.1

W5.0

I

P = 1.37 k

ection 5-9 Voltage Measurements S 51. VAG = 100 V (voltage from point A to ground)

k Resistance between A and C: RAC = 5.6 k + 5.6 k = 11.2 Resistance between C and ground: RCG = 1 k + 1 k = 2 k

35

Page 35: Dc Answers

Chapter 5

VCG = V 100k 2.13

k 2

= 15.2 V

VDG = V 15.2k 2

k 1

k 2

k 1

CGV = 7.58 V

VAC = V 100k 2.13

k 2.11

= 84.9 V

VBC = V 84.9k 2.11

k 6.5

k 2.11

k 6.5

ACV = 42.5 V

VBG = VCG + VBC = 15.2 V + 42.5 V = 57.7 V 52. Measure the voltage at point A with respect to ground and the voltage at point B with respect to

ground. The difference is VR2. VR2 = VB VA 53. RT = R1 + R2 + R3 + R4 + R5 = 56 k + 560 k + 100 k + 1 M + 100 k = 1.816 M VT = 15 V 9 V = 6 V

I = T

T

6 V 1.816 M

V

R

= 3.3 A

V1 = IR1 = (3.3 A)(56 k) = 185 mV VA = 15 V V1 = 15 V 185 mV = 14.82 V V2 = IR2 = (3.3 A)(560 k) = 1.85 V VB = VA V2 = 14.82 V 1.85 V = 12.97 V V3 = IR3 = (3.3 A)(100 k) = 330 mV VC = VB V3 = 12.97 V 330 mV = 12.64 V V4 = IR4 = (3.3 A)(1 M) = 3.3 V VD = VC V4 = 12.64 V 3.3 V = 9.34 V 54. VAC = VA – VC = 14.82 V – 12.64 V = 2.18 V 55. VCA = VC – VA = 12.64 V – 14.82 V = -2.18 V

Section 5-10 Troubleshooting 56. There is no current through the resistors which have zero volts across them; thus, there is an

open in the circuit. Since R2 has voltage across it, it is the open resistor. 12 V will be measured across R2. 57. (a) Zero current indicates an open. R4 is open since all the voltage is dropped across it.

(b) S

1 2 3

10 V

300

V

R R R

= 33.3 mA

R4 and R5 have no effect on the current. There is a short from A to B, shorting out R4 and R5.

36

Page 36: Dc Answers

Chapter 5

37

58. R2 = 0 RT = R1 + R3 + R4 + R5 = 400

IT = S

T

10 V

400

V

R

= 25 mA

59. The results in Table 5-1 are correct.

60. If 15 k is measured between pins 5 and 6, R3 and R5 are shorted as indicated in Figure 5-7. 61. In this case, there is a short between the points indicated in Figure 5-7.

Figure 5-7

62. (a) R11 has burned out because it has the highest resistance value (P = I2R). (b) Replace R11 (10 k). (c) RT = 47.73 k

Imax =

k 10

W5.0

11

11

R

P = 7.07 mA

Vmax = ImaxRT = (7.07 mA)(10 k) = 70.7 V

Multisim Troubleshooting and Analysis 63. 7.481 k 66. 6 V 64. R2 is open. 67. R1 is shorted 65. R3 = 22

Page 37: Dc Answers

Chapter 6 Parallel Circuits Note: Solutions show conventional current direction.

Section 6-1 Resistors in Parallel 1. See Figure 6-1.

Figure 6-1

2. R1, R2 and R5 are not individually in parallel with the other resistors. The series combination of

R1, R2, and R5 is in parallel with the other resistors. 3. R1, R2, R5, R9, R10 and R12 are in parallel. R4, R6, R7, and R8 are in parallel. R3 and R11 are in parallel.

Section 6-2 Voltage in a Parallel Circuit 4. V1 = V2 = V3 = V4 = 12 V

IT = T

T

12 V

550

V

R

= 21.8 mA

The total current divides equally among the four equal parallel resistors.

I1 = I2 = I3 = I4 = 4

mA 21.8 = 5.45 mA

5. The resistors are all in parallel across the source. The voltmeters each measure the voltage across a resistor, so each meter indicates 100 V.

6. Position A: RT = R1 R4 = (1.0 k) (2.7 k) = 730 Position B: RT = R1 R3 = (1.0 k) (2.2 k) = 688 Position C: RT = R1 R2 = (1.0 k) (1.8 k) = 643 7. Position A: V1 = 15 V, V2 = 0 V, V3 = 0 V, V4 = 15 V Position B: V1 = 15 V, V2 = 0 V, V3 = 15 V, V4 = 0 V Position C: V1 = 15 V, V2 = 15 V, V3 = 0 V, V4 = 0 V

38

Page 38: Dc Answers

Chapter 6

8. Position A: IT = 15V

730 = 20.6 mA

Position B: IT = 15V

688 = 21.8 mA

Position C: IT = 15V

643 = 23.3 mA

Section 6-3 Kirchhoff’s Current Law 9. IT = 250 mA + 300 mA + 800 mA = 1350 mA = 1.35 A 10. IT = I1 + I2 + I3 + I4 + I5 I5 = IT (I1 + I2 + I3 + I4) = 500 mA (50 mA + 150 mA + 25 mA + 100 mA) = 500 mA 325 mA = 175 mA 11. VS = I1R1 = (1 mA)(47 ) = 47 mV

R2 = S

2

47 mV

2.14 mA

V

I = 22

R3 = S

3

47 mV

0.47 mA

V

I = 100

I4 = IT (I1 + I2 + I3) = 5.03 mA 3.61 mA = 1.42 mA

R4 = S

4

47 mV

1.42 mA

V

I = 33

12. IT = 1.25 A + 0.833 A + 0.833 A + 10 A = 12.92 A I4 = 15 A 12.92 A = 2.08 A See Figure 6-2.

Figure 6-2

13. VT = ITRT = (100 mA)(25 ) = 2500 mV = 2.5 V

I220 = T 2.5 V

220 220

V

= 11.4 mA

14. IT = 4IRUN + 2ITAIL = 4(0.5A) + 2(1.2 A) = 4.4 A

39

Page 39: Dc Answers

Chapter 6

15. (a) IT = 4IRUN + 2ITA + 2IBRAKE = 4(0.5A) + 2(1.2 A) + 2(1 A) = 6.4 A IL

(b) IGND = IT = 6.4 A Section 6-4 Total Parallel Resistance

16. RT =

M22

1

M12

1

M 6.5

1

M 2.2

1

M 1

11

= 568 k

17. (a) RT =

k 1560

)k 1)(560( = 359

(b) RT = 5647

) 56)(47( = 25.6

(c) RT =

k10

1

k 2.2

1

k 1.5

11

= 819

(d) RT =

M7.2

1

k 1

1

k 470

1

M 1

11

= 997

18. (a) RT = 220560

) 220)(560( = 158

(b) RT =

k 56k27

)k 56)(k27( = 18.2 k

(c) RT =

k 2.2k5.1

)k 2.2)(k5.1( = 892

19. RT = 12

k 6.8 = 0.567 k = 567

20. Five 470 resistors in parallel:

R1 = 470

5

= 94

Ten 1000 resistors in parallel:

R2 = 1000

10

= 100

Two 100 resistors in parallel:

R3 = 100

2

= 50

21. RT = 1

1 1 1

94 100 50

= 24.6

40

Page 40: Dc Answers

Chapter 6

22. RT = 21

21

RR

RR

RT(R1 + R2) = R1R2 RTR1 + RTR2 = R1R2 RTR1 = R1R2 RTR2 RTR1 = R2(R1 RT)

R2 = T 1

1 T

(389.2 )(680 )

680 389.2

R R

R R

= 910

23. (a) RT = R1 = 510 k

(b) RT = R1 R2 =

k470

1

k 510

11

= 245 k

(c) RT = R1 = 510 k

RT = R1 R2 R3 =

k910

1

k470

1

k510

11

= 193 k

Section 6-5 Application of Ohm’s Law

24. (a) RT =

27

1

33

1

33

11

= 10.2

IT = T

10 V

10.2

V

R

= 980 mA

(b) RT =

560

1

k 4.7

1

k 1

11

= 334

IT = T

25 V

334

V

R

= 74.9 mA

25. RT = 240

3 3

R = 80

IT = 120 V

80 = 1.5 A

26. RT = S

T

5 V

1.11 mA

V

I = 4.5 k

Reach = 4RT = 4(4.5 k) = 18 k

27. I = S

filament

110 V

2.2 k

V

R

= 50 mA

When one bulb burns out, the others remain on.

41

Page 41: Dc Answers

Chapter 6

28. (a) I2 = IT I1 = 150 mA 100 mA = 50 mA

R1 = mA 100

V 10 = 100

R2 = mA 50

V 10 = 200

(b) I3 = k 1

V 100 = 100 mA

I2 = 680

V 100 = 147 mA

I1 = IT I2 I3 = 500 mA 247 mA = 253 mA

R1 = mA 253

V 100 = 395

29. Imax = 0.5 A

RT(min) = max

15 V 15 V

0.5 AI = 30

x

x

R

R

68

)68( = RT(min)

(68 )Rx = (30 )(68 + Rx) 68Rx = 2040 + 30Rx 68Rx 30Rx = 2040 38Rx = 2040 Rx = 53.7 30. Position A:

I1 = k 560

V 24 = 42.9 A

I2 = k 220

V 24 = 109 A

I3 = k 270

V 24 = 88.9 A

IT = 42.9 A + 109 A + 88.9 A = 241 A Position B: I1 = 42.9 A I2 = 109 A I3 = 88.9 A

I4 = M 1

V 24 = 24 A

I5 = k 820

V 24 = 29.3 A

I6 = M 2.2

V 24 = 10.9 A

IT = 42.9 A + 109 A + 88.9 A + 24 A + 29.3 A + 10.9 A = 305 A

42

Page 42: Dc Answers

Chapter 6

Position C: I4 = 24 A I5 = 29.3 A I6 = 10.9 A IT = 24 A + 29.3 A + 10.9 A = 64.2 A

31. I3 = k 1.2

V 100 = 83.3 mA

I2 = 250 mA 83.3 mA = 166.7 mA IT = 250 mA + 50 mA = 300 mA

R1 = mA 50

V 100 = 2 k

R2 = mA 7.166

V 100 = 600

Section 6-6 Current Sources in Parallel 32. (a) IL = 1 mA + 2 mA = 3 mA (b) IL = 50 A 40 A = 10 A (c) IL = 1 A 2.5 A + 2 A = 0.5 A 33. Position A: IR = 2.25 mA Position B: IR = 4.75 mA Position C: IR = 4.75 mA + 2.25 mA = 7 mA

Section 6-7 Current Dividers

34. I1 = 2T

1 2

2.7 k3 A

3.7 k

RI

R R

= 2.19 A

I2 = 1T

1 2

1 k3 A

3.7 k

RI

R R

= 0.811 A

35. (a) I1 = 2T

1 2

2.2 M10 A

3.2 M

RI

R R

= 6.88 A

I2 = IT I1 = 10 A 6.88 A = 3.12 A

(b) Ix = TT

x

RI

R

RT = 525

I1 = mA 101000

525

= 5.25 mA

I2 = mA 10k2.2

525

= 2.39 mA

43

Page 43: Dc Answers

Chapter 6

I3 = mA 10k3.3

525

= 1.59 mA

I4 = mA 10k8.6

525

= 0.772 mA

36. RT =

RRRR 4

1

3

1

2

111

=

4

1

3

1

2

11/R = 0.48R

IR = T 0 4810 mA 10 mA

R . R

R R

= 4.8 mA; I2R = T 0 48

10 mA 10 mA2 2

R . R

R R

= 2.4 mA;

I3R = T 0 4810 mA 10 mA

3 3

R . R

R R

= 1.59 mA; I4R = T 0 48

10 mA 10 mA4 4

R . R

R R

= 1.2 mA

37. RT = 773 I3 = IT I1 I2 I3 = 15.53 mA 3.64 mA 6.67 mA 3.08 mA = 2.14 mA

I1 = TT

1

RI

R

R1 = TT

1

77315.53 mA

3.64 mA

RI

I

= 3.3 k

R2 = TT

2

77315.53 mA

6.67 mA

RI

I

= 1.8 k

R3 = TT

3

77315.53 mA

2.14 mA

RI

I

= 5.6 k

R4 = TT

4

77315.53 mA

3.08 mA

RI

I

= 3.9 k

38. (a) IT = 10 mA, IM = 1 mA VM = IMRM = (1 mA)(50 ) = 50 mV

ISH1 = 9 mA

RSH1 = M

SH1

50 mV

9 mA

V

I = 5.56

(b) IT = 100 mA, IM = 1 mA

VM = IMRM = (1 mA)(50 ) = 50 mV ISH2 = 99 mA

RSH2 = M

SH2

50 mV

99 mA

V

I = 0.505

44

Page 44: Dc Answers

Chapter 6

39. (a) RSH = 50 mV

50 A = 1 m

(b) ISH = 50 mV

1 m = 50 A

Imeter = 50 mV

10 k = 5 A

Section 6-8 Power in Parallel Circuits 40. PT = 5(250 mW) = 1.25 W

41. (a) RT =

M 2.2M 1

)M 2.2)(M (1 = 687.5 k

PT = I 2RT = (10 A)2(687.5 k) = 68.8 W

(b) RT =

k 8.6

1

k 3.3

1

k 2.2

1

k 1

11

11111

4321 RRRR

= 525

PT = I 2RT = (10 mA)2(525 ) = 52.5 mW 42. P = VI

Ieach = 75 W

120 V

P

V = 625 mA

IT = 6(625 mA) = 3.75 A 43. P1 = PT P2 = 2 W 0.75 W = 1.25 W

VS = T

T

2 W

200 mA

P

I = 10 V

I2 = 2

S

0.75 W

10 V

P

V = 75 mA

R2 = S

2

10 V

75 mA

V

I = 133

I1 = IT I2 = 200 mA 75 mA = 125 mA

R1 = S

1

10 V

125 mA

V

I = 80

44. (a) PT = = (50 mA)2 1 k = 2.5 W 2T TI R

Number of resistors = n = T

each

2.5 W

0.25 W

P

P = 10

(b) RT = n

R

R = nRT = 10(1 k) = 10 k

45

Page 45: Dc Answers

Chapter 6

(c) I = T 50 mA

10

I

n = 5 mA

(d) VS = ITRT = (50 mA)(1 k) = 50 V

Section 6-10 Troubleshooting

45. Ieach = 75 W

120 V

P

V = 625 mA

IT = 5(625 mA) = 3.13 A

46. RT =

270

1

560

1

k1

1

100

1

220

11

= 47.5

IT = 47.5

V 10 = 210.5 mA

The measured current is 200.4 mA, which is 10.1 mA less than it should be. Therefore, one of the resistors is open.

R? = mA 10.1

V 10

I

V = 990 1 k

The 1 k resistor (R3) is open.

47. RT =

k2.8

1

k10

1

k7.4

11

= 2.3 k

IT = k 2.3

V 25 = 10.87 mA

The meter indicates 7.82 mA. Therefore, a resistor must be open.

I3 = k 8.2

V 25 = 3.05 mA

I = IT IM = 10.87 mA 7.82 = 3.05 mA This shows that I3 is missing from the total current as read on the meter. Therefore,

R3 (8.2 k) is open.

48. I1 = k 4.7

V 25 = 5.32 mA

I2 = k 10

V 25 = 2.5 mA

I3 = k 8.2

V 25 = 3.05 mA

R1 is open producing a total current of IT = I2 + I3 = 2.5 mA + 3.05 mA = 5.55 mA

46

Page 46: Dc Answers

Chapter 6

47

49. Connect ohmmeter between the following pins: Pins 1-2 Correct reading: R = 1 k 3.3 k = 767 R1 open: R = 3.3 k R2 open: R = 1 k Pins 3-4 Correct reading: R = 270 390 = 159.5 R3 open: R = 390 R4 open: R = 270

Pins 5-6

Correct reading: R = 1 M 1.8 M 680 k 510 k = 201 k R5 open: R = 1.8 M 680 k 510 k = 251 k R6 open: R = 1 M 680 k 510 k = 226 k R7 open: R = 1 M 1.8 M 510 k = 284 k R8 open: R = 1 M 1.8 M 680 k = 330 k 50. Short between pins 2 and 4: (a) R1-2 = R1 R2 R3 R4 R11 R12 + R5 R6 R7 R8 R9 R10 = 10 k 2.2 k 2.2 k 3.3 k 18 k 1 k + 4.7 k 4.7 k 6.8 k

5.6 k 1 k 5.6 k = 940

(b) R2-3 = R5 R6 R7 R8 R9 R10 = 4.7 k 4.7 k 6.8 k 5.6 k 1 k 5.6 k = 518

(c) R3-4 = R5 R6 R7 R8 R9 R10 = 4.7 k 4.7 k 6.8 k 5.6 k 1 k 5.6 k = 518

(d) R1-4 = R1 R2 R3 R4 R11 R12 = 10 k 2.2 k 2.2 k 3.3 k 18 k 1 k = 422

51. Short between pins 3 and 4: (a) R1-2 = (R1 R2 R3 R4 R11 R12) + (R5 R6 R7 R8 R9 R10) = 940

(b) R2-3 = R5 R6 R7 R8 R9 R10 = 518

(c) R2-4 = R5 R6 R7 R8 R9 R10 = 518

(d) R1-4 = R1 R2 R3 R4 R11 R12 = 422

Multisim Troubleshooting and Analysis 52. RT = 547.97 53. R2 is open. 54. R1 = 890 55. VS = 3.3 V 56. R1 is open.

Page 47: Dc Answers

Chapter 7 Series-Parallel Circuits Note: Solutions show conventional current direction.

Section 7-1 Identifying Series-Parallel Relationships

Figure 7-1

1. See Figure 7-1.

2. See Figure 7-2.

Figure 7-2

3. (a) R1 and R4 are in series with the parallel combination of R2 and R3. (b) R1 is in series with the parallel combination of R2, R3, and R4.

(c) The parallel combination of R2 and R3 is in series with the parallel combination of R4 and R5. This is all in parallel with R1.

4. (a) R2 is in series with the parallel combination of R3 and R4. This series-parallel combination is in parallel with R1. (b) All of the resistors are in parallel. (c) R1 and R2 are in series with the parallel combination of R3 and R4. R5 and R8 are in series with the parallel combination of R6 and R7. These two series-parallel combinations are in parallel with each other.

48

Page 48: Dc Answers

Chapter 7

5. See Figure 7-3.

Figure 7-3

6. See Figure 7-4.

Figure 7-4

7. See Figure 7-5.

Figure 7-5

49

Page 49: Dc Answers

Chapter 7

Section 7-2 Analysis of Series-Parallel Resistive Circuits

8. RT = 21

21

RR

RR

R2 = 1 T

1 T

(1 k )(667 )

1 k 667

R R

R R

= 2.0 k

9. (a) RT = R1 + R4 + 2

2R = 56 + 27 +

2

100 = 133

(b) RT =

432

1 1111

RRR

R

= 680 +

180

1

330

1

680

11

= 680 + 99.4 = 779

(c) RT = R1 (R2 R3 + R4 R5) = R1 (2.154 k + 3.59 k) = 852 10. (a) RT = R1 (R2 + R3 R4) = 1 k (1 k + 2.2 k 3.3 k) = 699

(b) RT =

M6.2

1

M 3.3

1

M 1

1

M 1

11

= 406 k

(c) RA = R1 + R2 + 43

43

RR

RR

= 1 k + 1 k +

k7.4k10

)k 7.4)(k (10 = 5.2 k

RB = R5 + R8 + 76

76

RR

RR

= 3.3 k + 1.8 k +

2

k 8.6 = 8.5 k

RT =

k 8.5

1

k 2.5

11

111

BA RR

= 3.23 k

11. (a) IT = 133

V 1.5 = 11.3 mA

I1 = I4 = 11.3 mA

I2 = I3 = 2

mA 11.3 = 5.64 mA

V1 = (11.3 mA)(56 ) = 633 mV V4 = (11.3 mA)(27 ) = 305 mV V2 = V3 = (5.64 mA)(100 ) = 564 mV

50

Page 50: Dc Answers

Chapter 7

(b) IT = 779

V 3 = 3.85 mA

V1 = (3.85 mA)(680 ) = 2.62 V V2 = V3 = V4 = VS ITR1 = 3 V (3.85 mA)(680 ) = 383 mV I1 = IT = 3.85 mA

I2 =

680

mV 383

2

2

R

V = 563 A

I3 =

330

mV 383

3

3

R

V = 1.16 mA

I4 =

180

mV 383

4

4

R

V = 2.13 mA

(c) I1 = k 1

V 5 = 5 mA Iright =

k5.74

V 5 = 871 A

I2 = A871k 9.5

k 3.3

= 303 A

I3 = A871k 9.5

k 6.2

= 568 A

I4 = A871k 15.6

k 5.6

= 313 A

I5 = A871k 15.6

k 10

= 558 A

V1 = VS = 5 V V2 = V3 = (303 A)(6.2 k) = 1.88 V V4 = V5 = (313 A)(10 k) = 3.13 V

12. (a) IT = 699

V 1 = 1.43 mA

I1 = mA 43.1k 3.32

k 2.32

= 1 mA

V1 = (1 mA)(1 k) = 1 V

I2 = mA43.1k 3.32

k 1

= 431 A

V2 = (431 A)(1 k) = 431 mV

I3 = A431k 5.5

k 3.3

= 259 A

V3 = (259 A)(2.2 k) = 570 mV V4 = V3 = 570 mV

I4 = k 3.3

mV 570 = 173 A

51

Page 51: Dc Answers

Chapter 7

(b) V1 = V2 = V3 = V4 = 2 V

I1 = M 1

V 2 = 2 A

I2 = M 3.3

V 2 = 606 nA

I3 = M 6.2

V 2 = 323 nA

I4 = M 1

V 2 = 2 A

(c) IT = k 23.3

V 5 = 1.55 mA

I5= mA 55.1k 13.7

k 5.2

= 588 A

V5 = (588 A)(3.3 k) = 1.94 V

I6 = I7 =

A588

25I

= 294 A

V6 = V7 = (294 A)(6.8 k) = 2 V I8 = I5 = 588 A V8 = (588 A)(1.8 k) = 1.06 V

I1 = I2 = mA55.1k 13.7

k 8.5

= 962 A

V1 = V2 = (962 A)(1 k) = 962 mV

I3 = A962k 7.14

k 4.7

= 308 A

V3 = V4 = (308 A)(10 k) = 3.08 V

I4 = A962k 7.14

k 10

= 654 A

13. SW1 closed, SW2 open: RT = R2 = 220 SW1 closed, SW2 closed: RT = R2 R3 = 220 2.2 k = 200 SW1 open, SW2 open: RT = R1 + R2 = 100 + 220 = 320 SW1 open, SW2 closed: RT = R1 + R2 R3 = 100 + 200 = 300 14. RAB = (10 k + 5.6 k) 4.7 k = 15.6 k 4.7 k = 3.61 k The 1.8 k and the two 1 ks are shorted).

52

Page 52: Dc Answers

Chapter 7

15. VAG = 100 V RAC = (4.7 k + 5.6 k) 10 k = 5.07 k RCG = 2 k 1.8 k = 947

VAC = V 100k 02.6

k 07.5

= 84.2 V

VCG = V 100k 02.6

947

= 15.7 V

VDG = V 15.7k 2

k 1

k 2

k 1

CGV = 7.87 V

VBC = V 84.2k 3.10

k 6.5

k 3.10

k 6.5

ACV = 45.8 V

VBG = VCG + VBC = 15.7 V + 45.8 V = 61.5 V

16. VA = V 50k 716

k 56

= 3.91 V VB = V 50k 716

k 616

= 43.0 V

VC = 50 V VD = V 50M 1.1

k 100

= 4.55 V

17. Measure the voltage at point A with respect to ground and the voltage at point B with respect to

ground. The difference is VR2. VR2 = VB VA 18. RT = (10 k (4.7 k + 5.6 k)) + (1.8 k (1 k + 1 k)) = 10 k 10.3 k + 1.8 k 2 k = 5.07 k + 947 k = 6.02 k 19. RT = (R1 + R2 + R3) R4 (R5 + R6) = (100 k + 560 k + 56 k) 1.0 M (1.0 M + 100 k) = 716 k 1.0 M 1.1 M = 303 k 20. Resistance of the right branch: RR = R2 + R5 R6 + R7 + R8 = 330 + 600 + 680 + 100 = 1710 Resistance of the left branch: RL = R3 + R4 = 470 + 560 = 1030 Total resistance: RT = R1 + RL RR = 1 k + 643 = 1.64 k

IT = k 1.64

V 100 = 60.9 mA

Current in the right branch:

IR = T

103060.9 mA

2740L

L R

RI

R R

= 22.9 mA

Current in the left branch:

IL = T

171060.9 mA

2740R

L R

RI

R R

= 38.0 mA

53

Page 53: Dc Answers

Chapter 7

54

With respect to the negative source terminal: VA = ILR4 = (38.0 mA)(560 ) = 21.3 V VB = IR(R7 + R8) = (22.9 mA)(780 ) = 17.9 V VAB = VA VB = 21.3 V 17.9 V = 3.4 V

21. (a) I2 = 1T

1 2

RI

R R

1 mA = T2

47 k

47 kI

R

47 k + R2 = (47 k)IT Also,

IT = 2T

2

220(47 k )

33 k(47 k )

VRRR

Substituting the expression for IT into 47 k + R2 = (47 k)IT.

47 k + R2 = 2

2

22047 k

(47 k )33 k

47 k

R

R

(47 k + R2) 2

2

(47 k )33 k

47 k

R

R

= 47 k(220)

(80 k)R2 = 47 k(220) (47 k)(33 k)

R2 = 47 k (220 33 k )

80 k

= 109.9 k 110 k

(b) P2 = = (1 mA)2 110 k = 0.11 W = 110 mW 2

2 2I R 22. RAB = R1 (R2 + R7 + R8) = 1 k (2.2 k + 3.3 k + 4.7 k) = 1 k 10.2 k = 911 RAG = R8 (R1 + R2 + R7) = 4.7 k (1 k + 2.2 k + 3.3 k) = 4.7 k 6.5 k = 2.73 k RAC = (R1 + R2) (R7 + R8) = (1 k + 2.2 k) (3.3 k + 4.7 k) = 3.2 k 8 k = 2.29 k RAD = RAC + R3 (R4 + R5 + R6) = 2.29 k + 1 k 10.2 k = 3.20 k RAE = RAC + (R3 + R4) (R5 + R6) = 2.29 k + 3.2 k 8 k = 4.58 k RAF = RAC + R6 (R3 + R4 + R5) = 2.29 k + 4.7 k 6.5 k = 5.02 k 23. RAB = (R1 + R2) R4 R3 = 6.6 k 3.3 k 3.3 k = 1.32 k Note: R5 and R6 is shorted out (ACD) and is not a factor in the total resistance. RBC = R4 (R1 + R2) R3 = 1.32 k RCD = 0

Page 54: Dc Answers

Chapter 7

24. V2 = V5 V6 = 5 V 1 V = 4 V

I2 = I6 = V 4

W2 = 0.5 A

I5 = I8 I6 = 1 A 0.5 A = 0.5 A I1 = I2 + I5 + I4 = 0.5 A + 0.5 A + 1 A = 2 A I3 = IT I1 = 4 A 2 A = 2 A V7 = VS V3 = 40 V 20 V = 20 V

V1 = A 2

W20 = 10 V

V4 = V3 V1 = 10 V V8 = V4 V5 = 5 V

R1 = A2

V 10 = 5

R2 = A0.5

V 4 = 8

R3 = A2

V 20 = 10

R4 = A1

V 10 = 10

R5 = A0.5

V 5 = 10

R6 = A0.5

V 1 = 2

R7 = A 4

V 20 = 5

R8 = A 1

V 5 = 5

Section 7-3 Voltage Dividers with Resistive Loads

25. VOUT(unloaded) = V 15k 112

k 56

= 7.5 V

56 k in parallel with a 1 M load is

Req =

M 1k 56

)M 1)(k (56 = 53 k

VOUT(loaded) = V 15k 109

k 56

= 7.29 V

26. See Figure 7-6.

VA = V 12k 9.9

k 6.6

= 8 V

VB = V 12k 9.9

k 3.3

= 4 V

With a 10 k resistor connected from tap A to ground:

RAB =

k 10k 6.6

)k 10)(k 6.6( = 3.98 k

VA(loaded) = V 12 28.7

k 98.3

= 6.56 V

Figure 7-6 27. The 47 k will result in a smaller decrease in output voltage because it has less effect on the

circuit resistance than does the smaller resistance.

55

Page 55: Dc Answers

Chapter 7

28. RT = 10 k + 5.6 k + 2.7 k = 18.3 k

OUT(NL) V = 2 3R R S

1 2 3

VR R R

=

8.3 k 22 V

18.3 k

= 9.98 V

With a 100 k load:

T 1

R = R + 2 3( )

2 3

L

L

R R R

R R = 10 k +

(8.3 k )(100 k )

108.3 k

R

= 17.7 k

VOUT = 7.7 k

22 V17.7 k

= 9.57 V

9. RAB = 2(8.3 k )(33 k )

8.3 k 33 k

= 6.63 k

VAB = 6.63 k

22 V10 k 6.63 k

= 8.77 V

0. RT = 10 k + 5.6 k + 2.7 k = 18.3 k 3

I = 22 V

= 1.2 mA 18.3 k

RT = 10 k + (8.3 k )(33 k )

8.3 k 33 k

= 16.6 k

I = 22 V

16.6 k

= 1.33 mA

1. See Figure 7-7. R1 + 2R2 = 2 k 3

RT = mA 5

V 10 = 2 2R2 + 2R2 =k 2 k

2 + R3

0 00

With a 1 k load on the lower tap:

00 = 333

Figure 7-7

R1 = R 4R2 = 2 k R2 = R3 R2 = R3 = 50 R1 = 2R2 R1 = R2 + R3 = 10 1 k 5

IT = 333500k 1

V 10 = 5.46 mA

V 1.82 V lower tap = (333 )(5.46 mA) = 4.55 V

With a 1 k load on the upper tap:

Vupper tap = (500 + 333 )(5.46 mA) =

IT = 2/k1k1

V 10

= 6.67 mA

Vuppe 6.67 mA) = 3r tap = (500 )( .33 V

Vlower tap = 2

V 33.3 = 1.67 V

56

Page 56: Dc Answers

Chapter 7

32. Position 1: R = 10 k + 30 k 68 k = 10 k + 20.82 k = 30.8 k T

V1 = V 120k 8.30

= 81.0 V k 20.8

V 81k 30

k 20

V2 = = 54.0 V

V 81k 30

k 10

= 27.0 V V3 =

Position 2: RT = 20 k + 20 k 68 k = 20 k + 15.5 k = 35.5 k

V1 = V 120k 5.35

= 86.2 V k 10 k 5.15

V 81k 5.35

k 15.5

= 52.4 V V2 =

V 52.4k 20

k 10

= 26.2 V V3 =

Posit R = 30 k 68 k = 30 k

ion 3: T + 10 k + 8.72 k = 38.7 k

V1 = V 120k 7.38

= 89.0 V k 20 k 72.8

V 81k 7.38

k 72.8k 10

58.0 V V2 = =

V 81k 7.38

k 8.72

V3 = = 27.0

3. (a) VG =

V

2DD

1 2

270 k16 V

2.47 M

RV

R R

3 = 1.75 V

G + 1.5 V = 1.75 V + 1.5 V = 3.2 VS = V 5 V

(b) I1 = DD G 16 V 1.75 VV V = 6.48 A

1 2.2 MR

1 = G

2

1.75 V

270 k

V

R

= 6.48 A I2 = I

IS = SV 17 mA

S

3.25 V

1.5 kR = 2.

