day+3+hydraulics

34
1 Chair of Drilling Engineering - University Leoben PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design PETROLEUM ENGINEERING SUMMER COURSE 2015 Petroleum Engineering Design PART A Drilling Engineering CHAPTER 4 Casing Design

Upload: radu-chibzui

Post on 09-Jul-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Day+3+Hydraulics

1  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

PETROLEUM ENGINEERING SUMMER COURSE

2015    

Petroleum  Engineering  Design  PART  A  

 

Drilling  Engineering  

CHAPTER  4    

Casing Design  

Page 2: Day+3+Hydraulics

2  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

Content  

•  Introduc.on  •  Design  Factors,  Design  Scenarios  •  API  Pipe  Body  Internal  Yield  Pressure  (Burst)  •  API  Collapse  •  API  Biaxial  Design  

Introduc.on  

Page 3: Day+3+Hydraulics

3  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

Casing  Design  

There  are  two  different  jobs  that  casing  must  be  designed  for:  

1.  To  allow  to  drill  safely  the  well  and  resist  any  forces  or  condi.on.  

2.  To  act  throughout  the  life  of  the  well  to  meet  the  objec.ves  of  the  well  without  requiring  a  work-­‐over.  

Ref: Lecture  Notes  Drilling  Engineering  2,  MUL,  2000  

Casing  Pipe  Specifica.ons  

•  Grade  of  Material  -­‐  Casing  Quality:  API  has  adopted  a  casing  grade  designa.on  to  define  the  strength  or  quality  of  casing  steel.  A  leWer  is  followed  by  a  number  that  indicates  the  minimum  yield  strength.  This  minimum  (longitudinal)  yield  strength  is  defined  as  the  stress  required  to  produce  a  total  elonga.on  of  the  0.5%  