IS = 2.17 mA

16 V (2.17 mA)(4.7 k) = 16 V 10.2 V = 5.8 V VDS = VD VS = 5.8 V 3.25 V = 2.55 V

ID = (c) VD = VDD IDRD = VDG = VD VG = 5.8 V 1.75 V = 4.05 V

57

Page 57: Dc Answers

Chapter 7

34. Imax = 100 mA

RT = mA 100

=V 24

240

2R 6 V

T

24 VR

=

24R = 6R 2 T

R2 = 24

)240(6 = 60

40 6 load:

.6

R1 = 2 0 = 180 With R2 RL = 60 1000 = 56

VOUT = V 246.56180

= 5.6.56

74 V

Section 7-4 Loading Effect of a Voltmeter

35. The voltmeter presents the least load when set on the 1000 V range.

For example, assuming 20,000 /V:

on the 1000 V range

6. (b) Rinternal = (20,000 /V)(1 V) = 20 k

7.

Rinternal = (20,000 /V)(1 V) = 20 k on the 1 V range Rinternal = (20,000 /V)(1000 V) = 20 M 3 (a) Rinternal = (20,000 /V)(0.5 V) = 10 k (c) Rinternal = (20,000 /V)(5 V) = 100 k (d) Rinternal = (20,000 /V)(50 V) = 1 M (e) Rinternal = (20,000 /V)(100 V) = 2 M (f) Rinternal = (20,000 /V)(1000 V) = 20 M

3 V 1.5133

274

R

V 1.54321

4

RRRR

VR = 0.305 V actual

(a) Use the 0.5 V range to measure 0.305 V

27 10 k = 26.93

.

(b) Rinternal = (20,000 /V)(0.5 V) = 10 k

V 1.593.1324

RV 93.26

0.304 V wit mh eter connected

.305 V 0.304 V = 0. 0 001 V less with meter

58

Page 58: Dc Answers

Chapter 7

38. V 3779.4

99.4V 3

1432

432

4

RRRR

RRRVR = 0.383 V actual

(a) Use the 0.5 V range to measure 0.383 V. (b) Rinternal = (20,000 /V)(0.5 V) = 10 k 99.4 10 k = 98.4

V 34.778

4.984

RV = 0.379 V with meter connected

0.383 V 0.379 V = 0.004 V less with meter 39. RMETER = 10 V(10,000/V) = 100 k

22

2

2R2

1 2

(100 k )(100 k )50 k

200 k

50 k0.333

100 k 50 k

METERMETER

METER

METERS S

METER

R RR R

R R

R RV V V

R R R SV

40.

22

2

2R2

1 2

(100 k )(10 M )99 k

10.1M

99 k0.498

100 k 99 k

METERMETER

METER

METERS S

METER

R RR R

R R

R RV V V

R R RV

Section 7-5 Ladder Networks 41. The circuit in Figure 7-76 in the text is redrawn here in Figure 7-8 to make the analysis

simpler. (a) RT = 560 524.5 = 271

(b) IT = 271

V 60 = 221 mA

(c) I2 = mA 2215.524

271

= 114 mA

59

Page 59: Dc Answers

Chapter 7

I910 = mA 114910

5.468

= 58.7 mA

(d) The voltage across the 437.5 parallel combination of the 560 and the two series

1 k resistors is determined as follows:

I4 = mA 1145.965

5.468

= 55 mA

V437.5 = I4(437.5 ) = (55 mA)(437.5 ) = 24.06 V

VAB = V 06.24k 2

k 1

= 12 V

Figure 7-8

42. The total resistance is determined in the steps shown in Figure 7-9. RT = 6.66 k

VA = V 18k 66.6

k 06.1

= 2.86 V

VB = V 86.2k 05.2

k 05.1

= 1.47 V

VC = V 47.1k 2

k 1

= 735 mV

60Figure 7-9

Page 60: Dc Answers

Chapter 7

61

43. The circuit is simplified in Figure 7-10 to determine RT. RT = 621 From Figure 7-10(e): IT = I9 = IT = 16.1 mA From Figure 7-10(c):

I2 = mA 16.1820

8.420

= 8.27 mA

From Figure 7-10(b):

I3 = I8 = mA 16.15.864

8.420

= 7.84 mA

From Figure 7-10(a):

I4 = mA 7.84820

5.424

= 4.06 mA

From the original circuit: I5 = I6 = I7 = I3 I4 = 7.84 mA 4.06 mA = 3.78 mA

Figure 7-10

44. The currents were found in Problem 43.

V5 = I5R5 = (3.78 mA)(100 ) = 0.378 V V1 = ITR1 = (16.1 mA)(100 ) = 1.61 V V2 = I2R2 = (8.27 mA)(820 ) = 6.78 V V6 = I6R6 = (3.78 mA)(680 ) = 2.57 V V3 = I3R3 = (7.84 mA)(220 ) = 1.73 V V7 = I7R7 = (3.78 mA)(100 ) = 0.378 V V4 = I4R4 = (4.06 mA)(820 ) = 3.33 V V8 = I8R8 = (7.84 mA)(220 ) = 1.73 V

V9 = I9R9 = (16.1 mA)(100 ) = 1.61 V

Page 61: Dc Answers

Chapter 7

45. The two parallel ladder networks are identical; so, the voltage to ground from each output terminal is the same; thus,

VOUT = 0 V. Working from the right end, RT and then IT are determined as follows: (12 + 12 ) 18 = 10.3 (22 + 10.3 ) 27 = 14.7 RT1 = 47 + 14.7 = 61.7

RT(both) = T1 61.7

2 2

R = 30.9

IT = 30.9

V 30 = 971 mA

46. (a) VOUT = 8

V 12

8

V = 1.5 V

(b) VOUT = 16

V 12

16

V = 0.75 V

47. (a) VOUT = 2

V 12

4

V 12

24

VV = 3 V + 6 V = 9 V

(b) VOUT = 16

V 12

4

V 12

164

VV = 3 V + 0.75 V = 3.75 V

(c) VOUT = 16

V 12

8

V 12

4

V 12

2

V 12

16842

VVVV

= 6 V + 3 V + 1.5 V + 0.75 V = 11.25 V

Section 7-6 The Wheatstone Bridge

48. Rx =

4

2

R

RRV = (18 k)(0.02) = 360

49. VLEFT = S

SG3 119.94 12 V

SG1 + SG3 120.06 119.94 V

= 5.997 V

VRIGHT = S

SG4 120.06 12 V

SG2 + SG4 119.94 120.06 V

= 6.003 V

VOUT = VRIGHT VLEFT = 6.003 V 5.997 V = 6 mV (Right side positive with respect to left side) 50. At 60 C, RTHERM = 5 k

VLEFT = 3S

1 3

27 k9 V

32 k

RV

R R

= 7.59 V

VRIGHT = 4S

2 4

27 k9 V

54 k

RV

R R

= 4.50 V

VOUT = VLEFT VRIGHT = 7.59 V 4.50 V = 3.09 V

62

Page 62: Dc Answers

Chapter 7

Section 7-7 Troubleshooting

51. Req =

k 7.4680

)k 4.7)(680( = 594

RT = 560 + 470 + 594 = 1624 The voltmeter reading should be

V? = V 121624

594

= 4.39 V

The voltmeter reading of 6.2 V is incorrect. 52. The circuit is redrawn in figure 7-11 and points are labeled.

RBG =

k 100k 47k 10

)k 100)(k 47k 10( = 36.3 k

RAG = 33 k + RBG = 33 k + 36.3 k = 69.3 k RT = 27 k + RAG = 27 k + 69.3 k = 96.3 k

VAG = T

69.3 k18 V 18 V

96.3 kAGR

R

= 12.95 V

VCG = V 6.79k 57

k 47

k 57

k 47

BGV = 5.60 V

VAC = VAG VCG = 12.95 V 5.60 V = 7.35 V Both meters are correct.

Figure 7-11

53. The 2.5 V reading indicated on one of the meters shows that the series-parallel branch

containing the other meter is open. The 0 V reading on the other meter shows that there is no current in that branch. Therefore, if only one resistor is open, it must be the 2.2 k.

63

Page 63: Dc Answers

Chapter 7

64

54. The circuit is redrawn in Figure 7-12.

VA = V 150k 16

k 6V 150

k 10k 12k 12

k 12k 12

= 56.25 V

The meter reading of 81.8 V is incorrect. The most likely fault is an open 12 k resistor. This will cause the voltage at point A to be

higher than it should be. To verify, calculate VA assuming an open 12 k resistor.

VA = V 150k 22

k 12

= 81.8 V

VB = V 150k 8.7

k 2.2

= 42.3 V

The meter is correct.

Figure 7-12

55. V3.3 k = V) 10(k 2.62

k 62.1

= 6.18 V

The 7.62 V reading is incorrect.

V2.2 = V) 18.6(k 3.2

k 2.2

= 4.25

The 5.24 V reading is incorrect. The 3.3 k resistor must be open. If it is, then

V3.3 k = V) 10(k 4.2

k 2.3

= 7.62 V

V2.2 k = V) 62.7(k 3.2

k 2.2

= 5.24 V

56. If R2 opens, VA = 15 V, VB = 0 V, and VC = 0 V

Multisim Troubleshooting and Analysis 57. RT = 296.744 58. R4 is open. 59. R3 = 560 k 60. No fault. 61. R5 is shorted. 62. RX = 550

Page 64: Dc Answers

Chapter 8 Circuit Theorems and Conversions Note: Solutions show conventional current direction.

Section 8-3 Source Conversions

1. IS = S

S

300 V

50

V

R

= 6 A

Figure 8-1

RS = 50 See Figure 8-1.

2. (a) IS = 100

kV 5 = 50 A

(b) IS = 2.2

V 12 = 5.45 A

Figure 8-2

3. RS = 1.6 V

8.0 A = 0.2

4. See Figure 8-2. 5. VS = ISRS = (600 mA)(1.2 k) = 720 V

Figure 8-3

RS = 1.2 k See Figure 8-3. 6. (a) VS = (10 mA)(4.7 k) = 47 V (b) VS = (0.01 A)(2.7 k) = 27 V

Section 8-4 The Superposition Theorem 7. First, zero the 3 V source by replacing it with a short as in Figure 8-4(a). RT = 1.955 k

IT = k 1.955

V 2 = 1.02 mA

I3 = mA 02.1k 89.3

k 2.2

= 577 A

65

Page 65: Dc Answers

Chapter 8

I5 = A 77.5k 2.3

k 1

= 180 A

Next, zero the 2 V source by replacing it with a short as in Figure 8-4(b). RT = 1.955 k

IT = k 1.955

V 3 = 1.53 mA

I5 = mA 53.1k 89.3

k 1.69

= 655 A

Since both components of I5 are in the same direction, the total I5 is I5(total) = 180 A + 665 A = 845 A

Figure 8-4

8. From Problem 7: RT = 1.955 k and IT = 1.02 mA Current in R2 due to the 2 V source acting alone. See Figure 8-5(a):

I2 = mA 1.02k 3.89

k 1.69

= 443 A (downward)

From Problem 7: RT = 1.955 k and IT = 1.53 mA Current in R2 due to the 3 V source acting alone. See Figure 8-5(b):

ILeft = mA 1.53k 3.89

k 2.2

= 865 A

I2 = A 865k 3.2

k 1

= 270 A (downward)

The total current through R2 is I2 = 443 A + 270 A = 713 A

Figure 8-5

66

Page 66: Dc Answers

Chapter 8

9. From Problem 7: From the 2 V source: I4 = I3 – I5 = 577 A – 180 A = 397 A downward through R4 From the 3 V source: I4 = IT = 1.53 mA upward through R4

I4(TOT) = 1.53 mA – 397 A = 1.13 mA upward 10. First, zero the voltage source by replacing it with a short as shown in Figure 8-6(a):

I1 = 680

100 mA852.6

= 79.8 mA

I3 = 220

79.8 mA1020

= 17.2 mA

I2 = I1 –I3 = 79.9 mA – 17.2 mA = 62.7 mA downward Next, zero the current source by replacing it with an open as shown in Figure 8-6(b): RT = 587.6

I2 = IT = 20 V

587.6 = 34.0 mA downward

I2(TOT) = 62.7 mA + 34.0 mA = 96.7 mA 11. First, zero the voltage source by replacing it with a short as shown in Figure 8-6(a):

I1 = mA 1006.852

680

= 79.8 mA

I3 = mA 79.81020

220

= 17.2 mA

Next, zero the current source by replacing it with an open as shown in Figure 8-6(b): RT = 587.6

IT = 587.6

V 20 = 34.0 mA

I3 = mA 0.341480

680

= 15.6 mA

The total I3 is the difference of the two component currents found in the above steps because they are in opposite directions.

I3(total) = 17.2 mA 15.6 mA = 1.6 mA

67

Page 67: Dc Answers

Chapter 8

Figure 8-6

12. (a) Current through RL due to the 1 A source. See Figure 8-7(a):

IL = A 1k 6.1

k 2.2

= 361 mA (down)

Current through RL due to the 2 A source is zero because of infinite resistance (open) of the 1 A source. See Figure 8-7(b):

IL = 0 A Total current through RL: IL(total) = 361 mA + 0 A = 361 mA

Figure 8-7

(b) Current through RL due to the 40 V source is zero because of zero resistance (short) of

the 60 V source. See Figure 8-8(a): IL = 0 A

Current through RL due to the 0.5 A source is zero because of zero resistance of the 60 V source. See Figure 8-8(b):

IL = 0 A Current through RL due to the 60 V source. See Figure 8-8(c):

VL = V 60k 06.2

k 1.5

= 43.7 V

IL =

k 1.5

V 7.43

L

L

R

V = 29.1 mA

Total current through RL: IL = 0 A + 0 A + 29.1 mA = 29.1 mA

68

Page 68: Dc Answers

Chapter 8

Figure 8-8

13. 2 3Ref(max)

1 2 3

7.8 k30 V 15 V 30 V 15 V

12.5 k

R RV

R R R

= 3.72 V

3Ref(min)

1 2 3

6.8 k30 V 15 V 30 V 15 V

12.5 k

RV

R R R

= 1.32 V

14. 2 3Ref(max)

1 2 3

16.8 k30 V 15 V 30 V 15 V

21.5 k

R RV

R R R

= 8.44 V

3Ref(min)

1 2 3

6.8 k30 V 15 V 30 V 15 V

21.5 k

RV

R R R

= 5.51 V

15. 75 V source. See Figure 8-9(a): Req = R2 R3 (R4 + R5) = 17.2 k

VA = eq

eq 1

17.2 k75 V 75 V

99.2 k

R

R R

= 13 V

VB = V 13k 101

k 91

54

5

= 11.7 V

AV

RR

R

50 V source. See Figure 8-9(b): Req = R1 R2 (R4 + R5) = 25 k

VA = eq

eq 3

25 k50 V 50 V

58 k

R

R R

= 21.6 V

69

Page 69: Dc Answers

Chapter 8

VB = 5

4 5

91 k( 21.6 V)

101 kA

RV

R R

= 19.5 V

100 V source. See Figure 8-9(c): Req = R1 R2 R3 = 16.6 k RT = 10 k + 91 k + 16.6 k = 117.6 k

IT = k 117.6

V 100 = 850 A

VA = (850 A)(16.6 k) = 14.1 V VB = (850 A)(91 k) = 77.4 V Superimposing voltages at each point: VA = 13 V 21.6 V + 14.1 V = 5.5 V VB = 11.7 V 19.5 V 77.4 V = 85.2 V VAB = 5.5 V (85.2 V) = 90.7 V

Figure 8-9

70

Page 70: Dc Answers

Chapter 8

16. SW1 closed. See Figure 8-10(a):

IL =

k 23.6

V 12

k 18k 5.6

V 12 = 508 A

SW1 and SW2 closed. See Figure 8-10(b): Current from the 12 V source (6 V source zeroed) RT = R1 + R2 RL = 5.6 k + 8.2 k 18 k = 11.2 k

IT = k 11.2

V 12 = 1.07 mA

IL = mA 1.07k 2.26

k 8.2

= 335 A

Current from the 6 V source (12 V source zeroed): RT = R2 + R1 RL = 8.2 k + 5.6 k 18 k = 12.47 k

IT = k 12.47

V 6 = 481 A

IL = A 481k 6.23

k 5.6

= 114 A

IL(total) = 335 A + 114 A = 449 A SW1, SW2, and SW3 closed. See Figure 8-10(c). Current from the 12 V source (6 V and 9 V sources zeroed): RT = R1 + R2 R3 RL = 5.6 k + 8.2 k 12 k 18 k = 9.43 k

IT = k 9.43

V 12 = 1.27 mA

IL = 2 3T

3.83 k1.27 mA

18 kL

L

R R RI

R

= 270 A

Current from the 6 V source (9 V and 12 V sources zeroed): RT = R2 + R1 R3 RL = 8.2 k + 5.6 k 12 k 18 k = 11.35 k

IT = k 11.35

V 6 = 529 A

IL = 1 3T

3.15 k529 A

18 kL

L

R R RI

R

= 93 A

Current from the 9 V source (6 V and 12 V sources zeroed): RT = R3 + R1 R2 RL = 12 k + 5.6 k 8.2 k 18 k = 14.8 k

IT = k 14.85

V 9 = 608 A

IL = 1 2T

2.81 k608 A

18 kL

L

R R RI

R

= 95 A

IL(total) = 270 A + 93 A + 95 A = 458 A

71

Page 71: Dc Answers

Chapter 8

Figure 8-10

17. VS1 “sees” a total resistance of RT = 10 k + (5.6 k (10 k + (5.6 k ((10 k + 5.6 k)

+ (10 k (5.6 k + (10 k 5.6 k))))))) = 10 k + (5.6 k (10 k + (5.6 k (15.6 k + (10 k (5.6 k + 3.59 k)))))) = 10 k + (5.6 k (10 k + (5.6 k (15.6 k + (10 k 9.19 k))))) = 10 k + (5.6 k (10 k + (5.6 k (15.6 k + 4.79 k)))) = 10 k + (5.6 k (10 k + (5.6 k 20.4 k))) = 10 k + (5.6 k (10 k + 4.39 k)) = 10 k + (5.6 k (14.4 k) = 10 k + 4.03 k = 14.0 k

IT(S1) = k 14.0

V 32 = 2.28 mA

VS2 “sees” a total resistance of RT = 5.6 k + (10 k (5.6 k + (10 k ((10 k + 5.6 k)

+ (5.6 k (10 k + (5.6 k 10 k))))))) = 5.6 k + (10 k (5.6 k + (10 k (15.6 k + (5.6 k (10 k + 3.59 k)))))) = 5.6 k + (10 k (5.6 k + (10 k (15.6 k + (5.6 k 13.6 k))))) = 5.6 k + (10 k (5.6 k + (10 k (15.6 k + (3.97 k)))) = 5.6 k + (10 k (5.6 k + (10 k (19.6 k))) = 5.6 k + (10 k (5.6 k + 6.62 k)) = 5.6 k + (10 k 12.2 k) = 5.6 k + 550 k = 11.1 k

IT(S2) = k 11.1

V 15 = 1.35 mA

72

Page 72: Dc Answers

Chapter 8

Section 8-5 Thevenin’s Theorem 18. (a) RTH = 27 + 75 147 = 76.7 (b) RTH = 100 270 = 73

VTH = V 25222

75

= 8.45 V VTH = V 3370

100

= 811 mV

(c) RTH = 56 k 100 k = 35.9 k (b) RTH = 2.2 k (1 k + 2.2 k = 1.3 k

VTH = V) 10V (15k156

k56

= 1.79 V IAB = A 0.1k 4.5

k 2.2

= 40.7 mV

VTH = IAB(2.2 k) = (40.7 mA)(2.2 k) = 89.5 V

19. First, convert the circuit to its Thevenin equivalent as shown in the steps of Figure 8-11. RTH = 13.97 k

VA = V 32k 12.14

k 4.12

= 9.34 V

VTH = V 9.34k 6.15

k 5.6

k 6.15

k 5.6

AV = 3.35 V

IL = TH

TH

3.35 V

28.97 kL

V

R R

= 116 A

Figure 8-11

73

Page 73: Dc Answers

Chapter 8

20. First, zero (open) the current source, remove R4, and redraw the circuit as shown in Figure 8-12(a).

RTH = R3 (R1 + R2 R5) = 5.6 k (1 k + 1.65 k) = 5.6 k 2.65 k = 1.8 k

VTH = V 50k 8.25

k 2.65V 50

k 65.2k 6.5

k 65.2

= 16.1 V

Determine V4 due to the 50 V source using the Thevenin circuit in Figure 8-12(b).

V4 = 4TH

TH 4

10 k16.1 V

11.8 k

RV

R R

= 13.6 V

Next, zero (short) the voltage source, remove R4, and redraw the circuit as shown in Figure 8-12(c). RTH = R3 (R1 + R2 R5) = 5.6 k (1 k + 1.65 k) = 5.6 k 2.65 k = 1.8 k

I3 = mA 10k 25.8

k 2.65

= 3.2 mA

VTH = V3 = I3R3 = (3.2 mA)(5.6 k) = 17.9 V Determine V4 due to the current source using the Thevenin circuit in Figure 8-12(d).

V4 = 4TH

TH 4

10 k17.9 V

11.8 k

RV

R R

= 15.2 V

Use superposition to combine the V4 voltages to get the total voltage across R4: V4 = 13.6 V + 15.2 V = 28.8 V

Figure 8-12

74

Page 74: Dc Answers

Chapter 8

75

21. Looking back from the amplifier input: RTH = R1 R2 R3 = 100 2.2 k 1.2 k = 88.6 1 V source (Figure 8-13(a)):

VA = V 1876

776

= 886 mV

5 V source (Figure 8-13(b)):

VA = V 52292

3.92

= 200 mV

VTH = 886 mV + 200 mV = 1.09 V

Figure 8-13

22. Consider R6 (R7 + R8) to be the load. Thevenize to the left of point A as shown in

Figure 8-14(a). RTH = R5 + R4 (R3 + (R1 R2)) = 1 k 4.7 k (10 k + 6.8 k 9.1 k) = 1 k + 4.7 k 13.89 k = 4.51 k See Figure 8-14(b) to determine VTH: RT = (R3 + R4) R2 + R1 = (10 k + 4.7 k) 6.8 k + 9.1 k) = 4.65 k + 9.1 k = 13.8 k

IT = k 13.8

V 48 = 3.48 mA

I4 = 2T

2 3 4

6.8 k3.48 mA

21.5 k

RI

R R R

= 1.1 mA

V4 = I4R4 = (1.1 mA)(4.7 k) = 5.17 V VX = 48 V V4 = 48 V 5.17 V = 42.8 V VTH = VA = VX = 42.8 V

Page 75: Dc Answers

Chapter 8

The Thevenin circuit is shown in Figure 8-14(c). The current into point A is determined for each value of R8. When R8 = 1 k: RL = 12 k (8.2 k + 1 k) = 5.21 k

IA = TH

TH

42.8 V

9.72 kL

V

R R

= 4.41 mA

When R8 = 5 k:

RL = 12 k (8.2 k + 5 k) = 6.29 k

IA = TH

TH

42.8 V

10.8 kL

V

R R

= 3.97 mA

When R8 = 10 k: RL = 12 k (8.2 k + 10 k) = 7.23 k

IA = TH

TH

42.8 V

11.7 kL

V

R R

= 3.66 mA

Figure 8-14

76

Page 76: Dc Answers

Chapter 8

23. See Figure 8-15.

VTH = VA VB = V 12k 02.2

k 1.2V 12

k 2.3

k 2.2

= 8.25 V 7.13 V = 1.12 V

RTH = 1 k 2.2 k + 820 1.2 k = 688 + 487 = 1175

IL = TH

TH

1.12 V

11,175 L

V

R R

= 100 A

Figure 8-15

24. See Figure 8-16. VR3 = (0.2 mA)(15 k) = 3 V

R4 = S 3

4

10 V 3 V

0.2 mARV V

I

= 35 k

VA = 2S

1 2

12 k10 V

22 k

RV

R R

= 5.46 V

VB = 4S

3 4

35 k10 V

50 k

RV

R R

= 7V VTH = VBA = VB VA = 7 V 5.46 V = 1.54 V RTH = R1 R2 + R3 R4 = 5.46 k + 10.5 k = 15.96 k

Figure 8-16

77

Page 77: Dc Answers

Chapter 8

Section 8-6 Norton’s Theorem 25. (a) See Figure 8-17(a). (b) See Figure 8-17(b). RN = 76.7 RN = 73

RT = 166.9 IN = 270

V 3 = 11.1 mA

IT = 166.9

V 25 = 150 mA

IN = T

75 75150 mA

102 102I

= 110 mA

(c) See Figure 8-17(c). (d) See Figure 8-17(d).

RN =

k 156

)k 100)(k 56( = 35.9 k RN =

k4.5

)k 2.2)(k 2.3( = 1.3 k

IN = k 100

V 5 = 50 A IN = A 0.1

k 2.3

k 2.2

= 68.8 mA

Figure 8-17

78

Page 78: Dc Answers

Chapter 8

26. First, RN is found by circuit simplification as shown in Figure 8-18(a). RN = 14.0 k The current IN through the shorted AB terminals is found as shown in Figure 8-18 (b). RT = 14.0 k as viewed from the source

IT = k 14.0

V 32 = 2.29 mA

I1 = mA 2.29k 2.19

k 6.5

= 668 A

IN = A 668k 6.15

k 6.5

= 240 A

Finally, the current through RL is determined by connecting RL to the Norton equivalent circuit

as shown in Figure 8-18(c).

IL = A 240k 0.29

k 0.14

= 116 A

Figure 8-18

79

Page 79: Dc Answers

Chapter 8

27. The 50 V source acting alone. Short AB to get IN. See Figure 8-19(a): RT = R3 + R1 R4 = 5.6 k + 1 k 10 k = 6.51 k

IT = k 6.51

V 50 = 7.68 mA

IN = mA 7.68k 11

k 10

41

4

TI

RR

R= 6.98 mA

See Figure 8-19(b): RN = R2 (R1 + R3 R4) = 3.3 k (1 k + 5.6 k 10 k) = 3.3 k 4.59 k = 1.92 k See Figure 8-19(c):

IR5 = NN

N 5

1.92 k6.98 mA

5.22 k

RI

R R

= 2.57 mA (from B to A)

The 10 mA source acting alone. Short AB to get IN. See Figure 8-19(d):

IN = mA 10k 59.4

k 3.59mA 10

k 10k 6.5k 1

k 10k 6.5mA 10

431

43

RRR

RR = 7.82 mA

RN = 1.92 k See Figure 8-19(e):

IR5 = mA 7.82k 22.5

k 1.9

= 2.85 mA (from B to A)

V5 = I5R5 = (5.42 mA)(3.3 k) = 17.9 V

Figure 8-19

80

Page 80: Dc Answers

Chapter 8

28. See Figure 8-20(a): RN = R2 (R3 + R4 (R5 + R6 (R7 + R8 ))) = 6.8 k (10 k + 4.7 k (1 k + 6.89 k)) = 6.8 k (10 k + 2.95 k) = 4.46 k See Figure 8-20(b): RT = R2 (R4 + R3 (R5 + R6 (R7 + R8))) = 6.8 k (4.7 k + 10 k (1 k + 6.89 k)) = 6.8 k (4.7 k + 4.41 k) = 3.89 k

IT = k 3.89

V 48 = 12.3 mA

I2 = T

9.11 k 9.11 k12.3 mA

6.8 k 9.11 k 6.8 k 9.11 kI

= 7.07 mA

I4 = mA 12.3k 9.15

k 6.8

= 5.27 mA

I3 = mA 5.27k 9.15

k 7.89

= 2.62 mA

IN = I2 + I3 = 7.07 mA + 2.62 mA = 9.69 mA See Figure 8-20(c):

I1 = mA 9.69k 6.13

k 4.46

= 3.18 mA

Figure 8-20

81

Page 81: Dc Answers

Chapter 8

29. Using the results of Problem 23:

Figure 8-21

IN = TH

TH

1.12 V

1175

V

R

= 953 A

RN = RTH = 1175 See Figure 8-21. 30. See Figure 8-22(a): RN = 10 k (15 k + 8.2 k 22 k) = 6.77 k See Figure 8-22(b): RT = 8.2 k 15 k + 22 k = 27.3 k

IT = k 27.3

V 12 = 440 A

IN1 = A 440k 3.23

k 2.8

= 156 A down

See Figure 8-22(c):

IN2 = mA 10k 97.20

k 15mA 10

k 8.2k 22k 15

k 15

= 7.15 mA down

See Figure 8-22(d): IN = IN1 + IN2 = 156 A + 7.15 mA = 7.31 mA

Figure 8-22

82

Page 82: Dc Answers

Chapter 8

31. RN = 220 100 330 = 56.9 Find IN1 due to the 3 V source, as shown in Figure 8-23(a).

IN1 = 330

V 3 = 9.1 mA (down)

Find IN2 due to the 8 V source, as shown in Figure 8-23(b).

IN2 =

100

V 8 = 80 mA (up)

Find IN3 due to the 5 V source, as shown in Figure 8-23(c).

IN1 = 220

V 5 = 22.7 mA (down)

The Norton equivalent is shown in Figure 8-23(d). IN(tot) = IN1 + IN2 + IN3 = 9.1 mA 80 mA + 22.7 mA = 48.2 mA

56.9

Figure 8-23

83

Page 83: Dc Answers

Chapter 8

Section 8-7 Maximum Power Transfer Theorem 32. (a) RL = RS = 12 (b) RL = RS = 8.2 k (c) RL = RS = 4.7 + 1 2 = 6.37 (d) RL = RS = 47 + 680 = 727 33. See Figure 8-24.

Figure 8-24

As seen by RL: RS = 8.2 + 2.94 = 11.1 For maximum power transfer: RL = RS = 11.1 34. Refer to Problem 33 and Figure 8-24. RL+ = RL + 0.1RL = 11.1 + 1.11 = 12.21 RTH = RS = 11.1 IL due to the 1.5 V source:

VTH = V 1.5 49.12

7.79V 1.5

16.4 15 4.7

16.4 15

= 936 mV

IL = TH

TH

936 mV

23.4L

V

R R

= 40 mA

IL due to the 1 mA source:

I15 = mA 1 65.18

3.65mA 1

16.4 7.4 15

16.4 7.4

= 196 A

VTH = I15(15 ) = (196 A)(15 ) = 2.94 mV

IL = TH

TH

2.94 mV

23.4 L

V

R R

= 126 mA

IL(total) = 40 mA + 126 A = 40.126 mA

PL = = (40.126 mA)212.21 = 19.7 mW LLRI 2

84

Page 84: Dc Answers

Chapter 8

35. For maximum power transfer, RTH = RLADDER The voltage across RTH = 24 V (one half of VTH)

RTH = A 0.5

V 24 = 48

RLADDER = 48 RLADDER = ((R4 (R5 + R6) + R3) R2) + R1

10

69

6947

471069

69

4

4

4

4

R

RR

R

= 26

57

69

69

47

2610

69

69

4

4

4

4

R

R

R

R

53.21105747

26

47

261

69

69

4

4

R

R

69R4 = 69(48.17) + 48.17R4 R4(69 48.17) = 69(48.17)

R4 = 17.4869

)17.48(69

= 160

Section 8-8 Delta-Wye (Y) and Wye-Delta (Y-) Conversions

36. (a) R1 =

M 06.3

)M 1)(k 560(

CBA

CA

RRR

RR = 183 k

R2 =

M 06.3

)M 1)(M 5.1(

CBA

CB

RRR

RR = 490 k

R3 =

M 06.3

)M 5.1)(k 560(

CBA

BA

RRR

RR = 275 k

(b) R1 =

9.5

) 2.2)( 1(

CBA

CA

RRR

RR = 373 m

R2 =

9.5

) 7.2)( 2.2(

CBA

CB

RRR

RR = 1.01

R3 =

9.5

) 7.2)( 1(

CBA

BA

RRR

RR = 4.58 m

85

Page 85: Dc Answers

Chapter 8

37. (a) RA =22

876

22

)18)(22()18)(12()22)(12(

2

323121

R

RRRRRR= 39.8

RB = 12

876

12

)18)(22()18)(12()22)(12(

1

323121

R

RRRRRR= 73

RC = 18

876

18

)18)(22()18)(12()22)(12(

3

323121

R

RRRRRR= 48.7

(b) RA =

k3.3

)k7.4)(k3.3()k7.4)(k8.6()k3.3)(k8.6(

2

323121

R

RRRRRR= 21.2 k

RB =

k8.6

)k7.4)(k3.3()k7.4)(k8.6()k3.3)(k8.6(

1

323121

R

RRRRRR= 10.3 k

RC =

k7.4

)k7.4)(k3.3()k7.4)(k8.6()k3.3)(k8.6(

3

323121

R

RRRRRR= 14.9 k

38. Convert the delta formed by R3, R4, and R5 to a Wye configuration. See Figure 8-25:

RY1 =

k 1.43

)k 12)(k 22(

543

43

RRR

RR = 6.13 k

RY2 =

k 1.43

)k 1.9)(k 22(

543

53

RRR

RR = 4.65 k

RY3 =

k 1.43

)k 1.9)(k 12(

543

54

RRR

RR = 2.53 k

RT = (R1 + RY1) (R2 + RY2) + RY3 = (10 k + 6.13 k) (39 k + 4.65 k) + 2.53 k = 11.78 k + 2.53 k = 14.3 k

IT = T

136 V 136 V

14.3 kR

= 9.5 mA

IR1 = IRY1 = mA 5.9k 78.59

k 65.43

2211

22

T

YY

Y IRRRR

RR= 6.94 mA

IR2 = IRY2 = IT IR1 = 9.5 mA 6.94 mA = 2.56 mA VB = VA IR1R1 = 136 V (6.94 mA)(10 k) = 66.6 V VC = VA IR2R2 = 136 V (2.56 mA)(39 k) = 36.16 V In the original circuit:

Figure 8-25

IR4 =

k 12

V 6.66

4R

VB = 5.55 mA

IR5 =

k 9.1

V 16.36

5R

VC = 3.97 mA

IR3 =

k 22

V 36.16V 6.66

3R

VV CB = 1.38 mA

86

Page 86: Dc Answers

Chapter 8

87

Multisim Troubleshooting and Analysis 39. R1 is leaky.

0. VTH = 17.478 V; RTH = 247.279

1. IN = 0.383 mA; RN = 9.674 k

2. R3 is shorted.

3. IAB = 1.206 mA; VAB = 3.432 V

4 4 4 4

Page 87: Dc Answers

Chapter 9 Branch, Loop, and Node Analysis Note: Solutions show conventional current direction.

Section 9-1 Simultaneous Equations in Circuit Analysis 1. 100I1 + 50I2 = 30 75I1 + 90I2 = 15

I1 = 100

5030 2I

100

503075 2I

+ 90I2 = 15

22.5 37.5I2 + 90I2 = 15 52.5I2 = 7.5 I2 = 143 mA 100I1 + 50(0.143) = 30 I1 = 371 mA

2. (a) 32

64 = 12 12 = 0 (b)

50

19 = 45 0 = 45

(c) 12

1512

= 12 (30) = 18 (d)

2030

50100

= 2000 1500 = 3500

3. (a) I1 = 143

1212

37

21

36

24

= 0 A (b) I2 = 143

286

37

21

67

41

= 2 A

4. (a)

10

4

0

2

5

1

0102

145

201

= (1)(4)(0) + (0)(1)(2) + (2)(5)(10) [(2)(4)(2) + (10)(1)(1) + (0)(5)(0)]

= (0 + 0 100) (16 + 10 + 0) = 100 + 6 = 94

(b)

3.0

2.1

1

1.0

1.0

5.0

53.01.0

5.12.11.0

8.015.0

= (0.5)(1.2)(5) + (1)(1.5)(0.1) + (0.8)(0.1)(0.3) [(0.8)(1.2)(0.1) + (0.3)(1.5)(0.5) + (5)(0.1)(1)]

= (3 0.15 + 0.024) (0.096 0.255 + 0.5) = 2.874 0.371 = 2.50

88

Page 88: Dc Answers

Chapter 9

5. (a) 25 0 20 25 0

10 12 5 10 12

8 30 16 8 30

= 25(12)(16) + (0)(5)(8) + (20)(10)(30) [(8)(12)(20) + (30)(5)(25) + (16)(10)(0)] = 10800 5670 = 16,470

(b) 1.08 1.75 0.55 1.08 1.75

0 2.12 0.98 0 2.1

1 3.49 1.05 1 3.49

2

= (1.08)(2.12)(1.05) + (1.75)(0.98)(1) + (0.55)(0)(3.49) [(1)(2.12)(0.55) + (3.49)(0.98)(1.08) + (1.05)(0)(1.75)] = 4.119 + 2.528 = 1.591

6. The characteristic determinant was evaluated as 2.35 in Example 9-4. The determinant for I3 is

as follows:

2.0

0

5.0

3

75.0

2

12.03

5.1075.0

05.02

= (0 + 2.25 + 0) (0 + 0.6 0.375) = 2.25 0.225 = 2.025

I3 = 35.2

025.2 = 862 mA

7. The characteristic determinant is:

2 6 10 2

3 7 8 3 7

10 5 12 10 5

6

= (2)(7)(12) + (6)(8)(10) + (10)(3)(5) [(10)(7)(10) + (5)(8)(2) + (12)(3)(6)] = 462 836 = 374

I1 =

9 6 10 9

3 7 8 3 7

0 5 12 0 5

374

6

= (9)(7)( 12) ( 6)( 8)(0) (10)(3)(5) [(0)(7)(10) (5)( 8)(9) ( 12)(3)( 6)]

374

= 606 144 462

374 374

= 1.24 A

89

Page 89: Dc Answers

Chapter 9

I2 =

2 9 10 2 9

3 3 8 3 3

10 0 12 10 0

374

= (2)(3)( 12) (9)( 8)(10) (10)(3)(0) [(10)(3)(10) (0)( 8)(2) ( 12)(3)(9)]

374

= 792 24 768

374 374

= 2.05 A

I3 =

2 6 9 2

3 7 3 3 7

10 5 0 10 5

374

6

= (2)(7)(0) ( 6)(3)(10) (9)(3)(5) [(10)(7)(9) (5)(3)(2) (0)(3)( 6)]

374

= 45 660 705

374 374

= 1.89 A

8. The calculator results are: V1 = 1.61301369863 V2 = 1.69092465753 V3 = 2.52397260274 V4 = 4.69691780822

9. X1 = .371428571429 (I1 = 371 mA) X2 = .142857142857 (I2 = 143 mA) 10. X1 = 1.23529411765 (I1 = 1.24 A) X2 = 2.05347593583 (I2 = 2.05 A) X3 = 1.88502673797 (I3 = 1.89 A)

Section 9-2 Branch Current Method

11. The sum of the currents at the node is zero. Currents into the node are assumed positive and currents out of the node are assumed negative.

I1 I2 I3 = 0 12. I1 I2 I3 = 0 8.2I1 + 10I2 =12 10I2 + 5.6I3 = 6 Solving by substitution: I1 = I2 + I3 8.2(I2 + I3) + 10I2 = 12 8.2I2 + 8.2I3 = 10I2 = 12

90

Page 90: Dc Answers

Chapter 9

18.2I2 + 8.2I3 = 12

I2 = 2.18

2.812 3I

2.18

2.81210 3I

+ 5.6I3 = 6

2.18

82120 3I + 5.6I3 = 6

10.11I3 = 0.59 I3 = 58.4 mA 10I2 + 5.6(0.058) = 6 10I2 + 0.325 = 6 I2 = 633 mA I1 = I2 + I3 = 633 mA + 58.4 mA = 691 mA 13. The branch currents were found in Problem 12. I1 = 691 mA I2 = 633 mA I3 = 58.4 mA V1 = I1R1 = (691 mA)(8.2 ) = 5.66 V (+ on left) V2 = I2R2 = (633 mA)(10 ) = 6.33 V (+ at top) V3 =I3R3 = (58.4 mA)(5.6 ) = 325 mV (+ on left) 14. I1 I2 = 100 mA

10047

12 AA VV

= 0.1

100(12 VA) 47VA = 470 1200 100VA 47VA = 470 147VA = 730 VA = 4.97

I1 =

47

V 7.03

47

V 4.97 V 12 = 150 mA

I2 = 100

V 4.97 = 49.7 mA

Figure 9-1

I3 = 100 mA (current source) 15. Current source zeroed (open). See Figure 9-1(a).

VAB = V2 = 2S

1 2

10012 V

147

RV

R R

= 8.16 V

Voltage source zeroed (shorted). See Figure 9-1(b). VAB = V3 = I3R3 = (100 mA)(68 ) = 6.8 V

I2 = 1S

1 2

47100 mA

147

RI

R R

= 31.97 mA

VAG = V2 = (31.97 mA)(100 ) = 3.197 V VAB = VAG VBG = 3.197 6.8 V = 9.997 V Superimposing: VAB = 8.16 V + (9.997 V) = 1.84 V

91

Page 91: Dc Answers

Chapter 9

Section 9-3 Loop Current Method 16. The characteristic determinant is:

0.045 0.130 0.066 0.045 0.130

0.177 0.042 0.109 0.177 0.042

0.078 0.196 0.290 0.078 0.196

= (0.045)(0.042)(0.290) + (0.130)(0.109)(0.078) + (0.066)(0.177)(0.196) [(0.078(0.042)(0.066) + (0.196)(0.109)(0.045) + (0.290)(0.177)(0.130)] = 0.00394 0.00785 = 0.00391 17. 1560I1 560I2 = 6 560I1 + 1380I2 = 2

I1 = 200,839,1

9400

600,313800,152,2

11208280

1380560

5601560

13802

5606

= 5.11 mA

I2 = 200,839,1

33603180

200,839,1

2560

61560

= 3.52 mA

18. Using the loop currents from Problem 17: I1 k = I1 = 5.11 mA I820 = I2 = 352 mA I560 = I1 I2 = 5.11 mA + 3.52 mA = 1.59 mA 19. Using the branch currents from Problem 18: V1 k = I1 k(1 k) = (5.11 mA)(1 k) = 5.11 V (+ on right) V560 = I560 (560 ) = (1.59 mA)(560 ) = 890 mV (+ on bottom) V820 = I820 (820 ) = (3.52 mA)(820 ) = 2.89 V (+ on right) 20. 57I1 10I2 = 1.5 10I1 + 41.7I2 4.7I3 = 3 4.7I2 + 19.7I3 = 1.5

92

Page 92: Dc Answers

Chapter 9

21. The equations were developed in Problem 20. The characteristic determinant is as follows with the k units omitted for simplicity:

57 10 0 57 10

10 41.7 4.7 10 41.7

0 4.7 19.7 0 4.7

= (57)(41.7)(19.7) + (10)(4.7)(0) + (0)(10)(4.7) [(0)(41.7)(0) + (4.7)(4.7)(57) + (19.7)(10)(10)] = 46,824.93 3,229.13 = 43,595.8

43,595.8I1 =

1.5 10 0 1.5 10

3 41.7 4.7 3 41.7

1.5 4.7 19.7 1.5 4.7

= (1.5)(41.7)(19.7) + (10)(4.7)(1.5) + (0)(3)(4.7) [(1.5)(41.7)(0) + (4.7)(4.7)(1.5) + (19.7)(3)(10)]

I1 = 1302.735 624.135 678.6

43,595.8 43,595.8

= 15.6 mA

43,595.8I2 =

57 1.5 0 57 1.5

10 3 4.7 10 3

0 1.5 19.7 0 1.5

= (57)(3)(19.7) + (1.5)(4.7)(0) + (0)(10)(1.5) [(0)(3)(0) + (1.5)(4.7)(57) + (19.7)(10)(1.5)]

I2 = 3368.7 697.35 2671.35

43,595.8 43,595.8

= 61.3 mA

Substituting into the third equation to get I3: 19.7I3 = 1.5 + 4.7I2

I3 = 1.5 4.7( 0.0613 A)

19.7

= 61.5 mA

93

Page 93: Dc Answers

Chapter 9

22. Use the loop currents from Problem 21: I47 = I1 = 15.6 mA I27 = I2 = 61.3 mA I15 = I3 = 61.5 mA I10 = I1 I2 = 15.6 mA (61.3 mA) = 76.9 mA I4.7 = I2 I3 = 61.3 mA 61.5 mA = 123 mA 23. See Figure 9-2. The loop equations are: (10 + 4.7 + 2.2)I1 (4.7 + 2.2)I2 = 8 V (2.2 + 4.7 + 8.2 + 3.9)I2 (2.2 + 4.7)I1 = 0 V 16.9I1 6.9I2 = 8 6.9I1 + 19I2 = 0

I1 = 49.273

152

61.471.321

152

)9.6)(9.6()19)(9.16(

)19)(8(

199.6

9.69.16

190

9.68

= 555 mA

I2 = 49.273

2.55

61.471.321

2.55

)9.6)(9.6()19)(9.16(

)9.6)(8(

199.6

9.69.16

09.6

89.16

= 202 mA

VA = (I1 I2)2.2 = (555 mA 202 mA) 2.2 = (353 mA)2.2 = 776.6 mV VB = I2(3.9 ) = (202 mA)(3.9 ) = 787.8 mV VAB = VA VB = 776.6 mV 787.8 mV = 11.2 mV

Figure 9-2

94

Page 94: Dc Answers

Chapter 9

24. See Figure 9-3.

Figure 9-3

The loop equations are: (10 + 4.7 + 2.2)I1 4.7I2 2.2I3 = 8 V (4.7 + 8.2 + 10)I2 4.7I1 10I3 = 0 (2.2 + 10 + 3.9)I3 2.2I1 10I2 = 0 16.9I1 4.7I2 2.2I3 = 8 V 4.7I1 + 22.9I2 10I3 = 0 2.2I1 10I2 + 16.1I3 = 0 The characteristic determinant is:

16.9 4.7 2.2 16.9 4.7

4.7 22.9 10 4.7 22.9

2.2 10 16.1 2.2 10

= (16.9)(22.9)(16.1) + (4.7)(10)(2.2) + (2.2)(4.7)(10) [(2.2)(22.9)(2.2) + (10)(10)(16.9) + (16.1)(4.7)(4.7)] = 6024.061 2156.485 = 3867.576

3867.576I2 =

16.9 8 2.2 16.9 8

4.7 0 10 4.7 0

2.2 0 16.1 2.2 0

= (16.9)(0)(16.1) + (8)(10)(2.2) + (2.2)(4.7)(0) [(2.2)(0)(2.2) + (0)(10)(16.9) + (16.1)(4.7)(8)]

I2 = 176 605.36 781.36

3867.576 3867.576

= 202 mA

3867.576I2 =

16.9 4.7 8 16.9 4.7

4.7 22.9 0 4.7 22.9

2.2 10 0 2.2 10

= (16.9)(22.9)(0) + (4.7)(0)(2.2) + (8)(4.7)(10) [(2.2)(22.9)(8) + (10)(0)(16.9) + (0)(4.7)(4.7)]

I3 = 376 403.04 779.04

3867.576 3867.576

= 201 mA

IBA = I2 I3 = 202 mA 201 mA = 1 mA

95

Page 95: Dc Answers

Chapter 9

25. See Figure 9-4.

Figure 9-4

(R1 + R2 + R3)IA R2IB R3IC = 0 R2IA + (R2 + R4)IB R4IC = VS R3IA R4IB + (R3 + R4 + RL)IC = 0 5.48IA 3.3IB 1.5IC = 0 3.3IA + 4.12IB 0.82IC = 15 1.5IA 0.82IB + 4.52IC = 0 Coefficients are in k. 26. Using a calculator to solve for the loop currents: IA = 7.63 mA, IB = 10.6 mA, IC = 4.46 mA IRL = IC = 4.46 mA 27. IR3 = IA – IC = 7.63 mA – 4.46 mA = 3.17 mA VR3 = IR3R3 = (3.17 mA)(1.5 k) = 4.76 V

Section 9-4 Node Voltage Method 28. See Figure 9-5. The current equation at node A is: I1 I2 I3 = 0 Using Ohm’s law substitutions for the currents:

14768

40

82

30 AAA VVV

= 0

014760

40

688282

30 AAA VVV

Multiply each term in the last equation by (82)(68)(147) = 819,672 to eliminate the denominators. 9996(30) 9996VA 12,054VA + 12,054 5576VA = 0 782,040 27,626VA = 0

Figure 9-5

VAB = VA = 626,27

040,782 = 28.3 V

96

Page 96: Dc Answers

Chapter 9

29. Use VAB = 28.3 V from Problem 28.

I1 =

82

V 3.28V 30

82

V 30 ABV = 20.6 mA

I2 =

68

V 40 V 28.3

68

V 40ABV = 172 mA

I3 =

147

V 28.3

147ABV

= 193 mA

Figure 9-6

30. See Figure 9-6. I1 I2 I3 = 0 I3 + I4 I5 = 0

Substituting into the first equation and simplifying:

271047

5.1 BAAA VVVV

= 0

2727104747

5.1 BAAA VVVV = 0

47

5.1

279.126

479.12627

BAAA VVVV

47

5.1

279.126

9.200 BA VV

1.58VA 0.037VB = 0.0319 Substituting into the second equation and simplifying:

15

5.1

7.4

3

27

BBBA VVVV = 0

5

5.1

157.47.4

3

2727 BBBA VVVV

= 0

0.037VA 0.037VB 0.213VB 0.067VB + 0.738 0.037VA 0.317VA = 0.738

97

Page 97: Dc Answers

Chapter 9

31. See Figure 9-7. Node A: I1 I2 I3 = 0

Figure 9-7

Node B: I3 I4 I5 = 0

I1 = 1

V 9

R

V A

I2 = 2R

VA

I3 = 3R

VV BA

I4 = 4

V 4.5

R

VB

I5 = 5

V 1.5

R

VB

Node A: 912756

9 BAAA VVVV

= 0

9191275656

9 BAAA VVVV = 0

056

9

91592,137

151250962457

BAAA VVVV

56

9

91

1

592,137

9065

BA VV = 0

0.0659VA + 0.0109VB = 0.1607

Node B: 82

15

33

5.4

91

BBBA VVVV = 0

082

15

8233

5.4

339191 BBBA VVVV

2706

)15)(33()5.4)(32(

246,246

300374622706

91

AAAA VVVV

= 0

2706

864

246,246

171,131

91 BA VV

= 0

0.0109VA 0.0535VB = 0.3193

The characteristic determinant is:

0535.00109.0

0109.00659.0

= 0.0035 0.0001 = 0.0034

0.0034VA = 0535.03193.0

0109.01607.0

= 0.0086 0.0035 = 0.0051

VA = 0034.0

0051.0 = 1.5 V

98

Page 98: Dc Answers

Chapter 9

0.0034VB = 3193.00109.0

1607.00659.0

= 0.0210 0.0018 = 0.0192

VB = 0034.0

0192.0 = 5.65 V

32. See Figure 9-8.

Figure 9-8

Node A: I1 I2 + I3 + I4 = 0 Node B: I2 + I5 I6 = 0 Node C: I3 + I7 + I8 = 0

I1 =

k 1

V 24 AV I5 =

k 1

V 24 BV

I2 = k 1

BA VV I6 =

k 1

V 18BV

I3 = k 1

AC VV I7 =

k 1

V 10 CV

I4 = k 1AV

I8 =

k 1

V 18 CV

The k and V units are omitted for simplicity and the denominators are all 1. Node A: (24 VA) (VA VB) + (VC VA) VA = 0 4VA + VB + VC = 24 Node B: (VA VB) + (24 VB) +(VB 18) = 0 VA 3VB = 42 Node C: (VC VA) + (10 VC) + (18 VC) = 0 VA 3VC = 28 The characteristic determinant is:

301

031

114

= (4)(3)(3) (1)(3)(1) (1)(1)(3) = 36 + 3 + 3 = 30

30VA =

3028

0342

1124

= (24)(3)(3) (28)(3)(1) (1)(42)(3) = 2166 84 126

= 426

VA = 30

426

= 14.2 V

99

Page 99: Dc Answers

Chapter 9

30VB =

3281

0421

1244

= (4)(42)(3) + (1)(28)(1) (1)(42)(1) (42)(1)(3)

= 504 28 + 42 72 = 562

VB = 30

562

= 18.7 V

30VC =

2801

4231

2414

= (4)(3)(28) + (1)(42)(1) (1)(3)(24) (1)(1)(28)

= 336 42 72 28 = 422

VC = 30

422

= 14.1 V

33. See Figure 9-9.

I7 = k 2

V 4.32 = 2.16 mA

VC = +4.32 V 20 V = 15.7 V

I6 =

k 20

V 10.43

k 20

V) 7.15( V 5.25= 522 A

I4 = k 16

V 5.25 = 328 A

I1 = I6 I4 = 522 A 328 A = 193 A VA = 5.25 V + (193 A)(8 k) = 5.25 V + 1.55 V = 3.70 V

I2 = k 10

V 3.70 = 370 A

I5 = I7 I4 I2 = 2.16 mA 328 A 370 A = 1.46 mA VB = (1.46 mA)(4 k) = 5.85 V

I3 =

k12

V 2.14

k 12

V) 5.85( V 70.3

k 12BA VV

= 179 A

I8 = I3 + I5 = 179 A + 1.46 mA = 1.64 mA

100 Figure 9-9

Page 100: Dc Answers

Chapter 9

101

Multisim Troubleshooting and Analysis 34. No fault. 35. No fault. 36. VA = 0.928 V; VB = 5.190 V 37. R4 is open. 38. V1 = 4.939 V; V2 = 2.878 V 39. Lower fuse is open. 40. R3 is open. 41. R4 is open.

Page 101: Dc Answers

Chapter 10 Magnetism and Electromagnetism Note: Solutions show conventional current direction.

Section 10-1 The Magnetic Field

1. Since B = A

, when A increases, B (flux density) decreases.

2. B = 2m 0.5

Wb1500

A

= 3000 Wb/m2 = 3000 T

3. B = A

There are 100 cm per meter:

2

2

cm 000,10

m 1

cm 100

m 1

Converting 150 cm 2 to m2:

A =

2

22

cm 000,10

m 1cm 150 = 0.015 m2

= BA = (2.5 103 T)(0.015 m2) = 37.5 Wb 4. 1 T = 104 gauss

B = 4

1 T(0.6 gauss)

10 gauss

= 60 T

5. B = 410 gauss

(100,000 T)1 T

= 1000 gauss

Section 10-2 Electromagnetism 6. The compass needle turns 180.

7. r = 0

0 = 4 107 Wb/At m

r = mWb/At104

mWb/At107507-

6

= 597

8. Reluctance = )m m)(0.08Wb/At10(150

m 28.0

A

127-

= 233,333 At/Wb

102

Page 102: Dc Answers

9. Fm = NI = (50 t)(3 A) = 150 At

Section 10-3 Electromagnetic Devices 10. The plunger is retracted when the solenoid is activated. 11. (a) The electromagnetic field causes the plunger to move when the solenoid is activated. (b) The spring force returns the plunger to its inactive position. 12. When SW1 is closed, there is current through the relay coil, moving the armature from contact

1 to contact 2. This action causes current through lamp 1 to stop and current to begin through lamp 2.

13. When there is current through the coil of a d’Arsonval meter movement, it creates a magnetic

field around the coil. This reinforces the permanent field on one side of the coil and weakens it on the other, causing the coil to move because of the differential field strength.

Section 10-4 Magnetic Hysteresis 14. Fm = 150 At

H = m 0.2

At 150

l

Fm = 750 At/m

15. The flux density can be changed without altering the core characteristics by changing the

current or changing the number of turns.

16. (a) H = (500 t)(0.25A)

0.3 mmF NI

l l = 417 At/m

(b) = Al

NI

reluctance

Fm

/

= ro = (250)(4 107) = 3142 107 Wb/At m A = (2 cm)(2 cm) = (0.02 m)(0.02 m) = 4 104 m2

=

6

7 4 2

(500 t)(0.25 A) 125 At

2.39 10 At/Wb0.3 m

3142 10 Wb/At m 4 10 m

= 5.23 Wb

(c) B = 4 2

5.23 Wb

4 10 mA

= 0.13 T

17. Material A has the most retentivity.

Section 10-5 Electromagnetic Induction

18. The induced voltage doubles when the rate of change of magnetic flux doubles.

19. The strength of the magnetic field, the length of the conductor exposed to the field, and the velocity of the conductor relative to the field.

103

Page 103: Dc Answers

Chapter 10

104

20. Vind =

dt

dN

= 50(3500 103 Wb/s = 175 V

21. Lenz’s law defines the polarity of the induced voltage. 22. The magnetic field is not changing, therefore, there is no induced voltage.

Section 10-6 The DC Generator 23. The commutator and brush assembly electrically connect the loop to the external circuit. 24. 60 rps 2 peaks/rev = 120 peaks/s 25. See Figure 10-1.

Figure 10-1

26. A L F 12 A + 1 A = 13 AI I I 27. (a) PL = IL VL = (12 A)(14 V) = 168 W (b) PF = IF VL = (1 A)(14 V) = 14 W

Section 10-7 The DC Motor 28. (a) P = 0.105Ts = (0.105)(3.0 N-m)(1200 rpm) = 378 W

(b) 378 W/746 W/hp = 0.51 hp

29. PT = Pint + PL = 12 W + 50 W = 62 W

PL = 50 W

Efficiency = PL/PT = 50 W/62 W = 81%

Page 104: Dc Answers

Chapter 11 Introduction to Alternating Current and Voltage

Section 11-1 The Sinusoidal Waveform

1. (a) f = s 1

11

T = 1 Hz (d) f =

ms1

11

T = 1 kHz

(b) f = ms 0.2

11

T = 5 Hz (e) f =

s 500

11

T = 2 kHz

(c) f = ms 50

11

T = 20 Hz (f) f =

s 10

11

T = 100 kHz

2. (a) T = Hz 1

11

f = 1 s (d) T =

kHz 1

11

f = 1 ms

(b) T = Hz 60

11

f = 16.7 ms (e) T =

kHz 200

11

f = 5 s

(c) T = Hz 500

11

f = 2 ms (f) T =

MHz 5

11

f = 200 ns

3. T = cycles 5

s10 = 2 s

4. T = kHz 50

11

f = 20 s

ms 0.02

ms 10 = 500 cycles

5. 1 1

0.1ms10 kHz

Tf

Time for 100 cycles = 100(0.1 ms) = 10 ms

Section 11-2 Sinusoidal Voltage and Current Values 6. (a) Vrms = 0.707Vp = 0.707(12 V) = 8.48 V

(b) Vpp = 2Vp = 2(12 V) = 24 V

(c) Vavg = 0 V over a full cycle. Vavg = 0.637(12 V) = 7.64 over a half cycle.

105

Page 105: Dc Answers

Chapter 11

7. (a) Ip = 1.414Irms = 1.414(5 mA) = 7.07 mA

(b) Iavg = 0 A over a full cycle

Iavg = 0.637Ip = 0.637(7.07 mA) = 4.5 mA over a half cycle

(c) Ipp = 2Ip = 2(7.07 mA) = 14.14 mA

8. Vp = 25 V

Vpp = 2Vp = 50 V

Vrms = 0.707Vp = 17.7 V

Vavg = 0.637Vp = 15.9 V

Section 11-3 Angular Measurement of a Sine Wave

9. (a) 6

30180

rad rad (d)

4

3

135180

rad rad

(b) 4

45180

rad rad (e)

9

10

200180

rad rad

(c) 90

39

78180

rad rad (f)

3

5

300180

rad rad

10. (a)

rad

3.57rad

8

= 22.5 (d)

rad

3.57rad

5

3 = 108

(b)

rad

3.57rad

3

= 60 (e)

rad

3.57rad

5

6 = 216

(c)

= 90 (f) rad

3.57rad

2

rad

57.3rad) 8.1( = 324

11. = 45 30 = 15 A leading B 12. With respect to 0: sine wave with a peak at 75 is shifted 15 to left. Sine wave with a peak

at 100 is shifted 10 to right. Phase difference = = 100 75 = 25 13. See Figure 11-1.

Figure 11-1

106

Page 106: Dc Answers

Chapter 11

10

Section 11-4 The Sine Wave Formula 14. Vp = 1.414(20 V) = 28.28 V (a) v = Vpsin = (28.28 V)sin15 = 7.32 V (b) v = Vpsin = (28.28 V)sin 33 = 15.4 V (c) v = Vpsin = (28.28 V)sin 50 = 21.7 V (d) v = Vpsin = (28.28 V)sin 110 = 26.6 V (e) v = Vpsin = (28.28 V)sin 70 = 26.6 V (f) v = Vpsin = (28.28 V)sin 145 = 16.2 V (g) v = Vpsin = (28.28 V)sin 250 = 26.6 V (h) v = Vpsin = (28.28 V)sin 325 = 16.2 V 15. (a) i = Ipsin = (100 mA)sin 35 = 57.4 mA (b) i = Ipsin = (100 mA)sin 95 = 99.6 mA (c) i = Ipsin = (100 mA)sin 190 = 17.4 mA (d) i = Ipsin = (100 mA)sin 215 = 57.4 mA (e) i = Ipsin = (100 mA)sin 275 = 99.6 mA (f) i = Ipsin = (100 mA)sin 360 = 0 mA 16. Vp = 1.414Vrms = 1.414(6.37 V) = 9 V (e) = 180

(a) 8

= 22.5 v = (9 V)sin 180 = 0 V

(f) 2

3 = 270

v = (9 V)sin 22.5 = 3.44 V

(b) 4

= 45 v = (9 V)sin 270 = 9 V

(g) 2 = 360 v = (9 V)sin 360 = 0 V v = (9 V)sin 45 = 6.36 V

(c) 2

= 90

v = (9 V)sin 90 = 9 V

(d) 4

3 = 135

v = (9 V)sin 135 = 6.36 V 17. vB = (15 V)sin (30 + 30) = 13.0 V vB = (15 V)sin (30 + 45) = 14.5 V vB = (15 V)sin (30 + 90) = 13.0 V vB = (15 V)sin (30 + 180) = 7.5 V vB = (15 V)sin (30 + 200) = 11.5 V vB = (15 V)sin (30 + 300) = 7.5 V 18. (a) vB = (15 V)sin ( 30) = (15 V)sin(30 30) = (15 V)sin(0) = 0 V (b) vB = (15 V)sin ( 30) = (15 V)sin(45 30) = (15 V)sin(15) = 3.88 V (c) vB = (15 V)sin ( 30) = (15 V)sin(90 30) = (15 V)sin(60) = 13.0 V (d) vB = (15 V)sin ( 30) = (15 V)sin(180 30) = (15 V)sin(150) = 7.5 V (e) vB = (15 V)sin ( 30) = (15 V)sin(200 30) = (15 V)sin(170) = 2.60 V (f) vB = (15 V)sin ( 30) = (15 V)sin(300 30) = (15 V)sin(270) = 15 V

7

Page 107: Dc Answers

Chapter 11

19. T = kHz 2.2

11

f = 4.55 s

At t = 0.12 ms = 120 s:

= 120 s

360455 s

= 94.9

Vp = 0.707

V 25 = 35.4 V

v = (35.4 V)sin 94.9 = 35.3 V At t = 0.2 ms = 200 s:

= 200 s

360455 s

= 158

v = (35.4 V)sin 158 = 13.3 V v = 35.4 V 13.3 V = 22.1 V

Section 11-5 Introduction to Phasors 20. See Figure 11-2.

Figure 11-2

21. See Figure 11-3.

Figure 11-3

22. = 2f

(a) f =

2

60

2

= 9.55 Hz

(b) f =

2

360

2

= 57.3 Hz

(c) f =

2

2

2

= 0.318 Hz

108

Page 108: Dc Answers

Chapter 11

(d) f =

2

1256

2

= 200 Hz

23. (a) v = Vpsin(t /4) = (1 V)sin[2(5 kHz)(30 s) /4]

= (1 V)sin(0.3 0.25) = (1 V)sin(0.05) = (1 V)(0.156) = 156 mV (b) v = Vpsin(t /4) = (1 V)sin[2(5 kHz)(75 s) /4]

= (1 V)sin(0.75 0.25) = (1 V)sin(0.5) = (1 V)(1) = 1 V (c) v = Vpsin(t /4) = (1 V)sin[2(5 kHz)(125 s) /4] = (1 V)sin(1.25 0.25) = (1 V)sin() = (1 V)(0) = 0 V

Section 11-6 Analysis of AC Circuits

24. (a) Irms =

k1

V 10707.0707.0

R

Vp = 7.07 mA

(b) Iavg = mA 102

= 6.37 mA

(c) Ip = k1

V10 = 10 mA

(d) Ipp = 2(10 mA) = 20 mA (e) i = Ip = 10 mA 25. V2(rms) = V4 V3 = 65 V 30 V = 35 V V2(p) = 1.414(35 V) = 49.5 V V2(AVG) = 0.637(49.5 V) = 31.5 V V1(rms) = Vs V4 = 120 V 65 V = 55 V V1(p) = 1.414(55 V) = 77.8 V V1(AVG) = 0.637(77.8 V) = 49.6 V

26. Ipp =

k1

V 16V 16

1R = 16 mA

Irms = 0.707

2

mA 16707.0

2ppI

= 5.66 mA

VR4 = IrmsR4 = (5.66 mA)(560 ) = 3.17 V rms Applying Kirchhoff’s voltage law: VR1 + VR2 + VR3 + VR4 = Vs 0.707(8 V) + 5 V + VR3 + 3.17 V = 0.707(30 V) VR3 = 21.21 V 5.66 V 5 V 3.17 V = 7.38 V 27. Vp = (1.414)(10.6 V) = 15 V Vmax = 24 V + Vp = 39 V Vmin = 24 V Vp = 9 V

109

Page 109: Dc Answers

Chapter 11

28. Vp = (1.414)(3 V) = 4.242 V VDC = Vp = 4.24 V 29. Vmin = VDC Vp = 5 V 6 V = 1 V 30. Vrms = 0.707Vp = 0.707(150 V) = 106.1 V

P = Pac + PDC =

100

V) 200(

100

V) 1.106( 2222

L

S

L

rms

R

V

R

V = 112.6 W + 400 W = 513 W

Section 11-7 The Alternator (AC Generator) 31. f = (number of pole pairs)(rps) = (1)(250 rps) = 250 Hz 32. f = (number of pole pairs)(rps)

rps = s/m 60

rpm 3600 = 60 rps

f = (2 pole pairs)(60 rps) = 120 Hz

33. rps = 2

Hz400

pairs pole

f = 200 rps

34. f = (number of pole pairs)rps

400 Hz 400 Hz#pole pairs 8

3000 rpm 50 rps60 s/m

f

rps

# poles = 2(# pole pairs) = 2 X 8 = 16 Section 11-8 The AC Motor 35. A one-phase motor requires a starting winding or other means to produce torque for starting the motor, whereas a three-phase motor is self-starting. 36. The field is set up by current in the stator windings. As the current reaches a peak in one winding, the other windings have less current and hence less effect on the field. The result is a rotating field.

Section 11-9 Nonsinusoidal Waveforms 37. The approximate values determined from the graph are: tr 3.5 ms 0.5 ms = 3.0 ms tf 16 ms 13 ms = 3.0 ms tW 14.5 ms 2.5 ms = 12.0 ms Amplitude = 5 V

110

Page 110: Dc Answers

Chapter 11

38. T = kHz 2

1 = 0.5 ms = 500 s

% duty cycle = %100s 500

s 1%100

T

tW = 0.2%

39. Vavg = baseline + (duty cycle)(amplitude)

duty cycle = s6

s1

T

tW = 0.167

Vavg = 5 V + (0.167)(5 V) = 5.84 V

40. (a) % duty cycle = %100s 4

s 1%100

T

tW = 25%

(b) % duty cycle = %100ms 30

ms 20%100

T

tW = 66.7%

41. (a) Vavg = baseline + (duty cycle)(amplitude)

Vavg = 1 V + (0.25)(2.5 V) = 0.375 V

(b) Vavg = baseline + (duty cycle)(amplitude) Vavg = 1 V + (0.67)(3 V) = 3.01 V

42. (a) f = s 4

11

T = 250 kHz

(b) f = ms 30

11

T = 33.3 Hz

43. (a) f = s 20

11

T = 50 kHz

(b) f = ms 100

11

T = 10 Hz

44. Average value = ms 7

ms) V)(1 6 V 5 V 4 V 3 V 2 V 1 V (0

period

curveunder area

= ms 7

msV21 = 3 V

45. f = s 40

11

T = 25 kHz (fundamental)

3rd harmonic = 75 kHz 5th harmonic = 125 kHz 7th harmonic = 175 kHz 9th harmonic = 225 kHz 11th harmonic = 275 kHz 13th harmonic = 325 kHz

111

Page 111: Dc Answers

Chapter 11

112

46. f = s 40

11

T= 25 kHz

Section 11-10 The Oscilloscope 47. Vp = (3 div)(0.2 V/div) = 600 mV T = (10 div)(50 ms/div) = 500 ms 48. Vp(in) = (1 div)(5 V/div) = 5 V Tin = (2 div)(0.1 ms/div) = 200 s

fin = s 200

1

= 5 kHz

Rtot = 560 + (470 (560 + 470 )) = 560 + 323 = 883

Vp(out) = V 5883

323

1030

470

883

323

560470

470)(

inpV = 835 mV

fout = fin = 5 kHz 49. Vp(out) = (3 div)(0.2 V/div) = 0.6 V Tout = (10 div)(50 ms/div) = 500 ms

fout = ms 500

1 = 2 Hz

Rtot = 1 k + 1 k 3.2 k = 1762

Vp(in) = V) V)(0.6 3.2(762

1762V) 2.3(

762

1762)(

outpV = 4.44 V

fout = fin = 2 Hz

Multisim Troubleshooting and Analysis 50. VR1 = 199.411 Vpp = 70.509 Vrms; VR2 = 111.685 Vpp = 39.487 Vrms 51. VR1 = 16.717 Vpp = 5.911 Vrms; VR2 = 36.766 Vpp = 13.005 Vrms; VR3 = 14.378 Vpp = 5.084 Vrms 52. R2 open. 53. No fault. 54. R1 is open. 55. VMIN = 2.000 Vp; VMAX = 22.000 Vp

56. VMIN = 4.000 Vp; VMAX = 16.000 Vp

Page 112: Dc Answers

Chapter 12 Capacitors

Section 12-1 The Basic Capacitor

1. (a) C = V 10

C 50

V

Q = 5 F

(b) Q = CV = (0.001 F)(1 kV) = 1 C

(c) V = F 200

mC 2

C

Q = 10 V

2. (a) (0.1 F)(106 pF/F) = 100,000 pF (b) (0.0025 F)(106 pF/F) = 2500 pF (c) (4.7 F)(106 pF/F) = 4,700,000 pF 3. (a) (1000 pF)(106 F/pF) = 0.001 F (b) (3500 pF)(106 F/pF) = 0.0035 F (c) (250 pF)(106 F/pF) = 0.00025 F 4. (a) (0.0000001 F)(106 F/F) = 0.1 F (b) (0.0022 F)(106 F/F) = 2200 F (c) (0.0000000015 F)(106 F/F) = 0.0015 F

5. W = 21 1(1 1000 F)(500 V)

2 2CV = 125 J

6. W = 2

2

1CV

C = 22 V) (100

mJ) 2(102

V

W = 2 F

7. (a) Air: = r0 = 1(8.85 1012 F/m) = 8.85 1012 F/m (b) Oil: = r0 = 4.0(8.85 1012 F/m) = 35.4 1012 F/m (c) Glass: = r0 = 7.5(8.85 1012 F/m) = 66.4 1012 F/m (d) Teflon: = r0 = 2.0(8.85 1012 F/m) = 17.7 1012 F/m

8. C = 12 3 12

5

(8.85 10 F/m) (1.44 10 )(5)(8.85 10 F/m)

6.35 10 mrA

d

= 0.001 F

9. C = d

A r )F/m1085.8( 12

= 2 1

4

(0.05 m )(1.0)(8.85 10 F/m)

4.5 10 m

2

= 983 pF

113

Page 113: Dc Answers

Chapter 12

10. C = 128.85 10rA

d

A = 5

12 12

(1)(8 10 )

8.85 10 (2.5)(8.85 10 )r

Cd

= 3.6 106 m2

l = A = 1.9 103 m (almost 1.2 miles on a side!) The capacitor is too large to be practical and will not fit in the Astrodome!

11. C = 12 12

5

8.85 10 (0.09)(2.5)(8.85 10 )

(8.0 10 )rA

d

= 24.9 nF = 0.0249 F

12. T = 50 C (200 ppm/C)50 C = 10,000 ppm

C = ppm) 1010(101

101 36

3

= 10 pF

C75 = 1000 pF 10 pF = 990 pF 13. T = 25 C (500 ppm/C)25 C = 12,500 ppm

(1 106 pF/F)(0.001 F) = 1000 pF

C = ppm) 105.12(101

1000 36

= +12.5 pF

Section 12-2 Types of Capacitors 14. The plate area is increased by increasing the number of layers of plate material and dielectric. 15. Ceramic has the highest dielectric constant (r = 1200).

Figure 12-1

16. See Figure 12-1. 17. Aluminum, tantalum; electrolytics are polarized, others are not. 18. (a) Encapsulation (b) Dielectric (ceramic disk) (c) Plate (metal disk) (d) Conductive leads 19. (a) 0.022 F (b) 0.047 F (c) 0.001 F (d) 220 pF

114

Page 114: Dc Answers

Chapter 12

Section 12-3 Series Capacitors

20. CT = 5

pF 1000= 200 pF

21. (a) CT =

F 2.2

1

F 1

11

= 0.688 F

(b) CT =

pF 390

1

pF 560

1

pF 100

11

= 69.7 pF

(c) CT =

F 22

1

F 47

1

F 4.7

1

F 10

11

= 2.64 F

22. (a) CT = 0.688 F

V1F = T 0.688 F10 V 10 V

1 F 1 F

C

= 6.88 V

V2.2F = T 0.688 F10 V 10 V

2.2 F 2.2 F

C

= 3.13 V

(b) CT = 69.7 pF

V100pF = T 69.7 pF100 V 100 V

100 pF 100 pF

C

= 69.7 V

V560pF = T 69.7 pF100 V 100 V

560 pF 560 pF

C

= 12.4 V

V390pF = T 69.7 pF100 V 100 V

390 pF 390 pF

C

= 17.9 V

(c) CT = 2.64 F

V10F = T 2.64 F30 V 30 V

10 F 10 F

C

= 7.92 V

V4.7F = T 2.64 F30 V 30 V

4.7 F 4.7 F

C

= 16.9 V

V47F = T 2.64 F30 V 30 V

47 F 47 F

C

= 1.69 V

V22F = T 2.64 F30 V 30 V

22 F 22 F

C

= 3.60 V

115

Page 115: Dc Answers

Chapter 12

23. Vx = TS

x

CV

C

CT = S

(1 F)(8 V)

12 Vx xC V

V

= 0.667 F

Cx = TS

0.667 F12 V

4 V

CV

V

= 2 F

24. QT = Q1 = Q2 = Q3 = Q4 = 10 C

V1 = F 4.7

C 10

1

1

C

Q = 2.13 V

V2 = F 1

C 10

2

2

C

Q = 10 V

V3 = F 2.2

C 10

3

3

C

Q = 4.55 V

V4 = F 10

C 10

4

4

C

Q = 1 V

Section 12-4 Parallel Capacitors 25. (a) CT = 47 pF + 10 pF + 1000 pF = 1057 pF (b) CT = 0.1 F + 0.01 F + 0.001 F + 0.01 F = 0.121 F 26. (a) Q = CV Q47pF = (47 pF)(10 V) = 470 1012 C = 470 pC Q10pF = (10 pF)(10 V) = 100 1012 C = 100 pC

Q1000pF = (1000 pF)(10 V) = 10,000 1012 C = 0.01 C (b) Q = CV Q0.1F = (0.1 F)(5 V) = 0.5 C

Q0.01F = (0.01 F)(5 V) = 0.05 C Q0.001F = (0.001 F)(5 V) = 0.005 C Q10000pF = (10000 pF)(5 V) = 0.05 C

27. (a) CT =

F .33F 2.2

1

F 10

1

F 10

11

= 2.62 F

(b) CT =

pF 470

1

F 0.001

11

pF 470

1

pF 1000

11

pF 100

1

pF 100

11

= 50 pF + 319.7 pF + 319.7 pF = 689 pF

116

Page 116: Dc Answers

Chapter 12

(c) CT = F1F1

F1

F 1

1

F 1

11

11

= 1.6 F

470 pF

Figure 12-2

28. (a) CT = 2.62 F

VAB = V 5F5

F62.2

= 2.62 V

(b) See Figure 12-2(a): For this part of the circuit:

CT =

Fp470

1

F001.0

11

= 319.7 pF

VAB = V 10F001.0

pF 319.7

= 3.20 V

(c) See Figure 12-2(b).

CAB = 1.5 F For this part of the circuit:

CT =

F 1.5

1

F 1

11

= 0.6 F

VAB = V 10F 1.5

F 0.6

= 4 V

29. (a) CT = C1,2 + C3,4 = 0.00872 F + 0.0256 F = 0.0343 F QT = CTVT = (0.0343 F)(12 V) = 0.411 C

(b) V1 = 2T

1 2

0.068 F12 V

0.01 F 0.068 F

CV

C C

= 10.47 V

V2 = 1T

1 2

0.01 F12 V

0.01 F 0.068 F

CV

C C

= 1.54 V

V3 = 4T

3 4

0.056 F12 V

0.047 F 0.056 F

CV

C C

= 6.52 V

V4 = 3T

3 4

0.047 F12 V

0.047 F 0.056 F

CV

C C

= 5.48 V

117

Page 117: Dc Answers

Chapter 12

Section 12-5 Capacitors in DC Circuits

30. (a) = RC = (100 )(1 F) = 100 s (b) = RC = (10 M)(47 pF) = 470 s (c) = RC = (4.7 k)(0.0047 F) = 22.0 s (d) = RC = (1.5 M)(0.01 F) = 15 ms

31. (a) 5 = 5RC = 5(56 )(47 F) = 13.2 ms (b) 5 = 5RC = 5(3300 )(0.015 F) = 247.5 s (c) 5 = 5RC = 5(22 k)(100 pF) = 11 s (d) 5 = 5RC = 5(5.6 M)(10 pF) = 280 s

32. = RC = (10 k)(0.001 F) = 10 s (a) vC = VF(1 et/RC) = 15 V(1 e10s/10s) = 15 V(1 e1) = 9.48 V (b) vC = VF(1 et/RC) = 15 V(1 e20s/10s) = 15 V(1 e2) = 13.0 V (c) vC = VF(1 et/RC) = 15 V(1 e30s/10s) = 15 V(1 e3) = 14.3 V (d) vC = VF(1 et/RC) = 15 V(1 e40s/10s) = 15 V(1 e4) = 14.7 V (e) vC = VF(1 et/RC) = 15 V(1 e50s/10s) = 15 V(1 e5) = 14.9 V 33. = RC = (1 k)(1.5 F) = 1.5 ms (a) vC = Vie

t/RC = (25 V)e1.5ms/1.5ms = (25 V)e1 = 9.20 V (b) vC = Vie

t/RC = (25 V)e4.5ms/1.5ms = (25 V)e3 = 1.24 V (c) vC = Vie

t/RC = (25 V)e6ms/1.5ms = (25 V)e4 = 0.458 V (d) vC = Vie

t/RC = (25 V)e7.5ms/1.5ms = (25 V)e5 = 0.168 V 34. (a) vC = VF(1 et/RC) = 15 V(1 e2s/10s) = 15 V(1 e0.2) = 2.72 V (b) vC = VF(1 et/RC) = 15 V(1 e5s/10s) = 15 V(1 e0.5) = 5.90 V (c) vC = VF(1 et/RC) = 15 V(1 e15s/10s) = 15 V(1 e1.5) = 11.7 V 35. (a) vC = Vie

t/RC = (25 V)e0.5ms/1.5ms = (25 V)e0.333 = 17.9 V (b) vC = Vie

t/RC = (25 V)e1ms/1.5ms = (25 V)e0.667 = 12.8 V (c) vC = Vie

t/RC = (25 V)e2ms/1.5ms = (25 V)e1.333 = 6.59 V 36. vC = VF(1 et/RC) = VF VFet/RC VFet/RC = VF vC

et/RC = F

CF

V

vV

ln et/RC =

F

CF

V

vVln

RC

t =

F

CF

V

vVln

t = RC

F

C

V

v1ln

t = (2.2 k)(0.01 F) ln

V 12

V 61 = 15.2 s

118

Page 118: Dc Answers

Chapter 12

37. t = RC

F

C

V

v1ln = (10 k)(0.001 F)

V 15

V 81ln = 7.62 s

38. t = RC

i

C

V

vln = (1 k)(1.5 F)

V 25

V 3ln = 3.18 ms

39. Looking from the capacitor, the Thevenin resistance is: RTH = R3 + R1 R2 R4 = 1 k + 1 k 2.2 k 1.5 k = 1.47 k = RTHC = (1.47 k)0.0022 F) = 3.00 s

40. t = RC

F

C

V

v1ln

R =

10

2.71pF)ln (1000

s10

1lnF

C

V

vC

t = 7.86 k

Figure 12-3

41. See Figure 12-3(a). 1 = (R1 + R2)C = (57 k)(1 F) = 57 ms 2 = (R2 + R3)C = (43 k)(1 F) = 43 ms vC = 20 V(1 e10 ms/57 ms) = 3.22 V See Figure 12-3(b). vC = (3.22 V)e5 ms/43 ms = 2.85 V

119

Page 119: Dc Answers

Chapter 12

Section 12-6 Capacitors in AC Circuits

42. (a) XC = )F kHz)(0.047 1(2

1

2

1

fC = 3.39 k

(b) CT = 10 F + 15 F = 25 F

XC = T

1 1

2 2 (1 Hz)(25 F)fC

= 6.37 k

(c) CT =

F 1

1

F 1

11

= 0.5 F

XC = T

1 1

2 2 (60 Hz)(0.5 F)fC

= 5.31 k

43. CT for each circuit was found in Problem 27.

(a) XC = T

1 1

2 2 (2 kHz)(2.62 F)fC

= 30.4

(b) XC = T

1 1

2 2 (2 kHz)(689 pF)fC

= 116 k

(c) XC = T

1 1

2 2 (2 kHz)(1.6 F)fC

= 49.7

44. (a) For XC = 100 :

f = )F )(0.047100(2

1

2

1

CXC

= 33.9 kHz

For XC = 1 k:

f = )F )(0.047k1(2

1

2

1

CXC

= 3.39 kHz

(b) For XC = 100 :

f = )F )(25100(2

1

2

1

CXC

= 63.7 Hz

For XC = 1 k:

f = )F )(25k1(2

1

2

1

CXC

= 6.37 Hz

(c) For XC = 100 :

f = )F )(0.5100(2

1

2

1

CXC

= 3.18 kHz

For XC = 1 k:

f = )F )(0.5k1(2

1

2

1

CXC

= 318 Hz

120

Page 120: Dc Answers

Chapter 12

45. XC = mA 100

V 20

rms

rms I

V = 200

46. Vrms = IrmsXC

XC = )F 7kHz)(0.004 10(2

1

= 3.39 k

Vrms = (1 mA)(3.39 k) = 3.39 V

47. XC = fC2

1 = 3.39 k

Ptrue = 0 W

Pr = =(1 mA)2(3.39 k) = 3.39 mVAR CXI 2rms

48. C5-6 = 0.006 F, C4-5-6 = 0.053 F, C3-4-5-6 = 0.012 F, C2-3-4-5-6 = 0.034 F CT = 0.008 F, XCT = 66.3 k

IC1 =

k 66.3

V 10

CT

s

X

V = 151 A

VC1 = V 10F 0.01

F 0.008

1

s

T VC

C= 8.00 V

VC2 = Vs VC1 = 10 V 8.00 V = 2.00 V XC2 = 24.1 k

IC2 =

k 24.1

V 2.00

2

2

C

C

X

V = 83.0 A

VC3 = V 2.00F 0.015

F 0.0122

3

6543

CV

C

C = 1.6 V

XC3 = 35.4 k

IC3 =

k 35.4

V 1.6

3

3

C

C

X

V = 45.2 A

VC4 = VC2 VC3 = 2.00 V 1.6 V = 400 mV XC4 = 11.3 k

IC4 =

k 11.3

mV 400

4

4

C

C

X

V = 35.4 A

VC5 = mV 400F 0.01

F 0.0064

5

65

CV

C

C= 240 mV

XC5 = 53.1 k

IC5 = IC6 =

k 53.1

mV 240

5

5

C

C

X

V = 4.52 A

VC6 = VC4 VC5 = 400 mV 240 mV = 160 mV

121

Page 121: Dc Answers

Chapter 12

49. VC2 = VC3 = (4 mA)XC3 = (4 mA)(750 ) = 3 V

f = )F0015.0)(750(2

1

2

1

33

CXC

= 141.5 kHz

XC2 = )F0022.0(kHz) 141.5(2

1

2

1

2

fC = 511.3

IC2 =

3.511

V 3

2

2

C

C

X

V = 5.87 mA

IC1 = ICT = IC2 + IC3 = 5.87 mA + 4 mA = 9.87 mA VC1 = 5 V 3 V = 2 V

XC1 = mA87.9

V 2

1

1 C

C

I

V = 203

C1 = )203(kHz) 141.5(2

1

2

1

1

CfX = 0.00541 F

50. CT(3,5,6)

F015.0

1

F01.0

1

F015.0

11

1111

653

CCC

= 0.0043 F

CT(2,3,5,6) = 0.022 F + 0.0043 F = 0.0263 F

CT =

F0263.0

1

F01.0

11

111

6,5,3,21

CC

= 0.00725 F

VC1 = T

1

0.00725 F10 V 10 V

0.01 F

C

C

= 7.25 V

VC2 = T

2

0.00725 F10 V 10 V

0.022 F

C

C

= 3.30 V

VC3 = T(3,5,6)2

3

0.0043 F3.30 V

0.015 FC

CV

C

= 945 mV

VC5 = T(3,5,6)2

5

0.0043 F3.30 V

0.01 FC

CV

C

= 1.42 V

VC6 = 945 mV

Section 12-7 Capacitor Applications 51. The ripple voltage is reduced when the capacitance is increased.

52. The reactance of the bypass capacitor should ideally be 0 in order to provide a short to ground for ac.

122

Page 122: Dc Answers

Chapter 12

123

Section 12-8 Switched-Capacitor Circuits

53. R = 10 s

2200 pF

T

C

= 4.55 k

54. T = 1 1

8 kHzf = 125 s

R = 125 s

100 pF

T

C

= 1.25 M

Multisim Troubleshooting and Analysis 55. VC = 3.103 V; VC2 = 6.828 V; VC3 = 2.069 V 56. VC1 = 48.837 V; VC2 = 51.163 V; VC3 = 51.163 V; VC4 = 51.163 V 57. IC(1kHz) = 1.383 mA; IC(500Hz) = 0.691 mA; IC(2kHz) = 2.768 mA 58. C4 is open. 59. C4 is shorted.

Page 123: Dc Answers

Chapter 13 Inductors

Section 13-1 The Basic Inductor 1. (a) 1 H 1000 mH/H = 1000 mH (b) 250 H 0.001 mH/H = 0.25 mH (c) 10 H 0.001 mH/H = 0.01 mH (d) 0.0005 H 1000 mH/H = 0.5 mH 2. (a) (300 mH)(103) = 300,000 H (b) (0.08 H)(106) = 80,000 H (c) (5 mH)(103) = 5000 H (d) (0.00045)(103) = 0.45 H

3. vind =

s

mA 10H5

dt

diL = 50 mV

4. v =

dt

diL

mH 25

mV 50

L

v

dt

di = 2000 A/s

5. vind =

s 1

mA 200mH 100

dt

diL = 20 mV

6. L = 2N A

l

N = )m1010)(102.1(

m) mH)(0.05 (30256

A

Ll

= 3536 turns

7. W = 2 21 1(4.7 mH)(20 mA)

2 2LI = 0.94 J

8. L = 2N A

l

; Inductor 2 has 4 times the inductance of inductor 1.

124

Page 124: Dc Answers

Chapter 13

9. L = 2N A

l

1 = r0 = 200 0 2 = r0 = 150 0

2

1

= 150 3

200 4

Therefore, coil 2 has 3/4 the inductance of coil 1.

L2 = 1

3

4L

10. A = r2 = (0.0035 m)2 = 38.5 106 m2

L = 2N A

l

=

2 6 6100 (4 10 H/m)(38.5 10 m )

0.035 m

2

= 138 H

Section 13-3 Series and Parallel Inductors 11. LT = 5 H + 10 H + 20 H + 40 H + 80 H = 155 H 12. Lx = 50 mH 10 mH 22 mH = 18 mH 13. LT = L1 + L2 + L3 = 50 mH + 500 H + 0.01 mH = 50.5 mH 14. Position 1: LT = 330 H + 680 H = 1010 H Position 2: LT = 680 H + 800 H = 1480 H Position 3: LT = 800 H Position 4: LT = 1.5 mH + 800 H = 2300 H

15. LT =

H15

1

H25

1

H50

1

H75

11

= 7.14 H

16. 8 mH = mH 12

)mH 21(

1

1

L

L

( 8 mH)L1 + (8 mH)(12 mH) = (12 mH)L1 (4 mH)L1 = 96 mH2

L1 = mH 4

mH 96 2

= 24 mH

125

Page 125: Dc Answers

Chapter 13

17. (a) LT = 1 H + H5 H10

H) H)(5 (10

= 4.33 H

(b) LT = 2

mH 100 = 50 mH

(c) LT = 1

1 1 1

100 H 200 H 400 H

= 57.1 H

18. (a) LT = mH100

mH) mH)(40 (60

mH 150

mH) mH)(50 (100 = 33.3 mH + 24 mH = 57.3 mH

(b) LT = mH18

mH) mH)(6 (12 = 4 mH

(c) LT = 4 mH + mH 6

mH) mH)(4 (2= 5.33 mH

Section 13-4 Inductors in DC Circuits

19. (a) =

100

H100

R

L = 1 s

(b) =

k7.4

mH10

R

L = 2.13 s

(c) =

M5.1

H3

R

L = 2 s

20. (a) 5 =

56

H5055

R

L = 4.46 s

(b) 5 =

3300

Hm1555

R

L = 22.7 s

(c) 5 =

k22

Hm10055

R

L = 22.7 s

21. =

k0.1

mH10

R

L = 10 s

(a) vL = (15 V)e10s/10s = (15 V)e1 = 5.52 V (b) vL = (15 V)e20s/10s = (15 V)e2 = 2.03 V (c) vL = (15 V)e30s/10s = (15 V)e3 = 747 mV (d) vL = (15 V)e40s/10s = (15 V)e4 = 275 mV (e) vL = (15 V)e50s/10s = (15 V)e5 = 101 mV

126

Page 126: Dc Answers

Chapter 13

22. IF = 15 V

1.0 k

V

R

= 15 mA

(a) iL = 15 mA(1 - e10s/10s ) = 15 mA(1 - e1 )= 9.48 mA (b) iL = 15 mA(1 - e20s/10s )= 15 mA(1 - e2 )= 13.0 mA (c) iL = 15 mA(1 - e30s/10s )= 15 mA(1 - e3 )= 14.3 mA (d) iL = 15 mA(1 - e40s/10s )= 15 mA(1 - e4 )= 14.7 mA (e) iL = 15 mA(1 - e50s/10s )= 15 mA(1 - e5 )= 14.9 mA

23. 75 mH

9.15 s8.2 kΩ

L

R

24. The time constant is 75 mH

8.2 k

L

R

= 9.15 s. For the increasing exponential, the final

current is IF = S 10 V

8.2 k

V

R

= 1.22 mA

(a) At 10 s, i = 1.22 mA(1 e10s/9.15s) = 0.81 mA (b) At 20 s, i = 1.22 mA(1 e20s/9.15s) = 1.08 mA (c) At 30 s, i = 1.22 mA(1 e30s/9.15s) = 1.17 mA 25. vL = (15 V)et/(L/R) = (15 V)e2s/10s = (15 V)e0.2 = 12.3 V vL = (15 V)et/(L/R) = (15 V)e5s/10s = (15 V)e0.5 = 9.10 V vL = (15 V)et/(L/R) = (15 V)e15s/10s = (15 V)e1.5 = 3.35 V 26. For the decreasing exponential, the initial current is 1.22 mA and the final current is 0. The

current is solved by subtracting 50 s from the given times to account for the time when the falling square wave occurs.

(a) At 65 s, i = 1.22 mA(e15s/9.15s) = 0.237 mA (b) At 75 s, i = 1.22 mA(e25s/9.15s) = 0.079 mA (c) At 85 s, i = 1.22 mA(e35s/9.15s) = 0.027 mA 27. VL = (15 V)et/10 s

et/10 s = V 15

V 5

t = (10 s)

15

5ln

t = 11.0 s 28. (a) The polarity is positive at the top of the inductor.

(b) IF = 24 V 24 V

8.2 kWR

= 1.22 mA

29. The time constant is found by first thevenizing the bridge. Figure 13-1 shows the Thevenin circuit.

127

Page 127: Dc Answers

Chapter 13

Figure 13-1

= 3.3 mH

4.57 k

L

R

= 0.722 s

30. (a) The current at 1.0 s is I = 0.569 mA(1 e1.0s/0.722s) = 0.426 mA (b) The current after 5 is 0.569 mA.

Figure 13-2

31. When the switch is open, the circuit appears as in Figure 13-2. RT = (R1 + R3) (R2 + R4) = 8 k 11.5 k = 4.72 k

= 3.3 mH

4.72 k

L

R

= 0.699 s

i = 0.569 mA(e1.0s/0.699s) = 136 A

Section 13-5 Inductors in AC Circuits 32. The total inductance for each circuit was found in Problem 17. (a) XL = 2fLT = 2(5 kHz)(4.33 H) = 136 k (b) XL = 2fLT = 2(5 kHz)(50 mH) = 1.57 k (c) XL = 2fLT = 2(5 kHz)(57.1 H) = 1.79 33. The total inductance for each circuit was found in Problem 18. (a) XL = 2fLT = 2(400 Hz)(57.3 mH) = 144 (b) XL = 2fLT = 2(400 Hz)(4 mH) = 10.1 (c) XL = 2fLT = 2(400 Hz)(5.33 mH) = 13.4

34. LT = L1 + H 60

H) H)(40 (20H50

32

32

LL

LL = 63.3 mH

XL(T) = 2fLT = 2(2.5 kHz)(63.3 H) = 995 m XL2 = 2fL2 = 2(2.5 kHz)(20 H) = 314 m XL3 = 2fL2 = 2(2.5 kHz)(40 H) = 628 m

IT = rms 10 V

995 mLT

V

X

= 10.1 A

IL2 = 3

T2 3

628 m10.1 A

314 m 628 mL

L L

XI

X X

= 6.73 A

IL3 = 2

T2 3

314 m10.1 A

314 m 628 mL

L L

XI

X X

= 3.37 A

35. (a) LT = 57.3 mH

mA 500

V 10

I

V XL = = 20

128

Page 128: Dc Answers

Chapter 13

129

fL XL = 2 T

f = T2 L

20

2 (57.3 mH)L

= 55.5 Hz

4 mH L

X

(b) LT =X = 20

f = T2 L

20

2 (4 mH)

= 796 Hz

5.33 mH L

LX

(c) LT =X = 20

)mH33.5(2

20 f =

2 TL

= 597 Hz

LT m

Pr = = (10.1 mA)2(995 m) = 101 VAR

7. 2(3 kXL3 = 2(3 kHz)(3 mH) = 56.5

.83 V

LX

36. X = 995

LTXI 2rms

3 XL1 = Hz)(5 mH) = 94.2 VL3 = IL3XL3 = (50 mA)(56.5 ) = 2 VL1 = 10 V 2.83 V = 7.17 V

I 1 = L1 7.17 VLV = 76.1 mA

1 94.2LX IL2 = I mA 50 mA

L1 IL3 = 76.1 = 26.1 mA

Multisim Troubleshooting and Analysis 38. VL1 = 1.158 V; VL2 = 3.579 V; VL3 = 5.263 V

V L5

L(5kHz) 0.032 mA

is o

.

39. VL1 = 12.953 V; VL2 = 11.047 V; L3 = 5.948 V.099 V; V = 5.099 V VL4 = 5

0. .855 mA; I =4 IL(10kHz) = 0.016 A; IL(20kHz) = 7

41. L3 pen. 42. L2 is shorted

Page 129: Dc Answers

Chapter 14 Transformers

Section 14-1 Mutual Inductance

1. LM = H)4)(H1(75.0 spLLk = 1.5 H

2. LM = 21LLk

k = )H2)(H8(

H1

21

LL

LM = 0.25

Section 14-2 The Basic Transformer

3. n = 250

1000

p

s

N

N = 4

n = 400

100

p

s

N

N = 0.25

4. Ns = 2Np = 2(25) = 50 turns 5. See Figure 14-1.

(a) Vs = pp

s VN

N

= 10(10 V) = 100 V rms (b) Vs = p

p

s VN

N

= 2(50 V) = 100 V rms

(c) Vs = pp

s VN

N

= 0.2(100 V) = 20 V rms

Figure 14-1

130

Page 130: Dc Answers

Chapter 14

Section 14-3 Step-Up and Step-Down Transformers

6. n = V 240

V 720

p

s

N

N = 3

7. Vs = pp

s VN

N

= 5(120 V) = 600 V

8. p

s

p

s

V

V

N

N

Vp = V 6010

1

s

s

p VN

N= 6 V

9. V 120

V 30

p

s

p

s

N

N

V

V = 0.25

10. Vs = (0.2)(1200 V) = 240 V

11. p

s

p

s

V

V

N

N

Vp =

1

10s

s

p VN

N6 V = 60 V

12. (a) VRL = V 12020

1

p

p

s VN

N = 6 V

(b) VRL = 0 V (transformers do not couple dc)

(c) VRL = pp

s VN

N

= 4(10 V) = 40 V

13. (a) VL = (0.1)Vs = (0.1)(100 V) = 10 V (b) Vp = 20VL = 20(12 V) = 240 V

Section 14-4 Loading the Secondary

14. s

p

p

s

N

N

I

I

Is = mA 1003

1

3

1

pp

s

p IIN

N= 33.3 mA

VL = 3(20 V) = 60 V

RL = mA 33.3

V 60

s

L

I

V = 1.8 k

131

Page 131: Dc Answers

Chapter 14

15. (a) p

s

N

N = 0.5

Rreflect =

300

5.0

122

Ls

p RN

N = 1200

Ip = 1200

V 30 = 25 mA

(b) Is = ps

p IN

N

= 2(25 mA) = 50 mA

(c) Vs = pp

s VN

N

= 0.5(30 V) = 15 V

(d) PL = VsIs = (15 V)(50 mA) = 750 mW

Section 14-5 Reflected Load

16. Rp =

680

5

122

Ls

p RN

N = 27.2

17. Rp = 300 , RL = 1 k

300

k 1

p

L

p

s

R

R

N

N = 1.83

Section 14-6 Impedance Matching

18. Rp = Ls

p RN

N2

L

p

s

p

R

R

N

N

2

44

16

L

p

s

p

R

R

N

N = 2

n = 2

1

p

s

N

N = 0.5

132

Page 132: Dc Answers

Chapter 14

19. Rp = Ls

p RN

N2

= 16

n2 =

16

42

p

L

p

s

R

R

N

N

n = 25.016

4

p

s

N

N = 0.5

Ip = 1616

V 25 = 781 mA

Is = mA 7815.0

11

pIn

= 1562 mA

Pspeaker = = (1562 mA)24 = 9.76 W Ls RI 2

20. Position 1: RL = 560 + 220 + 1 k = 1780

10

1780

p

L

p

s

R

R

N

N = 13.34

Ns = Ns1 + Ns2 + Ns3 = 13.34Np = 13.34(1000) = 13,340 turns (total secondary turns) Position 2: RL = 220 + 1 k = 1220

10

1220

p

L

p

s

R

R

N

N = 11.05

Ns2 + Ns3 = 11.05Np = 11.05(1000) = 11,050 turns Position 3: RL = 1 k

10

1000

p

L

p

s

R

R

N

N = 10 Thus, Ns2 = 11,050 10,000 = 1,050 turns

Ns3 = 10Np = 10(1000) = 10,000 turns Ns1 = 13,340 11,050 = 2,290 turns

Section 14-7 Transformer Ratings and Characteristics 21. PL = Pp Plost = 100 W 5.5 W = 94.5 W

22. % efficiency = %100 W100

W94.5%100

in

out

P

P= 94.5 %

23. Coefficient of coupling = 1 0.02 = 0.98

133

Page 133: Dc Answers

Chapter 14

24. (a) IL(max) = V 600

kVA1

s

a

V

P = 1.67 A

(b) RL(max) = A 1.67

V 600

(max)

L

s

I

V = 359

(c) XC = L

s

I

V = 359

Cmax = )359)(Hz 60(2

1

= 7.39 F

25. kVA = (2.5 kV)(10 A) = 25 kVA 26. (a) Vp = 2400 V

V 2400

V 120

p

s

p

s

V

V

N

N = 0.05

(b) Is = V 120

kVA 5

s

a

V

P = 41.7 A

(c) Ip = V 2400

kVa 5 = 2.08 A

Section 14-8 Tapped and Multiple-Winding Transformers

27. V1 = 50

120 V500

= 12.0 V

V2 = 100

120 V500

= 24.0 V

V3 = 100

120 V500

= 24.0 V

V4 = V2 + V3 = 48.0 V

28. V 12

V 241 p

s

p

s

V

V

N

N = 2

V 12

V 62 p

s

N

N = 0.5

V 12

V 33 p

s

N

N = 0.25

29. Vs = V 120500

200

p

p

s VN

N = 48 V

V 550

250

p

p

s VN

N = 25 V Vs =

134

Page 134: Dc Answers

Chapter 14

135

30. (a) See Figure 14-2.

100 T: Vs =

Figure 14-2

V 2402000

100

= (b)

12 V

200 T: Vs = V 2402000

200

= 24 V

500 T: Vs = V 2402000

500

= 60 V

1000 T: Vs = V 2402000

1000

= 120 V

31. (a) Ns = 400 T + 300 T = 700 turns

VRL = 700

60 V1200

sp

p

NV

N

= 35 V

IRL = 35 V

12RL

L

V

R

= 2.92 A

VC = 300

60 V1200

= 15 V

IC = 15 V

10C

C

V

X

= 1.5 A

(b) 2 2

700 300

1 1 1 1 1

(2.94)(12 ) (16)(10 )p p pL CL

R N NR X

N N

1 1

35.3 160

= = 28.3 mS + 6.25 mS = 29.0 mS

Rp = 1

29.0 mS = 34.5

Section 14-9 Troubleshooting 32. Open primary winding. Replace the transformer. 33. If the primary shorts, excessive current is drawn which potentially can burn out the source

and/or the transformer unless the primary is fused. 34. Some, but not all, of the secondary windings are shorted.

Multisim Troubleshooting and Analysis

35. Turns ratio = 0.5 36. Secondary winding is open. 37. R2 is open.

Page 135: Dc Answers

Chapter 15 RC Circuits

Section 15-1 The Complex Number System 1. A complex number indicates both magnitude and angle of quantity. 2. See Figure 15-1.

Figure 15-1

3. See Figure 15-2.

Figure 15-2

136

Page 136: Dc Answers

Chapter 15

4. (a) 3, j5 (b) +7, j1 (c) +10, +j10 5. (a) 5, +j3 and +5, j3 (b) 1, j7 and 1, +j7 (c) 10, +j10 and +10, j10

6. (a) 3 + j5 (b) 2 + j1.5 (c) 10 j14

7. C = 22 1510 = 18.0

8. (a) 40 j40 =

40

40tan4040 122 = 56.645

(b) 50 j200 =

50

200tan20050 122 = 20676

(c) 35 j20 =

35

20tan2035 122 = 40.329.7

(d) 98 + j45 =

98

45tan4598 122 = 10824.7

9. (a) 100050 = 643 j766 (b) 15160 = 14.1 + j5.13 (c) 25135 = 17.7 j17.7 (d) 3180 = 3 + j0 10. (a) 10120 = 10240 (b) 3285 = 32275 (c) 5310 = 550 11. (a) 40 j40 is in the fourth quadrant. (b) 50 j200 is in the fourth quadrant. (c) 35 j20 is in the fourth quadrant. (d) 98 + j45 is in the first quadrant. 12. (a) 10120 is in the second quadrant. (b) 3285 is in the first quadrant. (c) 5310 is in the fourth quadrant. 13. (a) 12(180 65) = 12115 (b) 20(180 + 50) = 20230 (c) 100(360 170) = 100190 (d) 50(360 200) = 50160

137

Page 137: Dc Answers

Chapter 15

14. (a) (9 + j3) + (5 + j8) = 14 + j11

(b) (3.5 j4) + (2.2 + j6) = 5.7 + j2

(c) (18 + j23) + (30 j15) = 12 + j8

(d) 1245 = 8.49 + j8.49 2032 = 17.0 + j10.6 (8.49 + j8.49) + 17.0 + j10.6) = 25.5 + j19.1

(e) 3.875 = 0.984 + j3.67 (0.984 + j3.67) + (1 + j1.8) = 1.98 + j5.47

(f) 6030 = 52 j30 (52 j30) + (50 j39) = 102 j69 15. (a) (2.5 + j1.2) (1.4 + j0.5) = 1.1 + j0.7

(b) (45 j23) (36 + j12) = 81 j35

(c) (8 j4) 325 = (8 j4) (2.72 + j1.27) = 5.28 j5.27

(d) 48135 3360 = (33.9 + j33.9) (16.5 j28.6) = 50.4 + j62.5 16. (a) (4.548)(3.290) = 14.4138

(b) (120220)(95200) = 11,40020

(c) 4 j3 = 536.9 (3150)(536.9) = 15113

(d) 67 + j84 = 107.551.4 (107.551.4)(10240) = 10,96591.4

(e) 15 j10 = 1833.7 25 j30 = 39.1129.8 (1833.7)(39.1129.8) = 704164

(f) 0.8 + j0.5 = 0.9432 1.2 j1.5 = 1.9251.3 (0.9432)(1.9251.3) = 1.8119.3

17. (a)

395.2

508 = 3.2(50 39) = 3.211

(b)

109

9163 = 7(91 10) = 7101

(c)

6.404.18

3028

j1214

3028= 1.52(30 (40.6)) = 1.5270.6

(d)

6.269.17

9.3650

8j16

30j40 = 2.79(36.9 26.6) = 2.7963.5

138

Page 138: Dc Answers

Chapter 15

18. (a)

372.1

238.1655.2 =

371.2

j0.70)66.1(j2.27)06.1(

=

372.1

4.10103.3

371.2

j2.976.0 = 2.5364.4

(b)

0.615.51

)46.604.172)(15100(

j4525

j150)85)(15100( = 335106

(c) )50j90)(35(125

j100)50)(7517590250(

= )5035)(75.3504.154(

)43.638.111)(04.169j45.29j250(

=)75.8505.5391(

)43.638.111)(83.8348.421(

= 8.7465.4

(d)

2

4j

2

4j77.7

2

4j

4

8j

1.1

)8.3()5.1( 2

= 7.77 + 2 + j2 = 9.77 + j2 = 9.9711.6

Part 1: Series Circuits

Section 15-2 Sinusoidal Response of Series RC Circuits 19. fVR = 8 kHz, fVC = 8 kHz 20. The current is sinusoidal because the voltage is sinusoidal.

Section 15-3 Impedance of Series RC Circuits 21. (a) Z = R jXC = 270 j100 = 28820.3 (b) Z = R jXC = 680 j1000 = 1.2155.8 k 22. (a) RT = R1 + R2 = 100 k + 47 k = 147 k

CT =

F022.0

1

F01.0

11

111

21

CC

= 0.00688 F

XCT = )F 0.00688)(Hz 001(2

1

2

1

TfC = 231 k

Z = RT jXCT = 147 k j231 k = 27357.5 k Z = 273 , = 57.5

(b) CT = C1 + C2 = 470 pF + 470 pF = 940 pF

XCT = )pF 940)(kHz 20(2

1

2

1

TfC = 8.47 k

Z = R jXCT = 10 k j8.47 k = 13.140.3 k Z = 13.1 k, = 40.3

139

Page 139: Dc Answers

Chapter 15

(c) RT = R1 + R2 R3 = 680 + 720 = 1400

CT =

F0032.0

1

pF 1000

1111

321

CCC

= 762 pF

XCT = )pF 762)(kHz 001(2

1

2

1

TfC = 2089

Z = RT jXCT = 1400 j2089 = 2.5256.2 k Z = 2.52 k, = 56.2

23. (a) XC = )F 0.0022)(Hz 100(2

1

2

1

fC = 723 k

Z = 56 k j723 k

(b) XC = )F 0.0022)(Hz 005(2

1

2

1

fC = 145 k

Z = 56 k j145 k

(c) XC = )F 0.0022)(kHz 1(2

1

2

1

fC = 72.3 k

Z = 56 k j72.3 k

(d) XC = )F 0.0022)(kHz 5.2(2

1

2

1

fC = 28.9 k

Z = 56 k j28.9 k

24. (a) XC = )F 0.0047)(Hz 100(2

1

2

1

fC = 339 k

Z = 56 k j339 k

(b) XC = )F 0.0047)(Hz 500(2

1

2

1

fC = 67.7 k

Z = 56 k j67.7 k

(c) XC = )F 0.0047)(kHz 1(2

1

2

1

fC = 33.9 k

Z = 56 k j33.9 k

(d) XC = )F 0.0047)(kHz 5.2(2

1

2

1

fC = 13.5 k

Z = 56 k j13.5 k

140

Page 140: Dc Answers

Chapter 15

25. (a) R = 33 , XC = 50

(b) Z = 30025 = 272 j127 R = 272 , XC = 127

(c) Z = 1.867.2 k = 698 j1.66 k R = 698 , XC = 1.66 k

(d) Z = 78945 = 558 j558 R = 558 , XC = 558

Section 15-4 Analysis of Series RC Circuits 26. (a) From Problem 21(a): Z = 28820.3

I =

3.20288

V 010 = 34.720.3 mA

(b) From Problem 21(b): Z = 1.2155.8 k

I =

k8.5521.1

V 05 = 4.1355.8 mA

27. Start with the current in polar form from Problem 26:

(a) I = 10 0 V

288 20.3

= 34.720.3 mA = (34.7 mA)cos 20.3o + j(34.7 mA)sin 20.3o

= 32.5 mA + j12.0 mA

(b) I = 5 0 V

1.21 55.8 k

= 4.1355.8 mA = (4.13 mA)cos 55.8o + j(4.13 mA)sin 55.8o

= 2.32 mA + j3.42mA 28. (a) From Problem 22(a): Z = 147 k j231 k = 27357.5

IT =

5.57273

V 050 = 18357.5 A

(b) From Problem 22(b): Z = 10 k j8.47 k = 13.140.3 k

IT =

k3.401.13

V 08 = 61140.3 A

(c) From Problem 22(c): Z = 1400 j2089 = 2.5256.2 k

IT =

k2.5652.2

V 205 = 1.9876.2 mA

141

Page 141: Dc Answers

Chapter 15

29. Start with the current in polar form from Problem 28

(a) IT = 50 0 V

273 57.5

= 18357.5 A = (183 A)cos 57.5o + j(183 A)sin 57.5o

= 98.3 A + j154 A

(b) IT = 8 0 V

13.1 40.3 k

= 61140.3 A = (611 A)cos 40.3o + j(611 A)sin 40.3o

= 466 A + j395 A

(c) IT = 5 20 V

2.52 56.2 k

= 1.9876.2 mA = (1.98 mA)cos 76.2o + j(1.98 mA)sin 76.2o

= 0.472 mA + j1.92 mA 30. Using the results of Problem 22:

(a) =

k 147

k 231tantan 11

R

XC = 57.5

(b) =

k 10

k 47.8tantan 11

R

XC = 40.3

(c) =

1400

2089tantan 11

R

XC = 56.2

31. XC = fC2

1 14.5 k

=

k 56

k 5.14tantan 11

R

XC = 14.5

32. See Figure 15-3.

CT =

F 0.22

1

F 0.1

11

= 0.069 F

XC = )F 0.069)(kHz 15(2

1

= 154

ZT = 50 j154 = 16272.0

IT =

0.72162

V 02

T

s

Z

V = 12.372.0 mA

XC1 = )F 0.1)(kHz 15(2

1

= 106

XC2 = )F 0.22)(kHz 15(2

1

= 48.2

VC1 = ITXC1 = (12.372.0 mA)(10690 ) = 1.3018.0 V VC2= ITXC2= (12.372.0 mA)(48.290 ) = 59318.0 mV VR1 = VR2 = ITRT = (12.372.0 mA)(500 ) = 61572.0 mV

142

Page 142: Dc Answers

Chapter 15

Figure 15-3

33. (a) XC = )F 100)(Hz 20(2

1

= 79.6

Z = 56 j79.6 = 97.354.9

(b) IT =

9.543.97

010 = 10354.9 mA

(c) VR = V 0109.543.97

056

= 5.7654.9 V

(d) VC = V 0109.543.97

906.79

= 8.1835.1 V

34. Z = mA 10

V 10

I

Vs = 1 k

XC = )F 0.027)(kHz 10(2

1

= 589.5

22CXR = 1 k

R2 + (589.5 )2 = (1 k)2

R = 22 )5.589()k1( = 808

= tan1

808

5.589 = 36.1

35. ZT = A 5

V 10020

Ptrue = I2RT

RT = 22 A) (5

W400

I

Ptrue = 16

RX = RT R1 = 16 4 = 12

143

Page 143: Dc Answers

Chapter 15

222CTT XRZ

XC = 144)16()20( 2222 TT RZ = 12

C = ) 12)(kHz 1(2

1

= 13.3 F

36. (a) XC = )F039.0)(Hz 1(2

1

= 4.08 M

= 90 + tan1

k 3.9

M 4.08tan90 1

R

XC = 0.055

(b) XC = )F039.0)(Hz 100(2

1

= 40.8 k

= 90 + tan1

k 3.9

k 40.8tan90 1

R

XC = 5.46

(c) XC = )F039.0)(kHz 1(2

1

= 4.08 k

= 90 + tan1

k 3.9

k 4.08tan90 1

R

XC = 43.7

(d) XC = )F039.0)(kHz 10(2

1

= 408

= 90 + tan1

k 3.9

408tan90 1

R

XC = 84.0

37. Use the formula, Vout = V. 1

T

C

Z

X See Figure 15-4.

Figure 15-4

Frequency (kHz)

XC

ZT

Vout

0 1 V 1 4.08 k 5.64 k 723 mV 2 2.04 k 4.40 k 464 mV 3 1.36 k 4.13 k 329 mV 4 1.02 k 4.03 k 253 mV 5 816 3.98 k 205 mV 6 680 3.96 k 172 mV 7 583 3.94 k 148 mV 8 510 3.93 k 130 mV 9 453 3.93 k 115 mV 10 408 3.92 k 104 mV

144

Page 144: Dc Answers

Chapter 15

38. (a) XC = )F10)(Hz 1(2

1

2

1

fC = 15.9 k

= tan1

10

k 15.9tan 1

R

XC = 90.0

(b) XC = )F10)(Hz 100(2

1

= 159

= tan1

10

159tan 1

R

XC = 86.4

(c) XC = )F10)(kHz 1(2

1

= 15.9

= tan1

10

15.9tan 1

R

XC = 57.9

(d) XC = )F10)(kHz 10(2

1

= 1.59

= tan1

10

1.59tan 1

R

XC = 9.04

39. Use the formula, Vout = V. 1

TZ

R See Figure 15-5.

Figure 15-5

Frequency (kHz)

XC ZT Vout

0 0 V 1 15.9 18.8 5.32 V 2 7.96 12.8 7.82 V 3 5.31 11.3 8.83 V 4 3.98 10.8 9.29 V 5 3.18 10.5 9.53 V 6 2.65 10.4 9.66 V 7 2.27 10.3 9.76 V 8 1.99 10.2 9.80 V 9 1.77 10.2 9.84 V

10 1.59 10.1 9.87 V 40. For Figure 15-91 in the text (See Figure 15-6):

XC = )F039.0)(kHz 5(2

1

= 816

Z = 3.9 k j816 = 398411.8

I =

8.113984

V 01

Z

Vs = 25111.8 A

VR = IR = (25111.8 A)(3.90 k) = 97911.8 mV VC = IXC = (25111.8 A)(81690 ) = 20578.2 mV

145

Page 145: Dc Answers

Chapter 15

Figure 15-6

41. For Figure 15-92 in the text (See Figure 15-7)

C X = 1

= 15.9 2 (1 kHz)(10 F)

Z = 10 j15.9 = 18.857.8

I = 10 0 V

sV = 53257.8

18.8 57.8 Z mA

VR = IR = (53257.8 mA)(100 ) = 5.3257.8 V .2 V

ection 15-5 Impedance and Admittance of Parallel RC Circuits

VC = IXC = (53257.8 mA)(15.990 ) = 8.4632 Figure 15-7

Part 2: Parallel Circuits

S

k 59 33.2

)k 902)(k 02.1(

k 2j k 2.1

)k 902)(k 02.1(

j

)90)(0(

C

C

XR

XR42. Z =

= 1.0331 k

3. BC = 2fC = 2f(C1 + C2) = 2(2 kHz)(0.32 F) = 4.02 mS 4

146

Page 146: Dc Answers

Chapter 15

G =

1480

11

321 RRR = 0.676 mS

Y = G + jBC = 0.676 mS + j4.02 mS = 4.0880.5 mS

Z = mS 80.54.08

11

Y = 24580.5

Z = 245 , = 80.5

44. (a) XC = )F 0.32)(kHz 5.1(2

1

= 332

Z =

4.773246.121517

)90332)(01480(

j3321480

)90332)(01480(

Z = 324 , = 77.4

(b) XC = )F 0.32)(kHz 3(2

1

= 166

Z =

6.8316540.61489

)90166)(01480(

j1661480

)90166)(01480(

Z = 165 , = 83.6

(c) XC = )F 0.32)(kHz 5(2

1

= 99.5

Z =

2.863.9985.31483

)905.99)(01480(

j99.51480

)905.99)(01480(

Z = 99.3 , = 86.2

(d) XC = )F 0.32)(kHz 10(2

1

= 49.7

Z =

1.887.4992.11481

)907.49)(01480(

j49.71480

)907.49)(01480(

Z = 49.7 , = 88.1

Section 15-6 Analysis of Parallel RC Circuits

45. ZT =

j9068

)9090)(068( = 54.337.1

VC = VR = Vs = 10 0 V

IT =

1.373.54

V 010 = 18437.1 mA

IR =

068

V 010 = 1470 mA

147

Page 147: Dc Answers

Chapter 15

IC =

9090

V 010 = 11190 mA

46. XC1 = )F 0.047)(kHz 50(2

1

= 67.7

XC2 = )F 0.022)(kHz 50(2

1

= 145

IC1 =

907.67

V 08

C1

s

X

V = 11890 mA

IC2 =

90145

V 08

C2

s

X

V = 55.290 mA

IR1 =

0220

V 08

1

s

R

V = 36.40 mA

IR2 =

0180

V 08

2

s

R

V = 44.40 mA

IT = IR1 + IR2 + IC1 + IC2 = 36.4 mA + 44.4 mA + j118 mA + j55.2 mA = 80.8 mA + j173.2 mA = 19165.0 mA IT = 191 mA, = 65.0 47. (a) XC = XC1 XC2 = 21 15 = 8.75

BC =

75.8

11

CX = 114 mS

G =

10

11

R = 100 mS

YT = 100 mS + j114 mS = 15248.8 mS

ZT = mS 8.48152

1

TY

1 = 6.5948.8

(b) IR =

010

mV 0100 = 100 mA

(c) ICT =

9075.8

mV 0100 = 11.490 mA

(d) IT =

8.4859.6

mV 0100 = 15.248.8 mA

(e) = 48.8

148

Page 148: Dc Answers

Chapter 15

48. (a) CT = C1 + C2 = 0.047 F + 0.022 F = 0.069 F

XCT = )F 0.069)(Hz 500(2

1

= 4613

Z =

5.397255

)904613)(k06.5( = 3.5650.5 k

(b) IR =

k06.5

mV 0100

R

Vs = 17.90 A

(c) ICT =

904613

mV 0100

CT

s

X

V = 21.790 A

(d) IT =

5.503560

mV 0100

Z

Vs = 28.150.5 A

(e) = 50.5 49. RT = 22 k, CT = 32 pF

XCT = )pF 32)(kHz 001(2

1

= 49.7 k

Z =

k1.664.54

)k907.49)(k022( = 20.123.9 k = 18.4 k j8.14 k

Req = 18.4 k, XCeq = 8.14 k

Ceq = )k kHz)(8.14 100(2

1

= 196 pF

50. XC = )F 0.01)(kHz 1(2

1

= 15.9 k

=

T

C

R

X1tan

T

C

R

X = tan

RT =

30tan

k 9.15

tanCX

= 27.6 k

RT = 21

21

RR

RR

RT(R1 + R2) = R1R2 R1RT + R2RT = R1R2 R1(RT R2) = R2RT

R1 =

k 4.19

)k 6.27)(k 47(

2

2

T

T

RR

RR = 66.7 k

149

Page 149: Dc Answers

Chapter 15

Part 3: Series-Parallel Circuits Section 15-7 Analysis of Series-Parallel RC Circuits 51. See Figure 15-8.

XC1 = )F1.0)(kHz 15(2

1

2

1

1

fC = 106

XC2 = )F047.0)(kHz 15(2

1

2

1

2

fC = 226

XC3 = )F22.0)(kHz 15(2

1

2

1

3

fC = 48.2

ZC2R1 = R1 jXC2 = 470 j226 = 52225.7 ZC3 = jXC3 = 48.290 ZR2R3 = R2 + R3 = 330 + 180 = 5100 Combining the three parallel branches:

ZA =

0510

1

902.48

1

7.25522

11

111

R2R3C3C2R1 ZZZ

1

=mS 1.96 mS j20.7 mS j0.833 mS 73.1

1

mS096.1mS907.20mS7.2592.1

1

= mS3.808.21

1

mS j21.5 mS 69.3

1

= 45.980.3 = 7.73 j45.2

ZT = XC1 + ZA = j106 + 7.73 j45.2 = 7.73 j151 = 15187.1

VC1 = V 012 1.87151

90106 V 012

T

C1

Z

X= 8.422.9 V

VZA = V 012 1.87151

3.809.45 V 012

T

A

Z

Z= 3.656.8 V

VC2 = V 8.665.3 7.25522

90226

V

Z

XZA

C2R1

C2 = 1.5857.5 V

VR1 = V 8.665.3 7.25522

0470

V

Z

RZA

C2R1

1 = 3.2932.5 V

VC3 = VZA = 3.656.8 V

VR2 = V 8.665.3 0510

0330

V

Z

RZA

R2R3

2 = 2.366.8 V

V 8.665.3 0510

0180

V

Z

RZA

R2R3

3VR3 = = 1.296.8 V

150

Page 150: Dc Answers

Chapter 15

2. From Problem 51: ZT = 7.73 j151

3.

Figure 15-8

2.9 57.5

5 The j term is larger, therefore th

e circuit is predominantly capacitive.

5 See Figure 15-9. Using the results of Problem 51:

IT = 1.87151 TZ

V 012 V 012 = 79.587.1 mA

IC2R1 =

= 6.9932.5 mA

7.25522

V 8.665.3

Z

V

C2R1

ZA

902.48

V 8.665.3 IC3 =

Z.796.8 mA

V

C3

ZA = 75

IR2R3 =

= 7.166.8 mA

0510

V 8.665.3

Z

V

R2R3

ZA

Figure 15-9

151

Page 151: Dc Answers

Chapter 15

54. RT = R1 + R2 R3 = 47 + 42.9 = 89.9

XC = )F47.0)(kHz 1(2

1

= 339

ZT = 89.9 j339 = 35175.1

(a) IT =

1.75351

V 015

T

s

Z

V = 42.775.1 mA

(b) = 75.1

(c) VR1 = V 0151.75351

V 047

s

T

1 VZ

R = 2.0175.1 V

(d) VR2 = V 0151.75351

V 042.9

s

T

32 VZ

RR = 1.8375.1 V

(e) VR3 = VR2 = 1.8375.1 V

(f) VC = V 0151.75351

09339

s

T

C VZ

X = 14.514.9 V

55. For I = 0 A, VA = VB and VR1 = VR2

XC1 = )F047.0)(kHz 1(2

1

= 3.39 k

VR1 = VR2

s

C

s VX

V

2

2222 )k 1(

k 1

)k 39.3()k 2.2(

k 2.2

Cancelling the Vs terms and solving for XC2:

2

2222 )k 1(

k 1

)k 39.3()k 2.2(

k 2.2

CX

k2.2

)k 39.3()k 2.2()k 1()k 1(

2222

22

CX

Squaring both sides to eliminate the radicals and solving for XC2:

2

2222

22

)k 2.2(

)k 39.3()k 2.2()k 1()k 1(

CX

XC2 = 2

2

222

)k 1()k 2.2(

)k 39.3()k 2.2()k 1(

= 1541

C2 = )1541)(kHz 1(2

1

= 0.103 F

152

Page 152: Dc Answers

Chapter 15

56. XC3 = )F022.0)(kHz 5.2(2

1

= 2.89 k

ZC3R6 = R6 jXC3 = 820 j2.89 k = 374.2 k

XC2 = )F047.0)(kHz 5.2(2

1

= 1.35 k

ZC = ZC2R4 =

k 5663.1

)0910)(k 9035.1(

j 24 CXR4C2RX

= 75434 = 625 j422

ZR5C2R4 = R5 + ZC = 1 k + 625 j422 = 1625 j422 = 1.6814.6 k ZB = (R5 + ZC) ZC3R6 = 1.6814.6 k 374.2 k

=

k 9.554

)k2.743)(k 6.1468.1( = 1.2632.9 k = 1.06 k j684

ZR3ZB = R3 + ZB = 680 + 1.06 k j684 = 1.74 k j684 = 1.8721.5 k ZA = R2 ZR3ZB = 2200 1.8721.5 k

=

k 2.1908.2

)k5.2187.1)( 0220( = 1982.3 = 197.8 j7.95

XC1 = )F015.0)(kHz 5.2(2

1

= 4.24 k

ZT = R1 jXC1 + ZA = (1 k j4.24 k) + (197.8 j7.95 ) = 1197.8 j4248 = 4.4174.3 k

VA = V 010 k 3.7441.4

3.2198

V

Z

Zs

T

A = 44972.0 mV

VB = mV 0.72449 k 5.2187.1

k 9.3226.1

V

Z

ZA

R3ZB

B = 30360.6 mV

VC = mV 6.60303 k 6.1468.1

34754

V

Z

ZB

R5C2R4

C = 13641.2 mV

VD = mV 6.60303 k 2.743

0820

V

Z

RB

C3R6

6 = 83135 mV

57. Use the voltages found in Problem 56:

IC3 = IR6 =

0820

mV 13583

6

D

R

V = 101135 A = 71.4 A + j71.4 A

IR4 =

0910

mV 2.41136

4

C

R

V = 14941.2 A = 112 A + j98 A

IC2 =

k 035.1

mV 2.41136

C2

C

X

V = 101131 A = 66 A + j76 A

IR5 = IR4 + IC2 = (112 A + j98 A) + (66 A + j76 A) = 46 A + j174 A = 18075.1 A IR3 = IR5 + IC3 = (46 mA + j174 A) + (71.4 A + j71.4 A)

153

Page 153: Dc Answers

Chapter 15

= 25.4 A + j245 A = 24684.3 A

IR2 =

0220

mV 0.72449

2

A

R

V = 2.0472.0 mA = 0.630 mA + j1.94 mA

IR1 = IC1 = IR2 + IR3

= (0.630 mA + j194 mA) + (25.4 A + j245 A) = 605 A + j2185 A = 2.2774.5 mA 58. See Figure 15-10.

Figure 15-10

154

Page 154: Dc Answers

Chapter 15

Part 4: Special Topics Section 15-8 Power in RC Circuits

59. Pa = 2222true )VAR 3.5() W2( rPP = 4.03 VA

60. From Problem 33:

IT = 103 mA, XC = 79.6

Ptrue = = (103 mA)2(56 ) = 594 mW RIT2

Pr = = (103 mA)2(79.6 ) = 845 mVAR CT XI 2

61. Using the results from Problem 49: Req = 18.4 k XCeq = 8.14 k Zeq = Req jXCeq = 18.4 k j8.14 k = 20.123.9 k = 23.9 PF = cos = cos (23.9) = 0.914 62. From Problem 54:

IT = 42.7 mA, RT = 89.9 , XC = 339 , ZT = 35175.1

Ptrue = = (42.7 mA)2(89.9 ) = 164 mW TT RI 2

Pr = = (42.7 mA)2(339 ) = 618 mVAR CT XI 2

Pa = = (42.7 mA)2(351 ) = 640 mVA TT ZI 2

PF = cos(75.1) = 0.257

63. (a) ILA = 50

V 240 = 4.8 A

ILB = 72

V 240 = 3.33 A

(b) PFA = cos = 0.85; = 31.8 PFB = cos = 0.95; = 18.2 XCA = (50 )sin(31.8) = 26.3 XCB = (72 )sin(18.2) = 22.5

PrA = = (4.8 A)226.3 = 606 VAR CALA XI 2

PrB = = (3.33 A)222.5 = 250 VAR CBLB XI 2

(c) RA = (50 )cos(31.8) = 42.5 RB = (72 )cos(18.2) = 68.4

PtrueA = = (4.8 A)242.5 = 979 W ALARI 2

PtrueB = = (3.33 A)268.4 = 759 W BLBRI 2

155

Page 155: Dc Answers

Chapter 15

(d) PaA = 22 VAR) (606 W)979( = 1151 VA

PaB = 22 VAR) (250 W)759( = 799 VA

(e) Load A

Section 15-9 Basic Applications

64. fr = 1

2 6RC =

1

2 6(10 k )(0.0022 F) = 9278 Hz

65. 22

1

1

Cin

out

XR

R

V

V

= 0.707

R = 22707.0 CXR

707.0

22 RXR C = 1.414R

= (1.414)2R2 22CXR

= 2R2 R2 = R2(2 1) = R2 2CX

XC = R

fC2

1 = R

C = )k Hz)(100 20(2

1

2

1

fR = 0.0796 F

66. XC = F)kHz)(0.047 3(2

1

= 1.13 k

Vin(B) =

22)(

22

)(

)(

)k 13.1()k 10

k 10Aout

CBin

Bin VXR

R50 mV = 49.7 mV

Signal loss = 50 mV 49.7 mV = 300 V

Section 15-10 Troubleshooting 67. After removing C, the circuit is reduced to Thevenin’s equivalent:

Rth =

k7.9

)k5)(k7.4( = 2.42 k

Vth = V 10k7.9

k5

= 5.15 V

Assuming no leakage in the capacitor:

XC = )F10)(Hz 10(2

1

= 1592

156

Page 156: Dc Answers

Chapter 15

Vout = V 0107.184962

901592V 010

C

C

jXR

X= 3.2171.3 V

With the leakage resistance considered:

Vout = V 05.153.332897

901592

th

Cth

C VjXR

X= 2.8356.7 V

68. (a) The leakage resistance effectively appears in parallel with R2. Thevenizing from the capacitor: Rth = R1 R2 Rleak = 10 k 10 k 2 k = 1.43 k

Vth = V 01067.11

k067.1

inleak21

leak2 VRRR

RR = 1430 mV

XC = )F7.4)(Hz 10(2

1

= 3.38 k

Vout = mV 0143k1.6767.3

k9038.3

th

Cth

C VjXR

X = 13222.9 mV

(b) XC = )Fp470)(Hz 100(2

1

= 3.39 M

Req = R1 (R2 + R3) = 2.2 k 2 k = 1.05 k ZT = Req + XC Rleak

= 1.050 k +

M j3.39k 2

)k 02)(M 9039.3(

= 1.050 k +

M9039.3

)k 02)(M 9039.3(

= 1.050 k + 20 k = 3.050 k

VR1 = V 05k 005.3

k 005.1

in

T

eq VZ

R = 1.720 V

Vout = V 01.72k02

k01

R1

32

3 VRR

R = 8600 mV

69. (a) Vout = 0 V (less than normal)

(b) XC = )F7.4)(Hz 10(2

1

= 3.39 k

Vout = V 01k7.186.10

k9039.3

in

C

C VjXR

X= 320-71.3 mV (greater than normal)

(c) Vout = V 01k020

k010

in

21

2 VRR

R= 5000 mV (greater than normal)

(d) Vout = 0 V (less than normal output)

157

Page 157: Dc Answers

Chapter 15

158

70. (a) Vout = 0 V (less than normal)

(b) Vout = V 05k02

k01

in

32

3 VRR

R = 2.50 V (greater than normal)

(c) XC = 3.39 M

Vout = V 05M9039.3

k01

in

C32

3 VjXRR

R= 1.4790 mV

(greater than normal) (d) Vout = 0 V (less than normal)

(e) Vout = V 05M9039.3

k02.2

in

C1

1 VjXR

R= 3.2490 mV

(greater than normal)

Multisim Troubleshooting and Analysis 71. No fault. 72. C1 is leaky. 73. R1 is open. 74. No fault. 75. No fault. 76. C2 is open. 77. fc = 48.41 Hz 78. fc = 3.422 kHz

Page 158: Dc Answers

Chapter 16 RL Circuits

Part 1: Series Circuits Section 16-1 Sinusoidal Response of RL Circuits 1. fVR = 15 kHz, fVL = 15 kHz 2. The current is sinusoidal because the voltage is sinusoidal.

Section 16-2 Impedance of Series RL Circuits 3. (a) Z = R + jXL = 100 + j50 = 11226.6 (b) Z = R + jXL = 1.5 k + j1 k = 1.8033.7 k 4. See Figure 16-1. (a) RT = 56 + 10 = 66 LT = 50 mH + 100 mH = 150 mH XL = 2fLT = 2(100 Hz)(150 mH) = 94.2 Z = RT + jXL = 66 + j94.2 = 11555.0 Z = 115 , = 55.0 (b) LT = 5 mH 8 mH = 3.08 mH XL = 2fLT = 2(20 kHz)(3.08 mH) = 387 Z = RT + jXL = 560 + j387 = 68134.6 k Z = 681 , = 34.6

Figure 16-1

159

Page 159: Dc Answers

Chapter 16

5. (a) XL = 2fL = 2(100 Hz)(0.02 H) = 12.6 Z = 12 + j12.6 = 17.446.4 (b) XL = 2fL = 2(500 Hz)(0.02 H) = 62.8 Z = 12 + j62.8 = 64.079.2 (c) XL = 2fL = 2(1 kHz)(0.02 H) = 126 Z = 12 + j126 = 12784.6 (d) XL = 2fL = 2(2 kHz)(0.02 H) = 251 Z = 12 + j251 = 25187.3 6. (a) Z = 20 + j45 = R + jXL R = 20 , XL = 45 (b) Z = 50035 = 410 + j287 = R + jXL R = 410 , XL = 287 (c) Z = 2.572.5 k = 752 + j2.38 k = R + jXL R = 4752 , XL = 2.38 k (d) Z = 99845 = 706 + j706 = R + jXL R = 706 , XL = 706 7. L1 L2 = 3.11 mH, R1 R2 = 476 RT = R1 + R1 R2 = 330 + 476 = 806 LT = L3 + L1 L2 = 1000 H + 3.11 mH = 4.11 mH

Section 16-3 Analysis of Series RL Circuits 8. RT = 806 XLT = 2fLT = 2(10 kHz)(4.11 mH) = 258

VRT = 2 2 2 2

806 5 V

(806 ) (258 )

Ts

T LT

RV

R X

= 4.76 V

9. VLT = 2 2 2 2

258 5 V

(806 ) (258 )

LTs

T LT

XV

R X

= 1.52 V

XL3 = 2fL3 = 2(10 kHz)(1000 H) = 62.8

VL3 = 3 62.8 1.52 V

258 L

LTLT

XV

X

= 0.370 V

160

Page 160: Dc Answers

Chapter 16

10. (a) From Problem 3(a): Z = 11226.6

I =

6.26112

V 010 = 89.426.6 mA

(b) From Problem 3(b): Z = 1.8033.7 k

I =

k 7.3380.1

V 05 = 2.7833.7 mA

11. (a) From Problem 4(a): Z = 11555.0

IT =

0.55115

V 05 = 43.555.0 mA

(b) From Problem 4(b): Z = 68134.6 k

IT =

k 6.34681

V 08 = 11.834.6 mA

12. XL = 2fL = 2(60 Hz)(0.1 H) = 37.7

=

47

7.37tantan 11

R

X L = 38.7

13. = 38.7 from Problem 12. Double L: XL = 2fL = 2(60 Hz)(0.2 H) = 75.4

=

47

4.75tantan 11

R

X L = 58.1

increases by 19.4 from 38.7 to 58.1 14. See Figure 16-2. The circuit phase angle was determined to be 38.7 in Problem 12. This is

the phase angle by which the source voltage leads the current; it is the same as the angle between the resistor voltage and the source voltage. The inductor voltage leads the resistor voltage by 90. Assume that 10 V is the rms value of Vs.

XL = 37.7

VL = V 0107.383.60

907.37V 010

j37.747

907.37

s

L VX

LjXR = 6.2553.1 V

VR = V 0107.383.60

047

sVR

LjXR = 7.7938.7 V

161

Page 161: Dc Answers

Chapter 16

Figure 16-2

15. (a) f = 60 Hz XL = 2(60 Hz)(100 mH) = 37.7 Z = R + jXL = 150 + j37.7 = 154.714.1

VR =

sVZ

RV 05

1.147.154

0150

= 4.8514.1 V

VL =

sL V

Z

XV 05

1.147.154

907.37

= 1.2275.9 V

(b) f = 200 Hz XL = 2(200 Hz)(100 mH) = 125.7 Z = R + jXL = 150 + j125.7 = 195.740.0

VR =

sVZ

RV 05

0.407.195

0150

= 3.8340.0 V

VL =

sL V

Z

XV 05

0.407.195

907.125

= 3.2150.0 V

(c) f = 500 Hz XL = 2(200 Hz)(100 mH) = 314 Z = R + jXL = 150 + j314 = 34864.5

VR =

sVZ

RV 05

5.64348

0150

= 2.1664.5 V

VL =

sL V

Z

XV 05

5.64348

90314

= 4.5125.5 V

(d) f = 1 kHz XL = 2(1 kHz)(100 mH) = 628 Z = R + jXL = 150 + j628 = 645.776.6

VR =

sVZ

RV 05

6.767.645

0150

= 1.1676.6 V

VL =

sL V

Z

XV 05

6.767.645

90628

= 4.8613.4 V

162

Page 162: Dc Answers

Chapter 16

16. Vs = VL1 + VL2 + VR1 + VR2 = 1590 V + 8.590 V + 6.90 V + 20 V = 8.90 V + 23.590 V = 8.9 V + j23.5 V = 25.169.3 V Vs = 25.1 V, = 69.3 17. (a) XL = 2(1 Hz)(10 mH) = 62.8 m

= 1 1 62.8 mtan tan

39 LX

R

= 0.0923

(b) XL = 2(100 Hz)(10 mH) = 628 m

= 1 1 628 mtan tan

39 LX

R

= 9.15

(c) XL = 2(1 kHz)(10 mH) = 6.28

= 1 1 6.28tan tan

39 LX

R

= 58.2

(d) XL = 2(10 kHz)(10 mH) = 62.8

= 1 1 62.8tan tan

39 LX

R

= 86.4

= tan1 1 39 tan

62.8 mL

R

X

= 89.9 18. (a)

(b) = tan1 1 39 tan

628 mL

R

X

= 80.9

(c) = tan1 1 39 tan

6.28L

R

X

= 31.8

(d) = tan1 1 39 tan

62.8L

R

X

= 3.60

19. (a) XL = 2(1 Hz)(10 mH) = 62.8 m

Z = 39 + j62.8 m = o39 0

oLo

62.8 90 m50 0 mV = 80.5 90 V

39 0

oo

out inV V

X

Z

(b) XL = 2(100 Hz)(10 mH) = 628 m

` Z = 39 + j628 m = o39 0

oLo

628 90 m50 0 mV 805 90 V

39 0

oo

out inV V

X

Z

163

Page 163: Dc Answers

Chapter 16

(c) XL = 2(1 kHz)(10 mH) = 6.28

Z = 39 + j6.28 = o39.5 9.14

o oLo

6.28 9050 0 mV = 7.95 80.9 mV

39.5 9.14

o

out inV V

X

Z

(d) XL = 2(10 kHz)(10 mH) = 62.8

Z = 39 + j62.8 = o73.9 58.2

o oLo

62.8 9050 0 mV = 42.5 31.8 mV

73.9 58.2

o

out inV V

X

Z

Part 2: Parallel Circuits Section 16-4 Impedance and Admittance of Parallel RL Circuits 20. XL = 2fL = 2(2 kHz)(800 H) = 10.1

YT = G jBL =

10.1

1j

12

1 = 83.3 mS j99.0 mS = 12949.9 mS

Z = mS 9.49129

11

TY = 7.7549.9

21. From Problem 20:

Z = 1 1

129 49.9 mS

TY = 7.7549.9 = (7.75 cos 49.9o + j(7.75 sin49.9o

= 4.99 + j5.93 22. (a) f = 1.5 kHz XL = 2fL = 2(1.5 kHz)(800 H) = 7.54

YT = G jBL =

7.54

1j

12

1 = 83.3 mS j133 mS = 15758.0 mS

Z = mS 0.58157

11

TY = 6.3758.0

(b) f = 3 kHz

XL = 2fL = 2(3 kHz)(800 H) = 15.1

YT = G jBL =

15.1

1j

12

1 = 83.3 mS j66.2 mS = 10638.5 mS

Z = mS 5.38106

11

TY = 9.4338.5

(c) f = 5 kHz

XL = 2fL = 2(5 kHz)(800 H) = 25.1

164

Page 164: Dc Answers

Chapter 16

YT = G jBL =

25.1

1j

12

1 = 83.3 mS j39.8 mS = 92.325.5 mS

Z = mS 5.253.92

11

TY = 10.825.5

(d) f = 10 kHz

XL = 2fL = 2(10 kHz)(800 H) = 50.3

YT = G jBL =

50.3

1j

12

1 = 83.3 mS j19.9 mS = 85.613.4 mS

Z = mS 4.136.85

11

TY = 11.713.4

23. XL = 2fL

f = H)(8002

12

2

L

X L = 2.39 kHz

Section 16-5 Analysis of Parallel RL Circuits

24. IR =

k 02.2

V 010 = 4.550 mA

IL =

k 905.3

V 010 = 2.8690.0 mA

IT = IR + IL = 4.55 mA j2.86 mA = 5.3732.2 mA 25. (a) XL = 2fL = 2(2 kHz)(25 mH) = 314

Z = 2222 )314(560(

)314)(560(

L

L

XR

RX = 274

= 90

R

X L1tan = 90

560

314tan 1 = 60.7

Z = 27460.7

(b) IR =

0560

mV 050 = 89.30 mA

(c) IL =

90314

mV 050 = 15990 mA

(d) IT =

7.60274

mV 050 = 18260.7 mA

(e) = 60.7 (from part a)

165

Page 165: Dc Answers

Chapter 16

26. (a) XL = 2fL = 2(2 kHz)(330 H) = 4.15

Z =

4.15

1j

56

1

1

1j

1

1

LXR

= mS8.85242

1

mS j241 mS 17.9

1

= 4.1385.8

(b) IR =

056

mV 050 = 8930 mA

(c) IL =

9015.4

mV 050 = 12.090 mA

(d) IT = IR + IL = 893 mA j12 A = 12.085.8 A

(e) = 85.8

27. ZT = 2222

21

21

)k 5()k 5.11(

)k 5)(k 5.11(

)(

)(

L

L

XRR

XRR = 4.59 k

= 90

k 5.11

k 5tan90tan 11

R

X L = 66.5

ZT = 4.5966.5 = 1.83 k + j4.21 k 1.83 k resistance in series with 4.21 k inductive reactance. 28. IT = IR1 + IR2R3 + IL1 = 50 mA + 30 mA + 8.390 mA = 80 mA + 8.390 mA = 8 mA j8.3 mA = 11.546.1 mA IT = 11.5 mA, = 46.1

Part 3: Series-Parallel Circuits Section 16-6 Analysis of Series-Parallel RL Circuits 29. See Figure 16-3. XL1 = XL2 = 2(400 Hz)(50 mH) = 125.6 ZR3L1L2 = R3 + XL1 XL2 = 33 + j62.8 = 70.962.3 R2 ZR3L1L2 = 220 70.962.3 = 18.713.5 = 18.2 + j4.37 ZT = R1 + R2 ZR3L1L2 = 56 + 18.2 + j4.37 = 64.33.89

VR1 = V 02589.33.64

056

s

T

1 VZ

R= 21.83.89 V

VR2 = V 02589.33.64

5.137.18

s

T

R3L1L22 VZ

ZR= 7.279.61 V

VR3 = V 61.927.73.629.70

033

R2

R3L1L2

3 VZ

R= 3.3853.3 V

166

Page 166: Dc Answers

Chapter 16

VL1 = VL2 = V 61.927.73.629.70

908.62

R2

R3L1L2

L2L1 VZ

XX= 6.4437.3 V

Figure 16-3

30. LT = L1 L2 = 25 mH XLT = 2(400 Hz)(25 mH) = 62.8 Combining R3, L1, and L2: ZA = 33 + j62.8 = 70.962.3 Combining ZA with R2 in parallel:

ZB =

2.527.89

3.621560

9.70j3322

)3.629.70)(022( 2

= 17.410.1 = 17.1 + j3.05

ZT = R1 + ZB = 56 + 17.1 + j3.05 = 73.1 + j3.05 The circuit is predominantly resistive because the resistance is greater than the reactance in the

expression for ZT.

167

Page 167: Dc Answers

Chapter 16

31. See Figure 16-4. Using the results of Problem 29:

IR1 = IT =

056

V89.38.21

1

R1

R

V = 3893.89 mA

IR2 =

022

V61.927.7

2

R2

R

V = 3309.61 mA

IR3 =

033

V3.5338.3

3

R3

R

V = 102-53.3 mA

IL1 = IL2 =

09125.6

V3.3744.6

L1

L1

X

V = 51.3-52.7 mA

52.7 IR1 = IT

3.89

51.3 mAFigure 16-4

32. XL1 = 2(80 kHz)(10 mH) = 5 k XL2 = 2(80 kHz)(8 mH) = 4 k Z1 = 5.6 k + j4 k = 6.8835.5 k Combining R2 in parallel with Z1:

Z2 =

k 2.2476.9

k 5.358.22

k j4k9.8

)k5.3588.6)(k03.3( = 2.3411.3 k = 2.29 k + j459

Combining XL1 in series with Z2: Z3 = 2.29 k + j5.46 k = 5.9167.5 k Combining R1 in parallel with Z3:

ZT =

k 6.5746.6

k 5.6709.7

k j5.46k46.3

)k5.6791.5)(k02.1( = 1.109.90 k

(a) IT =

k09.91.10

V018

T

S

Z

V = 16.49.90 mA

(b) = 9.90 (IT = lags Vs) (c) VR1 = Vs = 180 V

(d) VR2 = V 018k 5.6791.5

k 3.1134.2

R1

3

2 VZ

Z = 7.1356.2 V

(e) VR3 = V 2.5613.7k 5.3588.6

k 06.5

R2

1

3 VZ

R = 5.8091.7 V

168

Page 168: Dc Answers

Chapter 16

(f) VL1 = V 018k 5.6791.5

k 905

S

3

L1 VZ

X = 15.222.5 V

(g) VL2 = V 2.5613.7k 5.3588.6

k 904

R2

1

L2 VZ

X = 4.151.70 V

33. The circuit is rearranged in Figure 16-5 for easier analysis. ZT = (R1 + XL1 R2) (XL2 + XL3) = (50 0 + 56.234.2 ) 12090 = (50 + 46.5 + j31.6 ) (12090)

= (10218.1 ) (12090 ) =

j1525.96

) 90120)( 1.18102(

=

6.57180

) 90120)( 1.18102( = 68.050.5

(a) IT =

5.500.68

V040

T

s

Z

V= 58850.5 mA

(b) VL1 = V 0401.18102

2.342.56

s2L11

2L1 VRXR

RX= 22.016.1 V

(c) VA = V 04090120

9045

s

L3L2

L3 VXX

X= 150 V

VB = VL1 = 22.016.1 V VAB = VA VB = 150 V 22.016.1 V = 15 V 21.1 V j6.10 V = 6.10 j6.10 = 8.63135 V

Figure 16-5

34. See Figure 16-6.

IL1 =

90100

V1.160.22

L1

L1

X

V = 22073.9 mA

IR2 =

068

V1.160.22

2

B

R

V = 32416.1 mA

IL2 = IL3 =

90120

V 040

L3L2

s

XX

V = 33390 mA

IR1 = IR2 + IL1 = 32416.1 mA + 22073.9 mA = (311 mA + j89.8 mA) + (61.0 mA j211 mA) = 372 mA j121 mA = 39118.0 mA

169

Page 169: Dc Answers

Chapter 16

VR1 = IR1R1 = (39118.0 mA)(500 ) = 19.618.0 V VR2 = VL1 = 22.016.1 V

VL2 = V 04090120

9075V 040

L3L2

L2

XX

X = 250 V

VL3 = V 04090120

9045V 040

L3L2

L3

XX

X = 150 V

16.1

Figure 16-6

35. R4 + R5 = 3.9 k + 6.8 k = 10.7 k R2 (R4 + R5) = 4.7 k 10.7 k = 3.27 k R2 + R3 (R4 + R5) = 5.6 k + 3.27 k = 8.87 k RT = R1 (R2 + R3 (R4 + R5)) = 3.3 k 8.87 k = 2.41 k XL = 2(10 kHz)(50 mH) = 3.14 k

=

k 41.2

k 14.3tantan 11

R

X L = 52.5 Vout lags Vin

VR1 = V 1)k 14.3()k 41.2(

k 41.22222

in

LT

T VXR

R= 609 mV

VR3 = mV 609k 6.5k 27.3

k 27.3

)(

)(1

5432

543

RVRRRR

RRR = 225 mV

Vout = VR5 = mV 225k 8.6k 9.3

k 8.63

54

5

RV

RR

R = 143 mV

V 1

mV 143

in

out

V

V = 0.143

36. XL1 = 3.14 k, XL2 = 4.7 k, XL3 = 6.38 k Z3 = R3 + jXL3 = 6.8 k + j6.28 k = 9.2642.7 k Z = XL2 + R2 Z3 2

= 4.790 k + 4.70 k 9.2642.7 k = 4.790 k + 3.32 14.06 k = 6.3859.7 k

Z1 = R1 Z2 = 3.30 k 6.3859.7 k = 2.4719.5 k ZT = XL1 + Z1 = 3.1490 k + 2.4719.5 k = 4.659.6 k

170

Page 170: Dc Answers

Chapter 16

VR1 = V 01k6.596.4

k5.1947.2

= 53740.1 mV

VR2 = mV 1.40537k7.5938.6

k1.1432.3

= 27985.7 mV

Vout = mV 7.85279k7.4226.9

k08.6

= 205128 mV

Phase shift = 128, Attenuation = V 1

mV 205

in

out

V

V= 0.205

37. R1 = A 1

V 12 = 12

R2 = A 1

kV 2.5 = 2.5 k

When the switch is thrown from position 1 to position 2, the inductance will attempt to keep 1 A flowing through R2 for a short time. This design neglects the arcing of the switch, assuming instantaneous closure from position 1 to position 2. The value of L is arbitrary since no time constant requirements are imposed. See Figure 16-7.

Figure 16-7

Part 4: Special Topics Section 16-7 Power in RL Circuits

38. Pa = 2222 )mVAR 340()mW 100( rtrue PP = 354 mVA

39. XL = 2(60 Hz)(0.1 H) = 37.7 Z = R + jXL = 47 + j37.7 = 60.338.7

IT =

7.383.60

V 010

Z

Vs = 165.838.7 mA

Ptrue = = (165.8 mA)2(47 ) = 1.29 W RIT2

Pr = = (165.8 mA)2(37.7 ) = 1.04 VAR LT XI 2

40. = 32.2 from Problem 22. PF = cos = cos (32.2) = 0.846

171

Page 171: Dc Answers

Chapter 16

41. See Figure 16-8. From Problem 32: ZT = 1.109.90 k = 1.08 k + j189 IT = 16.49.90 mA

Ptrue = = (16.5 mA)2(1.08 k) = 290 mW RIR2

Pr = = (16.4 mA)2(189 ) = 50.8 mVAR LT XI 2

Pa = = (16.4 mA)2(1.10 k) = 296 mVA TT ZI 2

PF = cos(9.90) = 0.985

Figure 16-8

42. From Problem 33: ZT = 68.050.5 = 43.3 + j52.5 , IT = 58850.5mA R = 43.3 .

Ptrue = = (588 mA)2(43.3 ) = 15.0 W RIT2

Section 16-8 Basic Applications

43. Use the formula, Vout = .inT

VZ

R

See Figure 16-9.

Figure 16-10

Figure 16-9

Frequency (kHz)

XL Ztot Vout

0 0 39.0 1 V 1 62.8 73.9 528 mV 2 126 132 296 mV 3 189 193 203 mV 4 251 254 153 mV 5 314 317 123 mV

44. Use the formula, Vout = .inT

L VZ

X

See Figure 16-10.

Frequency

(kHz) XL ZT Vout

0 0 39.0 0 V 1 62.8 73.9 42.5 mV 2 126 132 47.8 mV 3 189 193 49.0 mV 4 251 254 49.4 mV 5 314 317 49.6 mV

172

Page 172: Dc Answers

Chapter 16

45. For Figure 16-61 in the text (See Figure 16-11(a)): XL = 2(8 kHz)(10 mH) = 502.65 Z = 39 + j502.65 = 504.1685.6

VR = 39 0

1 0 V504.16 85.6

in

RV

Z = 77.485.6 mV

VL = 502.65 90

1 0 V504.16 85.6

= 9974.44 mV

L

in

XV

Z For Figure 16-62 in the text (See Figure 16-11(b)):

VR = 39 0

50 0 mV504.16 85.6

= 3.8785.6 mV

in

RV

Z

VL = 502.65 90

50 0 mV504.16 85.6

= 49.94.44 mV

L

in

XV

Z

(a) (b)

Figure 16-11

Section 16-9 Troubleshooting 46. VR1 = VL1 = 18 V VR2 = VR3 = VL2 = 0 V 47. (a) Vout = 0 V (b) Vout = 0 V (c) XL1 = 2(1 MHz)(8 H) = 50.26 XL2 = 2(1 MHz)(4 H) = 25.13 XLT = 50.26 + 25.13 = 75.39 RT = R2 + R3 = 156 Z = RT + jXLT = 156 + j75.39 = 173.2625.8

I =

8.2526.173

V 05 = 28.925.8 mA

Vout = IR3 = (28.925.8 mA)560 = 1.6225.8 V (d) R1 R3 = 100 56 = 35.9 Z = 35.9 + j75.39 = 83.564.5

I =

5.645.83

V 05 = 59.964.5 mA

Vout = I(R1 R3) = (59.964.5 mA)35.90 = 2.1564.5 V

173

Page 173: Dc Answers

Chapter 16

174

Multisim Troubleshooting and Analysis 48. No fault. 49. L1 is leaky. 50. No fault. 51. L1 is open. 52. R2 is open. 53. No fault. 54. fc = 16.05 MHz 55. fc = 53.214 kHz

Page 174: Dc Answers

Chapter 17 RLC Circuits and Resonance

Part 1: Series Circuits Section 17-1 Impedance of Series RLC Circuits

1. XC = )F047.0)(kHz 5(2

1

2

1

fC= 677

XL = 2fL = 2(5 kHz)(5 mH) = 157 Z = R + jXL jXC = 10 + j157 j677 = 10 520 = 52088.9 Net reactance = jXL jXC = j520 2. Z = R + j(XL XC) = 47 + j45 = 65.143.8 3. Doubling f doubles XL and halves XC, thus increasing the net reactance and, therefore, the

impedance magnitude increases.

XT = 2XL 5.1422

35)80(2

22

X

ZT = 47 j142.5 = 15071.7

4. Z = 22 )( CL XXR = 100

R2 + (XL XC)2 = 1002 (XL XC)2 = 1002 R2

XL XC = 2222 )47()100(100 R = 88.3

Section 17-2 Analysis of Series RLC Circuits 5. ZT = R + jXL jXC = 47 + j80 j35 = 47 + j45 = 65.143.8

IT =

8.431.65

V 04

T

s

Z

V = 61.443.8 mA

VR = ITR = (61.443.8 mA)(470 ) = 2.8943.8 V

VL = ITXL = (61.443.8 mA)(8090 ) = 4.9146.2 V

VC = ITXC = (61.443.8 mA)(3590 ) = 2.15134 V

175

Page 175: Dc Answers

Chapter 17

Figure 17-1

6. Use the results of Problem 5. See Figure 17-1.

7. RT = R1 R2 = 220 390 = 141 LT = L1 + L2 = 0.5 mH + 1.0 mH = 1.5 mH CT = C1 + C2 = 0.01 F + 1800 pF = 0.0118 F XLT = 236 , XCT = 540 Ztot = RT + j(XLT XCT) = 141 j304 = 33565.1

(a) IT =

1.65335

V 012

T

s

Z

V = 35.865.1 mA

(b) Ptrue = = (35.8 mA)2(141 ) = 181 mW TT RI 2

(c) Pr = = (35.8 mA)2(304 ) = 390 mVAR TT XI 2

(d) Pa = 22true )()( rPP = 430 mVA

Section 17-3 Series Resonance 8. At the resonant frequency, XL = XC. In text Figure 1759, XL = 80 and XC = 35 . For resonance to occur, XL must decrease and XC must increase. Therefore, the resonant

frequency is lower than the frequency, producing the indicated values. 9. VR = Vs = 12 V

10. fr = pF) mH)(47 (12

1

2

1

LC= 734 kHz

XL = 2frL = 2(734 kHz)(1 mH) = 4.61 k XC = XL = 4.61 k Ztot = R = 22

I =

22

V 12

tot

s

Z

V = 545 mA

11. VC = VL = 100 V at resonance

Z = R = mA 50

V 10

max

s

I

V = 200

XL = XC = mA 50

V 100

max

L

I

V= 2 k

176

Page 176: Dc Answers

Chapter 17

12. fr = F)mH)(0.015(0.0082

1

2

1

LC= 459 kHz

XL = 2(459 kHz)(0.008 mH) = 23.1

Q =

10

1.23

R

X L = 2.31

BW = 31.2

kHz 459

Q

fr = 199 kHz

f1 = fr 2

BW = 459 kHz

2

kHz 199 = 359.5 kHz

f2 = fr + 2

BW = 459 kHz +

2

kHz 199 = 558.5 kHz

13. Imax =

10

V 7.07

R

Vs = 707 mA at resonance

Ihalf-power = 0.707Imax = 0.707(707 mA) = 500 mA 14. At f1:

XC = F) kHz)(0.015 53592

1

= 29.5

XL = 2(359.5 kHz)(0.008 mH) = 18.1 XC XL = 29.5 18.1 = 11.4

=

10

4.11tan 1 = 48.7 current leading

At f2:

XC = F) kHz)(0.015 55582

1

= 19.0

XL = 2(588.5 kHz)(0.008 mH) = 28.1 XL XC = 28.1 19.0 = 9.1

=

10

1.9tan 1 = 42.3 current lagging

Figure 17-2

r = 0 15. Refer to Figure 17-2.

fr = LC2

1 Choose C = 0.001 F

(a) fr = 500 kHz

LC

fr 22

4

1

L = F)001.0(kHz) 500(4

1

4

12222

Cfr

= 101 H

(b) fr = 1000 kHz

L = F)001.0(kHz) 1000(4

1

4

12222

Cfr

= 25.3 H

177

Page 177: Dc Answers

Chapter 17

(c) fr = 1500 kHz

L = F)001.0(kHz) 1500(4

1

4

12222

Cfr

= 11.3 H

(d) fr = 2000 kHz

L = F)001.0(kHz) 2000(4

1

4

12222

Cfr

= 6.33 H

Part 2: Parallel Circuits Section 17-4 Impedance of Parallel RLC Circuits 16. XL = 2fL = 2(12 kHz)(15 mH) = 1131

XC = )F022.0)(kHz 12(2

1

2

1

fC= 603

Z =

90603

1

901131

1

0100

11

= mS j1.66 mS j0.884mS 10

1

= 99.74.43

17. From Problem 16, Z = 99.74.43 The small negative phase angle indicates a slightly capacitive circuit. 18. The circuit was found to be capacitive in Problem 17. A decrease in frequency to a point where

XL is slightly less than XC will result in an inductive circuit. XL < XC

2fL < fC2

1

f2 < LC24

1

f < LC24

1

f < LC2

1

f <F) mH)(0.022 2

1

f < 8.76 kHz

178

Page 178: Dc Answers

Chapter 17

Section 17-5 Analysis of Parallel RLC Circuits

19. IT =

43.47.99

V 05

Z

Vs = 50.24.43 mA

IR =

0100

V 05

R

Vs = 500 mA

IL =

901131

V 05

L

s

X

V = 4.4290 mA

IC =

90603

V 05

C

s

X

V = 8.2990 mA

VR = VL = VC = 50 V 20. XL = j9.42 k; XC = j72.3 k ZT = 100 j9.42 k j72.3 k = 58.953.9

21. IR =

0100

V 05 = 500 mA; IL =

k9042.9

V 05 = 53190 A

IC =

k 903.72

V 05 = 69.190 A; IT =

9.539.58

V 05 = 84.953.9 mA

Section 17-6 Parallel Resonance 22. ZT = (infinitely high)

23. fr = pF) mH)(47 (502

1

2

1

2

12

LCLCL

CRW

= 104 kHz

XL = 2frL = 2(104 kHz)(50 mH) = 32.7 k

Q =

20

k7.32

W

L

R

X = 1635

Zr = RW(Q2 + 1) = 20 (16352 + 1) = 53.5 M 24. Zr = 53.5 M and fr = 104 kHz from Problem 23.

Itot = M5.53

V 6.3 = 11.8 A

XL = 2frL = 2(104 kHz)(50 mH) = 32.7 k

IC = IL = 22 )k7.32()20(

V 6.3

= 164 mA

25. Ptrue = (164 mA)2 20 = 538 mW; Pr = 0 VAR Pa = (11.8 A)2 53.5 M = 7.45 mVA

179

Page 179: Dc Answers

Chapter 17

Part 3: Series Parallel RLC Circuits Section 17-7 Analysis of Series-Parallel RLC Circuits

26. (a) ZT = jXL + C

C

XR

XR

j

)j(

= j100 +

3.34266

33000j100j

150j220

)150j)(220( = j100 + 12455.7

= j100 + 69.9 j102.4 = 69.9 j2.4 = 69.91.97

(b) ZT = jXL + C

C

XR

XR

j

)j(

= j8 k + j120 k

15.6 39.8

= j8 k + 7.6950.2 k

= j8 k + 4.92 k j5.91 k = 4.92 k + j2.09 k = 5.3523.0 k 27. From Problem 26: (a) = 1.97 (capacitive) (b) = 23.0 (inductive) 28. 1.5 H = 1500 mH XL = 2(2 kHz)(1500 mH) = 18.9 k

XC = )F0047.0)(k 2(2

1

= 16.9 k

ZLR2C = jXL (R2 jXC) = LC

CL

XXR

XRX

jj

)j(j

2

2

=

k 19.51.22

)k 5.377.27)(k 909.18( = 23.747.3 k = 16.1 k + j17.4 k

ZT = R1 + ZLR2C = 33 k + 16.1 k + j17.4 k = 49.1 k + j17.4 k = 52.1 19.5 k

VR1 = V 012k5.191.52

k033

s

T

1 VZ

R= 7.6019.5 V

VL = V 012k5.191.52

k3.477.23

s

T

LR2C VZ

Z= 5.4627.8 V

VR2 = V 8.2746.5k5.377.27

k022

j2

L

2 VR

CXR= 4.3463.3 V

VC = V 8.2746.5k5.377.27

k909.16

j2

L

C VX

CXR= 3.3324.7 V

180

Page 180: Dc Answers

Chapter 17

29. See Figure 17-3. XC = 16.9 k, XL = 18.9 k Z1 = R2 jXC = 22 k j16.9 k = 27.737.5 k

Z2 = XL Z1 =

k j2k22

)k 909.18)(k 5.377.27( = 23.747.3 k = 16.1 k + j17.4 k

ZT = R1 + Z2 = 33 k + 16.1 k + j17.4 k = 49.1 k + j17.4 k = Req + jXeq Xeq = 2fL

1.38 H49.1 k

Figure 17-3

L = kHz) 2(2

k 4.17

2

f

X eq = 1.38 H

30. XC = )F47)(Hz 60(2

1

= 56.4

XL = 2(60 Hz)(390 mH) = 147 ZA = R1 + jXL = 100 j147 = 17855.8

ZB = R2 ZA =

j147 200

) 8.58178)( 0100( = 71.819.5 = 67.7 + j24.0

ZT = XC + ZB = j56.4 + 67.7 + j24.0 = 67.7 j32.4 = 74.825.7

VR2 = V 01157.258.74

5.198.71

s

T

B VZ

Z = 11045.2 V

I2 =

0100

V2.45110

2

R2

R

V = 1.1045.2 A

31. From Problem 30: I2 = 1.1045.2 A The phase angle between I2 and the source voltage is 45.2 with I2 leading.

32. ZA = R2 XL XC2 =

k 10

1j

k 5

1j

k 10

11

= mS451414.0

1

mS j0.1 mS 0.1

1

= 7.0745 k = 5 k + j5 k

ZB = R1 jXC1 = 3.3 k j1 k ZT = ZA + ZB = 8.3 k + j4 k = RT + jXT RT = 8.3 k, XT = 4 k (inductive)

181

Page 181: Dc Answers

Chapter 17

33. From Problem 32, ZT = 8.3 k + j4 k = 9.2125.7 k

IT =

k7.2521.9

V010

T

s

Z

V = 1.0925.7 mA

ZA = 7.0745 k from Problem 32.

VZA = V 010k7.2521.9

k4507.7

s

T

A VZ

Z = 7.6719.3 V

IR1 = IC1 = IT = 1.0925.7 mA

IR2 =

k010

V3.1967.7

2

ZA

R

V = 76719.3 A

IC2 =

k9010

V3.1967.7

C2

ZA

X

V = 767109.3 A

IL =

k905

V3.1967.7

L

ZA

X

V = 1.53-70.7 mA

VR1 = ITR1 = (1.0925.7 mA)(3.30 k) = 3.6025.7 V VR2 = VL = VC2 = VZA = 7.6719.3 V VC1 = ITXC1 = (1.0925.7 mA)(190 k) = 1.09116 V 34. For Vab = 0 V, Va must equal Vb. XL1 = 226 , XL2 = 151

Va = VL1 = V 012j226180

90226

= 9.3838.5 V

It is not possible for Vab to be 0 V because the LC branch has no resistance; thus, the voltage a to b can only have a phase angle of 0, 90, or 90 (the branch is either resonant, purely inductive, or purely capacitive depending on the value of XL). Therefore, it is not possible for Va to equal Vb in both magnitude and phase, which are necessary conditions.

35. See Figure 17-4.

Figure 17-4

XC = )F22.0)(kHz 3(2

1

= 241

XL1 = 2(3 kHz)(12 mH) = 226 XL2 = 2(3 kHz)(8 mH) = 151

182

Page 182: Dc Answers

Chapter 17

Za + Zb + Zc = 100 j226 + j151 = 100 + j377 = 39075

Z1 =

75390

) 0100)( 90226(

cba

ca

ZZZ

ZZ = 57.915

Z2 =

75390

) 0100)( 90151(

cba

cb

ZZZ

ZZ = 38.515

Z3 =

75390

) 90151)( 90226(

cba

ba

ZZZ

ZZ = 86.9105

Combining R1 + Z1 in parallel with XC + Z2: (1800 + 57.915) (24190 + 38.515 ) = (180 + 55.9 + j14.98 ) (j241 + 37.2 + j9.96 ) = (236 + j15.0 ) (37.2 j231 ) = (2363.64 ) (23480.9 ) = 15938.9 ZT = 15938.9 + 86.9105 = 124 j99.8 22.5 + j83.9 = 101.5 j15.9 = 1038.9

VR1Z1 = VCZ2 = V 0129.8103

9.38159

= 18.530.0 V

VR1 = V 0.305.1864.3236

0180

R1Z1

R1Z1

1 VZ

R = 14.133.6 V

VC = V 0.305.189.80234

90241

CZ2

CZ2

C VZ

X = 19.139.1 V

Vab = VR1 VC = 14.133.6 V 19.139.1 V = (11.7 V j7.80 V) (14.8 V j12.0 V) = 3.10 V + j4.20 V = 5.22126 V

I100 =

0100

V 12622.5

0100abV

= 52.2126 mA

36. There are two resonant frequencies. One is associated with the parallel circuit containing C

and L2. The other is associated with the series circuit consisting of C and L1. 37. For series resonance:

fr = )F15.0)(mH 10(2

1

2

1

1

CL= 4.11 kHz

XL1 = 2(4.11 kHz)(10 mH) = 258 XC = 258

XL2 = 2(4.11 kHz)(25 mH) = 646

Zr = RW1 + jXL1 +CLW

LWC

XXR

XRX

jj

)j(j

22

22

= 2 + j258 + 258j646j4

)646j4(58j2

= 47590

Vout = V 010904750860

90475

s

r

r VZR

Z

= 4.8361.0 V

183

Page 183: Dc Answers

Chapter 17

For parallel resonance:

fr = )F15.0)(mH 25(2

1

2

1

2

12

LCLCL

CRW

= 2.60 kHz

XL = 408

Q =

4

408

2

2

W

L

R

X = 102

Zr = RW )1102(41 22 Q = 41.6 k

XL1 = 2FrL1 = 2(2.6 kHz)(10 mH) = 163 Since Zr is much greater than R, RW1, or XL1 and is resistive, the output voltage is approximately:

Vout 100 V 38. See Figure 17-5. The winding resistance is neglected because it contributes negligibly to the

outcome of the calculations.

fr LC2

1 2 1

4rf

LC

C Lfr

24

1

For fr = 8 MHz, 9 MHz, 10 MHz, and 11 MHz

C1 = H)10(MHz) 8(4

12

= 39.6 pF

Figure 17-5

C2 = H)10(MHz) 9(4

12

= 31.3 pF

C3 = H)10(MHz) 10(4

12 = 25.3 pF

C4 = H)10(MHz) 11(4

12 = 20.9 pF

Part 4: Special Topics Section 17-8 Bandwidth of Resonant Circuits

39. Q =

25

k 2

R

X L = 80

BW = 80

kHz 5

Q

fr = 62.5 Hz

40. BW = f2 f1 = 2800 Hz 2400 Hz = 400 Hz

fr = 2

Hz 2800 Hz 2400

221

ff = 2600 Hz

184

Page 184: Dc Answers

Chapter 17

185

41. Pf1 = (0.5)Pr = (0.5)(2.75 W) = 1.38 W

42. Q = Hz 800

kHz 8

BW

fr = 10

XL(res) = QRW = 10(10 ) = 100

L = kHz) 82

100

2

r

L

f

X = 1.99 mH

XC = XL at resonance

C = ) kHz)(100 82

1

2

1

Cr Xf = 0.2 F

43. BW = Q

fr

If Q is doubled, the bandwidth is halved to 200 Hz.

Multisim Troubleshooting and Analysis 44. No fault. 45. C1 is leaky. 46. R1 is open. 47. C1 is leaky. 48. L1 is open. 49. No fault. 50. fc = 504.89 kHz 51. fc = 338.698 kHz

Page 185: Dc Answers

Chapter 18 Passive Filters

Section 18-1 Low-Pass Filters

1. Vout =

j500k 2.2

90500100 V = 0.491 V j2.16 V = 2.2277.2 V rms

2. (a) 100 Hz is passed (b) 1 kHz is passed (c) 2 kHz is passed (d) 3 kHz is borderline (e) 5 kHz is rejected

3. (a) XC = F) Hz)(10 60(2

1

= 265

Vout = V 010j265 100

90265

= 9.3620.7 V

(b) XC = F) Hz)(8.2 400(2

1

= 48.5

Vout = V 010j48.5 47

905.48

= 7.1844.1 V

(c) XL = 2(1 kHz)(5 mH) = 31.4

Vout = V 010j31.4 330

0330

= 9.965.44 V

(d) XL = 2(2 kHz)(80 H) = 1

Vout = V 010j1 10

010

= 9.955.74 V

4. (a) fc = F) )(10 100(2

1

= 159 Hz

XC = F) Hz)(10 159(2

1

= 100

Vout = V 05j100 100

90100

= 3.5445 V

(b) fc = F) )(8.2 47(2

1

= 413 Hz

XC = F) Hz)(8.2 413(2

1

= 47.0

Vout = V 05j47 47

9047

= 3.5445 V

186

Page 186: Dc Answers

Chapter 18

18

(c) fc = ) mH/330 5(2

1

= 10.5 kHz

XL = 2(10.5 kHz)(5 mH) = 330

Vout = V 05j330 330

0330

= 3.5445 V

(d) fc = )10/H 08(2

1

= 20.0 k

XL = 2(20.0 kHz)(80 H) = 10

Vout = V 05j10 10

010

= 3.5445 V

5. fc = RC2

1

C = cRf2

1

(a) C = Hz) 60)(220(2

1

= 12.1 F

(b) C = Hz) 500)(220(2

1

= 1.45 F

(c) C = kHz) 1)(220(2

1

= 0.723 F

(d) C = kHz) 5)(220(2

1

= 0.144 F

6. Position 1: Position 3:

CT = 1000 pF fc =

TRC2

1

fc = pF) 1000)(k10(2

1

= 15.9 kHz

CT =

F047.0F022.0

1

F01.0

11

Position 4:

CT =

pF 1000

1

F001.0

11

= 500 pF = 0.00873 F

fc = F) 00873.0)(k10(2

1

= 1.82 kHz

fc = pF) 500)(k10(2

1

= 31.8 kHz

Position 2: CT = 0.022 F + 0.047 F = 0.069 F

fc = F) 069.0)(k10(2

1

= 231 Hz

7

Page 187: Dc Answers

Chapter 18

7. See Figure 18-1.

Figure 18-1

8. (a)

V 1

V 1log20log20

in

out

V

V = 0 dB

(b)

V 5

V 3log20log20

in

out

V

V = 4.44 dB

(c)

V 10

V 7.07log20log20

in

out

V

V = 3.01 dB

(d)

V 25

V 5log20log20

in

out

V

V = 14.0 dB

9. dB =

in

out

V

Vlog20

20

dBlog 1

in

out

V

V

Vout =

20

dBlog 1

inV

(a) Vout =

20

1logV) 8( 1 = 7.13 V

(b) Vout =

20

3logV) 8( 1 = 5.67 V

(c) Vout =

20

6logV) 8( 1 = 4.01 V

(d) Vout =

20

20logV) 8( 1 = 0.800 V

188

Page 188: Dc Answers

Chapter 18

10. The output decreases at the rate of 20 dB/decade (a) 10 kHz is 2 decades above fc: Vout = 20 dB (b) 100 kHz is 2 decades above fc: Vout = 40 dB (c) 1 MHz is 3 decades above fc: Vout = 60 dB 11. The output decreases at the rate of 20 dB/decade (a) 10 kHz is in the pass bandc: Vout = 0 dB (b) 100 kHz is the cutoff frequency fc: Vout = 3 dB (ideally 0 dB) (c) 1 MHz is 1 decade above fc: Vout = 20 dB

Section 18-2 High-Pass Filters 12. The output increases at the rate of 20 dB/decade (a) 10 kHz is 1 decade below fc: Vout = -20 dB (b) 100 kHz is the cutoff frequency fc: Vout = 3 dB (ideally 0 dB) (c) 1 MHz is in the pass band: Vout = 0 dB

13. Vout =

j500k 2.2

k 02.2100 V = 9.7512.8 V

14. (a) 1 Hz is rejected. (b) 20 Hz is rejected. (c) 50 Hz is borderline. (d) 60 Hz is passed. (e) 30 kHz is passed.

15. (a) XC = F) Hz)(10 60(2

1

= 265

Vout = V 010j265 100

0100

= 3.5369.3 V

(b) XC = F) Hz)(4.7 400(2

1

= 84.7

Vout = V 010j84.7 47

047

= 4.8561.0 V

(c) XL = 2(1 kHz)(5 mH) = 31.4

Vout = V 010j31.4 330

904.31

= 94784.6 mV

(d) XL = 2(2 kHz)(80 H) = 1

Vout = V 010j1 10

901

= 99584.3 mV

16. fc = RC2

1, fc =

)/(2

1

RL

(a) fc = F) )(10 100(2

1

= 159 Hz; Vout = 7.07 V

189

Page 189: Dc Answers

Chapter 18

190

(b) fc = F) )(4.7 47(2

1

= 720 Hz; Vout = 7.07 V

(c) fc = ) mH/330 5(2

1

= 10.5 kHz; Vout = 7.07 V

(d) fc = ) H/10 80(2

1

= 19.9 kHz; Vout = 7.07 V

Figure 18-2

720 Hz

17. See Figure 18-2. 18. Position 1: Position 3:

RT = 1 k + 3.3 k + 1 k = 5.3 k RT = 860 + 1 k = 1.86 k

fc = F) 015.0)(k3.5(2

1

= 2.00 kHz fc =

F) 015.0)(k86.1(2

1

= 5.70 kHz

Position 2: Position 4: RT = 3.3 k + 1 k = 4.3 k RT = 2.2 k + 3.3 k + 1 k = 6.5 k

fc = F) 015.0)(k5.6(2

1

= 1.63 kHz CT =

F 01.0

1

F015.0

11

= 0.006 F

fc = F) 006.0)(k3.4(2

1

= 6.17 kHz

Page 190: Dc Answers

Chapter 18

Section 18-3 Band-Pass Filters

19. (a) f0 = F) mH)(0.01 12(2

1

2

1

LC = 14.5 kHz

(b) f0 = F) mH)(0.022 2(2

1

2

1

LC = 24.0 kHz

20. (a) RT = 10 + 75 = 85

f0 = F) mH)(0.01 12(2

1

2

1

LC = 14.5 kHz

XL = 2(14.5 kHz)(12 mH) = 1.10 k

Q =

85

k 1.1

T

L

R

X = 13

BW = 13

kHz 5.140 Q

f = 1.12 kHz

(b) RT = 10 + 22 = 32

f0 = F) mH)(0.022 2(2

1

2

1

LC = 24.0 kHz

XL = 2(24.0 kHz)(2 mH) = 302

Q =

32

302

T

L

R

X = 9.44

BW = 9.44

kHz 0.240 Q

f = 2.54 kHz

21. Using the results of Problems 19 and 20:

(a) f2 = f0 + 2

kHz 1.12kHz 5.14

2

BW = 14.5 kHz + 560 kHz = 15.06 kHz

f1 = f0 2

kHz 1.12kHz 5.14

2

BW = 14.5 kHz 560 Hz = 13.94 kHz

(b) f2 = f0 + 2

kHz 2.54kHz 0.24

2

BW = 24.0 kHz + 1.27 kHz = 25.3 kHz

f1 = f0 2

kHz 2.24kHz 0.24

2

BW = 24.0 kHz 1.27 kHz = 22.7 kHz

22. Center frequency = f0 = LCL

CRW

2

12

Since RW is assumed to be zero, f0 = LC2

1.

191

Page 191: Dc Answers

Chapter 18

(a) f0 = F) H)(10 1(2

1

= 50.3 Hz

(b) f0 = pF) H)(25 5.2(2

1

= 20.1 MHz

23. (a) f0 = F) H)(10 1(2

H 1

F)10()4(1

2

122

LCL

CRW

= 50.3 Hz

XL = 2(50.3 Hz)(1 H) = 316

Q =

4

316

W

L

R

X = 79

Ztank = RW(Q2 + 1) = 4 (792 + 1) = 24,968

Vout = V 120680968,24

968,24

= 117 V

(b) f0 = pF) H)(25 2(2

1

2

1

LC = 10.1 MHz

XL = 2(20.1 MHz)(2.5 H) = 316

Q =

4

316

W

L

R

X = 79

Ztank = RW(Q2 + 1) = 4 (792 + 1) = 24,968

Vout = V 1201000968,24

968,24

= 115 V

24. Position 1:

f0 = pF) H)(1000 50(2

1

2

1

LC = 712 kHz

Position 2:

f0 = F) H)(0.01 100(2

1

2

1

LC = 159 kHz

Position 3:

f0 = F) H)(0.001 270(2

1

2

1

LC = 306 kHz

f12 = 712 kHz 159 kHz = 553 kHz f23 = 306 kHz 159 kHz = 147 kHz f13 = 712 kHz 159 kHz = 405 kHz Responses do not overlap.

192

Page 192: Dc Answers

Chapter 18

25. f0 = (BW) Q = (500 Hz)40 = 20 kHz

XC = mA 20

V 5.2 = 125

C = CXf02

1

= 0.064 F

Q = W

L

R

X = 40

RW = 40

LX = 0.025XL = 0.025(2f0L)

f0 = LCL

RW

2

12

LC

LCf

LCL

CLf

LCL

R

f

W

2

20

2

2

20

2

2

20

4

))2(025.0(1

4

))2)(025.0(1

4

1

Note: in the above derivation, (0.025(2))2 = 0.025

= LCf 220 4 LCf 2

025.01

= 1 )025.04( 220 LCf

L = )025.04(

122

0 Cf = 989 H

Section 18-4 Band-Stop Filters

26. (a) f0 = F) H)(0.0022 100(2

1

2

1

LC = 339 kHz

(b) f0 = F) mH)(0.047 5(2

1

2

1

LC = 10.4 kHz

27. (a) f0 F) H)(6.8 5.0(2

1

2

1

LC = 86.3 Hz

(b) f0 pF) H)(47 10(2

1

2

1

LC = 7.34 MHz

28. (a) f0 = LCL

CRW

2

12

= 86.3 Hz

XL = 2(86.3 Hz)(0.5 H) = 271

Q =

8

271

W

L

R

X = 33.9

Ztank = RW(Q2 + 1) = 8 ((33.9)2 +1)= 9.20 k

V 50k2.10

k 1

= 4.90 V Vout =

193

Page 193: Dc Answers

Chapter 18

194

(b) f0 = pF) H)(47 10(2

H 10

pF)1

47()8( 2

= 7.34 MHz

(7.34 MHz)(10

Q =

XL = 2 H) = 461

8WR2 2

461LX = 57.6

Z = R (Q + 1) = 8 (57.6 + 1) = 26.6 k

Vout =

tank W

V 50k8.28

k2.2

= 3.82 V

and, f0 = 1200

f0 =

29. For the pass b kHz:

CL12

1

CL

f 20

124

1

L1 = F)22.0(kHz) 1200(4

1

4

1222

02

Cf

= 0.08 H

For the stop band, f0 = 456 kHz:

0 f = CL22

1

F)22.0(kHz) 456(4

1

4

1222

02

L2 = Cf

= 0.554 H

Multisim Troubleshooting and Analysis 30. C1 is open. 31. C is leaky.

2. R is open.

3. C1 is shorted.

4. L is open.

5. No fault.

6. f = 107.637 kHz

7. BW 88.93 MHz

2

3 3

3 3 2

3 3 r

3

Page 194: Dc Answers

Chapter 19 Circuit Theorems in AC Analysis

Section 19-1 The Superposition Theorem 1. Z1 = R2 R3 = 6880 Z2 = R1 + Z1 = 16880

Z3 = XL Z2 =

8.492617

)k902)(01688( = 1.2940.2 k = 985 + j833

ZT1 = XC + Z3 = j1 k + 985 + 833 = 985 j167 = 9999.6

IT1 =

9.6999

V 02

T1

1

Z

V = 29.6 mA

IR1 = mA 6.92k8.4962.2

k02

T1

2L

L IZX

X= 1.5349.8 mA

IR3(V1) = mA 8.4953.1k02.3

k01

R1

32

2 IRR

R= 46949.8 A = 303 A + j358 A

With V1 reduced to zero (shorted):

Z1 = XC XL =

k901

)k902)(k901( = 290 k

Z2 = R1 + Z1 = 1 k j2 k = 2.2463.4 k

Z3 = R3 Z2 =

k j2k2.3

)k4.6324.2)(k02.2(

=

k3277.3

k4.6393.4 = 1.3131.4 k = 1.12 k j0.68 k

ZT2 = R2 + Z3 = 2.12 k j0.68 k = 2.2317.8 k

IT2 =

8.172.23

V 303

T2

2

Z

V = 1.3547.8 mA

IR3(V2) = mA 8.4735.1k3277.3

k4.6324.2

= 80216.4 A = 769 A + j226 A

IR3(tot) = IR3(V1) + IR3(V2) = 1.07 mA + j584 A = 1.22 28.6 mA

195

Page 195: Dc Answers

Chapter 19

2. Use the results of Problem 1: With V2 reduced to zero (shorted): IR1 = 1.53 49.8 mA

IR2(V1) = mA 8.4953.1k 2.3

k 2.2

R1

32

3 IRR

R = 1.0549.8 mA = 678 A + j802 A

With V1 reduced to zero (shorted): IR2(V2) = IT2 = 1.3547.8 mA = 907 A = j1 mA The total current through R2 is: IR2 = IR2(V2) + IR2(V2) = 1.59 mA + j1.80 mA = 2.448.5 mA VR2 = IR2R2 = (2.448.5 mA)(10k) = 2.448.5 V The total voltage across the R2 branch is: VT = V2 + VR2 = 330 V + 2.448.5 V = (2.6 V + j1.5 V) + (1.59 V + 1.8 V) = 4.19 V + j3.3 V = 5.3338.2 V 3. With Vs reduced to zero (shorted): XL = 1.9 k, XC = 2.41 k

Z1 = R1 (R2 + XL) =

k j1.9k5.6

)k 9.1jk 7.4)(k08.1(

=

k3.1677.6

)k221.5)(k08.1( = 1.365.7 k = 1.35 k j0.135 k

IZ1 = mA 0100k j2.28k35.1

k9041.2

S

1C

C IZX

X

= mA 0100k4.5965.2

k9041.2

= 90.930.6 mA

IR1(I) = Z1C21

C2 IXRR

XR

= mA 6.309.90k3.2093.6

k1.2728.5

= 69.323.8 mA = 63.4 mA j28.0 mA

With Is reduced to zero (opened):

ZT = R1 + (XC (R2 + XL)) = 1.80 k +

k j0.51k7.4

)k221.5)(k9041.2(

= 1.8 k + 2.6059.2 k = 3.8535.5 k

IR1(V) =

k 35.53.85

V 075

T

s

Z

V = 19.535.5 k = 15.9 mA + j11.3 mA

The total current through R1 is: IR1(tot) = IR1(I) + IR1(V) = 79.3 mA j16.7 mA = 81.011.9 mA

196

Page 196: Dc Answers

Chapter 19

4. (a) With Is2 zeroed (open), there is no current through RL due to Is1, so IL(1) = 0 A. With Is1 zeroed (open), the current through RL due to Is2 is:

IL(2) = A 01k1.231.5

k902 mA 01

k j2k7.4

k902

s2

CL

C IXR

X

= 39266.7 mA IL = IL(1) + IL(2) = 0 A + 39266.9 A = 39266.9 mA

(b) XC1 = XC2 = XC3 = pF) kHz)(100 5.2(2

1

= 637 k

With V2 zeroed (shorted), the impedance “seen” by V1 is developed as follows: ZA = RL jXC3 = 5 M j637 k = 5.047.26 M

ZB = R2 ZA =

M06.603.6

)M26.704.5)(M01( = 8351.2 k = 835 k j17.5 k

ZC = XC2 + ZB = j637 k + 835 k j17.5 k = 835 k j654 k = 1.0638 M

ZD = R1 ZC =

M6.1995.1

)M3806.1)(M01( = 54518.5 k = 517 k j172 k

ZT(1) = XC1 + ZD = j637 k + 517 k j172 k = 517 k j809 k = 96057.4 k

IT(1) =

k 4.57960

V 6040

T(1)

1

Z

V = 41.7117.4 A

IC2(1) = A 4.1177.41M8.1994.1

M01

T(1)

C1

1 IZR

R = 21.4137 A

IL(1) = A 1374.21M06.603.6

M01

C2(1)

A2

2 IZR

R = 3.55143 A

With V1 zeroed (shorted), the impedance “seen” by V2 is developed as follows:

ZA = R1 XC1 =

M5.3219.1

)k90637)(M01( = 53557.5 k = 287 k j450 k

ZB = XC2 + ZA = 287 k + j1.09 M = 1.1375.2 M

ZD = (RL + XC3) ZB =

M j1.73M29.5

)M2.7513.1)(k j637M5(

=

M1.1856.5

)M2.7513.1)(M7.774.4( = 1.0264.4 M = 442 k j921 k

ZT(2) = R2 + ZC = 1.44 M j921 k = 1.7132.6M

IT(2) =

M.6321.71

V 3020

T2

2

Z

V = 11.762.6 A

IL(2) = A 6.627.11M1.1856.5

M2.7513.1

T(2)

C3LB

B IXRZ

Z = 2.375.46 A

IL(tot) = IL(1) + IL(2) = 3.55143 A + 2.375.46 A = (2.88 A + j2.13 A) + (2.36 A j0.225 A) = 0.478 A + j2.35 A = 2.40101.5 A

197

Page 197: Dc Answers

Chapter 19

5 See Figure 19-1(a). . R + R 5 = 1 k + 3.9 k + 10 k + 5.1 k = 20 k

=

RT = + R4 + R2 3

ITk 20

= 1 mA V 20

I R = 16.1 V (1 mA)(1 k) = 15.1 V

1(b).

T = R (R 1.2 k + 2.36 k = 3.56 k

peak) =

IR3 = ITR3 = (1 mA)(3.9 k) = 3.9 V VB(dc) = 20 V 3.9 V = 16.1 V VD(dc) = 0 V VC(dc) = VB(dc) T 2

VA(dc) = 0 V See Figure 19- VA(peak) = 9 V R R1 + + R4 R6) =3 2

IT(k 3.56

= 2. A V 9

53 m

VB(peak) = V I R = 9 V (2.53 mA)(1.2 k) = 9 V 3.04 V = 5.96 V

IR2(peak) =

A(peak) T(peak) 1

mA 2.53k 9.9)

6423

RR

k 3.9(

3

peakTIRR

R = 1 mA

VC(peak) = VD(peak) = VB(peak) IR2(peak)R2 = 5.96 V (1 mA)(1 k) = 4.96 V

198

Page 198: Dc Answers

Chapter 19

Figure 19-1

6. With the current source zeroed (see Figure 19-2(a)):

ZT = 1890 +

7.7851

)6.716.31)(9020(

= 1890 + 12.482.9 = j18 + 1.53 + j12.3 = 1.53 j5.69 = 5.9074.9

IT = IC(Vs) =

9.7490.5

V3012 = 2.04105 A = 522 mA + j1.97 A

With the voltage source zeroed (see Figure 19-2(b)): Impedance of the L1, L2, C branch:

Z = j30 +

j2

)9018)(9020( = j30 +

902

0360 = j30 j180 = j150

IL2 = mA 1205002.863.150

010 mA 120500

j15010

010

= 33.3206 mA

IC(Is) = mA 2063.33902

9020

= 333206 mA = 298 mA j147 mA

The total capacitor current is: IC(tot) = IC(Vs) + IC(Is) = 821 mA j1.82 A = 2.00114 A

199

Page 199: Dc Answers

Chapter 19

Figure 19-2 7. From Problem 6 With current source zeroed (open): IT(VS) = 2.04105 A

IR(VS) = 1 2T(VS)

1

j ( ) 12.4 97.7I 2.04 105 1.26 112.7 A

20 90L L

L

X R jX

jX

With the voltage source zeroed (shorted): Impedance of LC branch is ZLC = 150-90

LC

LC

1500 9010 0

150 90

R Ζ

ΖZ

IR(IS) = TS

10 00.5 120 A = 0.5 120 A

10 0

Z

IR

IRT = IR(VS) – IR(IS) = 1.26 -0.24 A + j0.727 A 112.7 A 0.5 120 A = 766 71.7 A

Section 19-2 Thevenin’s Theorem 8. From Problem 5, V = V = 4.96 V D(peak) C(peak)

Vth = VD(rms) = 0.707(4.96 V) = 3.51 V Rth = R4 (R2 + R1 R3) = 10 k (1.0 k + 1.2 k 3.9 k) = 10 k 2.14 k = 1.76 k

9. (a) Vth = V 025j75100

9075

= 1553.1 V s

C1

C VjXR

X

Zth = R2 +

9.36125

)9075)(0100( 027

C1

C1

jXR

XR = 63 j48

= 79.237.3

(b) Vth = V 0390980

90400

= 1.220 V s

L2L1

L1 VXX

X

Zth =

90980

)90580)(90400(

L2L1

L2L1

XX

XX = 23790 = j237 = 23790

(c) VT = V1 + V2 = 15 V + 8.66 V + j5 V = 24.211.9 V

200

Page 200: Dc Answers

Chapter 19

Vth = V 9.112.24k0200

k0100

T

21

2 VRR

R= 12.111.9 V

Zth = XC + R1 R2 = 50 k j20 k = 53.921.8 k

10. XC1 = XC2 = F) Hz)(0.047 100(2

1

= 33.86 k

Find Zth looking from the open terminals after removing RL:

ZA = R1 XC1 =

k0.574.40

)k9086.33)(k022( = 18.4433.0 k = 15.5 k j10 k

ZB = R2 + ZA = 22 k + 15.5 k j10 k = 37.5 k j10 k = 38.814.9 k

ZC = XC2 ZB =

k5.497.57

)k9.148.38)(k9086.33( = 22.7755.4 k

= 12.9 k j18.7 k ZD = R3 + ZC = 34.9 k j18.7 k = 39.628.2 k Zth = ZD = 39.628.2 k = 34.9 k j18.7 k

Find Vth looking from the source after removing RL: ZA = R2 jXC2 = 22 k j33.86 k = 40.457 k

ZB = XC1 ZA =

k722.71

)k574.40)(k9086.33( = 19.275 k = 4.97 k j18.6 k

ZT = R1 + ZB = 26.97 k j18.6 k = 32.734.5 k

IT =

k5.347.32

V032

T

s

Z

V = 0.9834.5 mA

IR2 = mA 5.3498.0k j67.7k22

k9086.33

T

AC1

C1 IZX

X = 0.4716.5 mA

IC2 = IR2 = 0.4716.5 mA Vth = VC2 = IC2XC2 = (0.4716.5)(33.8690 k) = 15.973.5 V The Thevenin equivalent circuit with RL connected is shown in Figure 19-3.

The current through RL is:

IL =

k9.72.136

V5.739.15

thL

th

ZR

V = 11765.6 A

Figure 19-3

201

Page 201: Dc Answers

Chapter 19

11. The circuit is redrawn in Figure 19-4(a) for easier analysis. Combining R1, R2, and XL:

ZA = R1 + R2 XL = 10 k +

k j3 k3.3

)k903)(k03.3( = 2.49 k + j1.64 k

= 2.9833.4 k Combining R3 and ZA:

ZB = R3 ZA =

k5.76.12

)k4.3398.2)(k010( = 2.3725.9 k

Figure 19-4

Combining XC and ZB:

Zth = XC ZB =

k3.6252.4

)k9.2537.2)(k905( = 2.621.8 k 2.62 k j0.082 k

Vth = V 050k7.615.4

k9.2537.2

= 26.387.6 V s

BC

B VZX

Z

The Thevenin circuit with R4 connected is shown in Figure 19-4(b).

VR4 = V 6.873.26k64.032.7

k07.4

= 16.988.2 V th

th4

4 VZR

R

12. Refer to Figure 19-5 (note that R3 has been removed).

ZA = R1 XL =

425.134

)9090)(0100( = 66.948 = 44.8 + j49.7

ZB = R2 + ZA = 194.8 + j49.7 = 20114.3

Zth = XC ZB =

8.19207

)3.14201)(90120( = 11755.9

Looking from Vs:

ZT = XL + R2 (R1 + XC) = j90 +

6.25277

)7.38192)(0100(

= j90 + 69.313.1 = j90 + 67.5 j15.7 = 67.5 + j74.3 = 10047.7

VL = V 0757.47100

9090

= 67.542.3 V

sT

L VZ

X

202

Page 202: Dc Answers

Chapter 19

VR2 = V) 3.425.67V 075(120j150

0150

)V(VXR

RLs

C2

2

=

7.38192

0150 (75 V 49.9 V j45.4 V) = (0.78138.7)(51.961.1 V)

= 40.522.4 V Vth = Vab = VR2 + VL = (37.4 V 15.4 V) + (49.9 V + j45.4 V) = 87.2 V + j30 V = 92.219 V

Figure 19-5

Section 19-3 Norton’s Theorem 13. Using Zth and Vth from Problem 9 in each part:

(a) In =

3.372.79

V1.5315

th

th

Z

V = 18915.8 mA

Zn = Zth = 79.237.3

(b) In =

90237

V022.1

th

th

Z

V = 5.1590 mA

Zn = Zth = 23790

(c) In =

k8.219.53

V9.111.12

th

th

Z

V = 22433.7 A

Zn = Zth = 53.921.8 k 14. From Problem 10, Zn = Zth = 39.628.2 k The total impedance seen by the source with the terminals shorted is the same (in this case) as Zn.

IT =

k2.286.39

V032

T

s

Z

V = 80828.2 A

203

Page 203: Dc Answers

Chapter 19

IR2 = A 2.28808k5.497.57

909.33

TC232C1

C1 IXRRX

X = 47512.3 A

In = IR3 = A 3.12475k574.40

909.33

R2

C23

C2 IXR

X = 39945.3 A

The Norton equivalent circuit with RL connected is shown in Figure 19-6.

IRL = A 3.45399k9.72.136

k2.286.39

n

nL

n IZR

Z = 11665.7 A

39.628.2 k

39945.3 A

Figure 19-6

15. First remove R4 and determine Zn looking in at the resulting open terminals.

ZA = R3 XC =

k6.262.11

)k905)(k010( = 4.4663.4 = 2 k j4 k

ZB = R1 + R2 XL = 10 k +

k3.4246.4

)k903)(k03.3(

= 10 k + 2.2247.7 k = 2.49 k + j1.64 k = 2.9833.4 k

Zn = ZA ZB =

k7.271.5

)k4.3398.2)(k4.6346.4(= 2.612.30 k =2.61 k j0.105 k

Looking from the source with R4 shorted: ZT = XC = 590 k

In =

k905

V050

T

s

Z

V= 1090 mA

The Norton equivalent circuit with R4 connected is shown in Figure 19-7.

IR4 = mA 9010k823.031.7

k30.261.2

n

n4

n IZR

Z= 3.5788.5 mA

VR4 = IR4R4 = (3.5788.5 mA)(4.70 k) = 16.888.5 V

Figure 19-7

204

Page 204: Dc Answers

Chapter 19

Section 19-4 Maximum Power Transfer Theorem

16. (a) XC = )F0047.0)(kHz 3(2

1

2

1

fC= 11.3 k

ZL = RL + jXL = 6.8 k + j11.3 k

L = kHz) 3(2

k 3.11

2

f

X L = 599 mH

(b) ZL = 8.2 k + j5 k (c) XL = 75.4 , XC = 60.3

Zth = R + XC XL = 500 +

901.15

)903.60)(904.75( = 50 j301

ZL = 50 + j301

L = Hz) 120(2

301

= 0.4 H

17. For maximum load power, ZL equals the complex conjugate of Zth. ZA = R1 jXC1 = 8.2 j10 = 12.950.6

ZB = R2 XC2 =

5.124.18

)904)(018( = 3.9177.5 = 0.846 j3.82

ZC = ZB ZA =

7.565.16

)5.7791.3)(6.509.12( = 3.0671.4 = 0.976 j2.90

Zth = R3 + ZC = 9.18 j2.90 ZL = 9.18 + j2.90

18. First convert the delta to a wye:

X1 = X2 = X3 =

121212

)12)(12( = 4

The circuit is redrawn in Figure 19-8(a). Remove ZL and Thevenize:

Zth = j4 + (6.8 + j4 ) j4 = j4 +

6.495.10

)904)(5.309.7( j4

j88.6

) j4)(j48.6(

= j4 + 370.9 = j4 + 0.98 + j2.8 = 0.98 + j6.8

Vth = V 0106.495.10

5.309.7V 010

j88.6

j48.6

= 7.519.1 V

For maximum power to ZL: ZL = 0.98 j6.8

IL =

096.1

V1.195.7

Lth

th

ZZ

V = 3.8319.1 A

PL(true) = = (3.83 A)2(0.98 ) = 14.4 W LLRI 2

205

Page 205: Dc Answers

Chapter 19

20

Figure 19-8

19. The circuit is redrawn in Figure 19-9 to determine Zth. The load impedance (real part) must

equal the Thevenin impedance (real part) and the reactive parts must be equal in magnitude but opposite in sign. That is, the impedances must be complex conjugates.

Zth =

0j12220

)90120)(0220(

90j100

)9090)(0100( = 6748 + 105.361.4

= 44.8 + j49.8 + 50.4 j92.5 = 95.2 j42.7 ZL = 95.2 + j42.7

Figure 19-9

Multisim Troubleshooting and Analysis 20. R2 is open. 21. C2 is leaky. 22. C1 is open. 23. No fault. 24. VTH = 750.281.40 mV ZTH = 11.970 k 25. IN = 30.142113.1 A ZN = 30.364.28 k

6

Page 206: Dc Answers

Chapter 20 Time Response of Reactive Circuits

Section 20-1 The RC Integrator 1. = RC = (2.2 k)(0.047 F) = 103 s 2. (a) 5RC = 5(56 )(47 F) = 13.2 ms (b) 5RC = 5(3300 k)(0.015 F) = 248 s (c) 5RC = 5(22 k)(100 pF) = 11 s (d) 5RC = 5(5.6 M)(10 pF) = 280 s

Section 20-2 Response of an Integrator to a Single Pulse 3. VC 0.632(20 V) = 12.6 V 4. (a) v 0.865(20 V) = 17.3 V (b) v 0.950(20 V) = 19.0 V (c) v 0.982(20 V) = 19.6 V (d) v 0.993(20 V) = 19.9 V (considered full charge of 20 V) 5. See Figure 20-1.

Figure 20-1

6. = RC = (1 k)(1 F) = 1 ms vout = 0.632(8 V) = 5.06 V See Figure 20-2 for output waveform. The time to reach steady-state with repetitive pulses is 5 ms.

Figure 20-2

207

Page 207: Dc Answers

Chapter 20

7. (a) Looking from the capacitor, the Thevenin resistance is R1 R2 = 5 k. = (5 k)(4.7 F) = 23.5 ms

Figure 20-3

(b) Vout(max) = V 20k 20

k 10

= 10 V

See Figure 20-3. 8. See Figure 20-4.

Figure 20-4

9. From Problem 7 23.5 ms The input pulse width equals one time constant, therefore Vout = 0.632(10V) = 6.32 V See Figure 20-5.

Figure 20-5 23.5 ms

6.32 V

Section 20-3 Response of RC Integrators to Repetitive Pulses 10. Transient time = 5RC = 5(4.7 k)(10 F) = 235 ms

208

Page 208: Dc Answers

Chapter 20

11. = (4.7 k)(10 F) = 47 ms

Figure 20-6

5 = 5(47 ms)= 235 ms See Figure 20-6. 12. See Figure 20-7.

Figure 20-7

13. T = kHz 10

11

f = 100 s

tW = 0.25(100 s) = 25 s 1st pulse: 0.632(1 V) 632 mV Between 1st and 2nd pulses: 0.05(0.632 V) = 31.6 mV 2nd pulse: 0.632(1 V 0.0316 V) + 0.0316 V = 644 mV Between 2nd and 3rd pulses: 0.05(0.644 V) = 32.2 mV 3rd pulse: 0.632(1 V 0.0322 V) + 0.0322 V = 644 mV See Figure 20-8.

Figure 20-8

209

Page 209: Dc Answers

Chapter 20

14. The steady-state output equals the average value of the square wave input which is

2

V 30

2inV

= 15 V (with a small ripple voltage)

Section 20-4 Response of RC Differentiators to a Single Pulse 15. See Figure 20-9.

Figure 20-9

Figure 20-10

16. = (1 k)(1 F) = 1 ms Steady-state is reached in 5 = 5 ms. At 1 ms, V (0.368)(8 V) = 2.94 V See Figure 20-10. 17. (a) Looking from the source and capacitor:

Figure 20-11

RT =

k 2.4

)k 1k 1)(k 2.2( = 1.05 k

= RTC = (1.05 k)(470 pF) = 493.5 ns 5 = 5(493.5 ns) = 2.467 s

(b) Vout(max) = V 10k 2

k 1

= 5 V

See Figure 20-11.

Section 20-5 Response of RC Differentiators to Repetitive Pulses 18. = (1 k)(1 F) = 1 ms See Figure 20-12.

210Figure 20-12

Page 210: Dc Answers

Chapter 20

19. Since 5>> tW, the output shape is an approximate reproduction of the input but with a zero

average value.

Section 20-6 Response of RL Integrators to Pulse Inputs

20. = 10

mH 10 = 1 ms

Figure 20-13

5 = 5 ms Vout(max) = 0.637(8 V) = 5.06 V See Figure 20-13.

Figure 20-14

21. = 1

mH 50 = 50 ms

5 = 250 ms See Figure 20-14. 22. LT = 8 H + 4 H = 12 H

RT =

256

)156)(100( = 60.9

=

60.9

H12

T

T

R

L = 197 ns

This circuit is an integrator.

Section 20-7 Response of RL Differentiators to Pulse Inputs

Figure 20-15

23. (a) =

22

H100 = 4.55 s

(b) See Figure 20-15.

211

Page 211: Dc Answers

Chapter 20

212

24. (a) =

22

H100 = 4.55 s

Figure 20-16

(b) See Figure 20-16.

Section 20-8 Relationship of Time Response to Frequency Response

25. fh = rt

35.0, 5 = 50 s

0.9 = 1(1 et/RC) t2 = RCln(0.1) = (10 s)ln(0.1) = 23 s t1 = RCln(0.9) = (10 s)ln(0.9) = 1.05 s tr = 23 s 1.05 s = 22.0 s

fh = s0.22

35.0

= 15.9 kHz

26. fh = ns 42

35.035.0

ft = 8.33 MHz

Section 20-9 Troubleshooting 27. (b) Vout = Vin: C is open or R could be shorted. (c) C is leaky or C is greater than 0.22 F or R is greater than 3.3 k. (d) Resistor open or capacitor shorted. 28. (a) No problem since 5<tW. (b) C is leaky. (c) C is open or R is shorted.

Multisim Troubleshooting and Analysis 29. C1 open or R1 shorted. 30. No fault. 31. R1 or R2 open. 32. L1 or L2 open.

Page 212: Dc Answers

Chapter 21 Three-Phase Systems in Power Applications

Section 21-1 Generators in Power Applications

1. IL = 100 V

265.8

V

Z

= 376 mA

2. = tan1 175

200

= 41.2

3. 220 A = 1.88 A + j0.684 A 3140 A = 2.3 A + j1.93 A 1.5100 A = 0.26 A j1.48 A In = (1.88 A + j0.684 A) + (2.3 A + j1.93 A) + (0.26 A j1.48 A) = (1.88 A 2.3 A 0.26 A) + j(0.684 A + 1.93 A 1.48 A) = 0.68 A + j1.134 A = 1.32121 A

Section 21-2 Types of Three-Phase Generators 4. VL(ba) = 600120 V 6000 V = 300 V + j520 V 600 V = 900 V + j520 V = 1.04150 kV VL(ca) = 600120 V 6000 V = 300 V j520 V 600 V = 900 V j520 V

= 1.04150 kV VL(cb) = 600120 V 600120 V = 300 V j520 V + 300 V j520 V = j1.04 kV = 104 90 kV

5 ILa = Ia Ib = 50 A 5120 A = 5 A (2.5 A + j4.33 A) = 7.5 A j4.33 A = 8.6630 A

ILb = A) 905(3 = 8.6690 A

ILc = A) 1505(3 = 8.66150 A 6. See Figure 21-1. IL1 = Ia Ib = 50 A 5120 A = 5 A + 2.5 A j4.33 A = 7.5 A j4.33 A = 8.6630 A IL2 = Ib Ic = 5120 A 5120 A = 2.5 A + j4.33 A + 2.5 A j4.33 A = j8.66 A

= 8.6690 A IL3 = Ic Ia = 5120 A 50 A = 2.5 A j4.33 A 5 A = 7.5 A j4.33 A = 8.66150 A

213

Page 213: Dc Answers

Chapter 21

Figure 21-1

Section 21-3 Three-Phase Source/Load Analysis 7. (a) Line voltages:

VL(ab) = 3 Va(30) = 3 (500(030)) V = 86630 V

VL(ca) = 3 Vc(30) = 3 (500(12030)) V = 866150 V

VL(bc) = 3 Vb(30) = 3 (500(12030)) V = 86690 V (b) Phase currents:

Ia = IZa = k 321

V 0500 = 50032 mA

Ib = IZb =

k 321

V 120500 = 50088 mA

Ic = IZc =

k 321

V 120500 = 500152 mA

(c) Line currents: (d) Load currents: (e) Load voltages: ILa = 50032 mA IZa = 50032 mA VZa = Va = 5000 V ILb = 50088 mA IZb = 50088 mA VZb = Vb = 500120 V ILc = 500152 mA IZc = 500152 mA VZc = Vc = 500120 V

214

Page 214: Dc Answers

Chapter 21

8. (a) Line voltages:

VL(ab) = 3 Va(30) = 3 (100(030)) V = 17330 V

VL(ca) = 3 Vc(30) = 3 (100(12030)) V = 173150 V

VL(bc) = 3 Vb(30) = 3 (100(12030)) V = 17390 V (b) Phase currents:

Ia =

45135

V 0100 = 74145 mA

Ib = 60100

V 120100 = 160 A

Ic =

20200

V 120100 = 500140 mA

(c) Line currents: (d) Load currents: (e) Load voltages: ILa = Ia = 74145 mA IZa = Ia = 74145 mA VZa = Va = 1000 V ILb = Ib = 160 A IZb = Ib = 160 A VZb = Vb = 100120 V ILc = Ic = 500140 mA IZc = Ic = 500140 mA VZc = Vc = 100120 V

(f) Neutral current: In = IZa + IZb + IZc = 74145mA + 160 A + 500140 mA = (524 mA j524 mA) + (383 mA j321 mA) + (500 mA + j866 mA) = 641 mA j20.9 mA = 6411.86 mA 9. (a) Line voltages:

VL(ab) = 3 Va(30) = 3 (50(030)) V = 86.630 V

VL(ca) = 3 Vc(30) = 3 (50(12030)) V = 86.6150 V

VL(bc) = 3 Vb(30) = 3 (50(12030)) V = 86.690 V (b) Phase currents: First find the load currents:

IZa =

70600

V 1506.86)(

a

caL

Z

V = 144220 mA = 110 mA + j92.6 mA

IZb =

70600

V 906.86)(

b

bcL

Z

V = 14420 mA = 135 mA + j49.3 mA

IZc =

70600

V 306.86)(

c

abL

Z

V = 144100 mA = 25.0 mA + j142 mA

Ia = IZa IZc = (110 mA + j92.6 mA) (25.0 mA j142 mA) = 85 mA + j235 mA = 250110 mA Ib = IZc IZb = (25.0 mA j142 mA) (135 mA + j49.3 mA) = 160 mA + j191.3 mA = 250130 mA Ic = IZb IZa = (135 mA + j49.3 mA) (110 mA + j92.6 mA) = 245 mA j43.3 mA = 25010 mA

215

Page 215: Dc Answers

Chapter 21

(c) Line currents: ILa = Ia = 250110 mA ILb = Ib = 250130 mA ILc = Ic = 25010 mA (d) Load currents were found in part (b). (e) Load voltages: VZa = VL(ca) = 86.6150 V VZb = VL(bc) = 86.690 V VZc = VL(ab) = 86.630 V

10. (a) Line voltages: (b) Phase currents:

VL(ab) = 120120 V Ia = IZa =

5010

V0120 = 1250 A

VL(ca) = 1200 V Ib = Ib =

5010

V120120 = 12170 A

VL(bc) = 120120 V Ic = Ic =

5010

V120120 = 1270 A

(c) Line currents: IL1 = 120 A 12120 A = 12 A (6 A + j10.4 A) = 18 A j10.4 A = 20.830 A

IL2 = 12120 A 120 A = (6 A j10.4 A) 12 A = 18 A j10.4 A = 20.8150 A IL3 = 12120 A 12120 A = (6 A + j10.4 A) (6 A j10.4 A) = 20.890 A

(d) Line currents: (e) Load voltages: IZa = 1250 A VZa = 1200 V IZb = 12170 A VZb = 120120 V IZc = 1270 A VZc = 120120 V 11. (a) Line voltages: VL(ab) = Va = 330120 V VL(ca) = Vc = 330120 V VL(bc) = Vb = 3300 V (b) Load currents: First find the load voltages:

VZa = V )30120(3

aV = 19190 V

VZb = V )300(3

bV = 19130 V

VZc = V )30120(3

cV = 191150 V

IZa =

605

V 90191

a

Za

Z

V = 38.2150 A

216

Page 216: Dc Answers

Chapter 21

IZb =

605

V 30191

b

Zb

Z

V = 38.230 A

IZc =

605

V 150191

c

Zc

Z

V = 38.290 A

Section 21-4 Three-Phase Power 12. PT = 3(1200 W) = 3.6 kW

13. Figure 21-34 in text:

IZ = k 1

V 500 = 500 mA

PL = 3VZIZcos = 2(500 V)(500 mA)cos 32 = 636 W Figure 21-35 in text:

IZa = 135

V 100 = 741 mA

PZa = VZaIZacos = (100 V)(741 mA)cos 45 = 52.4 W

IZb = 200

V 100 = 500 mA

PZb = VZbIZbcos = (100 V)(500 mA)cos 20 = 47.0 W

IZc = 100

V 100 = 1 A

PZc = VZcIZccos = (100 V)(1 A)cos 60 = 50.0 W PL = PZa + PZb + PZc = 52.4 W + 47.0 W + 50.0 W = 149 W Figure 21-36 in text:

VZ = V) 50(3 = 86.6 V

IZ = 600

V 86.6 = 144 mA

PL = 3VZIZcos = 3(86.65 V)(144 mA)cos 70 = 12.8 W Figure 21-37 in text:

IZ = 10

V 120 = 12 A

PL = 3VZIZcos = 3(120 V)(12 A)cos 50 = 2.78 kW Figure 21-38 in text:

VZ = 3

V 330 = 191 V

IZ = 5

V 191 = 38.2 A

PL = 3VZIZcos = 3(191 V)(38.2 A)cos 60 = 10.9 kW

217

Page 217: Dc Answers

Chapter 21

218

14. VZ = 3

V 120 = 69.3 V

IZ =

4.141

V 69.3

)100()100(

V 3.6922Z

VZ = 490 mA

= 45 PL = 3VZIZcos = 3(69.3 V)(490 mA)cos 45 = 72 W 15. ZL = 141.445 IL = IZ

VZ = 3

V 120

3LV

= 69.8 V

IZ =

141.4

V 8.69

L

Z

Z

V = 494 mA

PT = 3 VLILcos

Peach = 3

mA) V)(494 (120cos

3

LLIVcos 45 = 24.2 W

16. P1 = VLILcos( + 30) P2 = VLILcos( 30)

=

100

100tan 1 = 45

P1 = (120 V)(494 mA)cos(45 + 30) = 15.3 W P2 = (120 V)(494 mA)cos(45 30) = 56.8 W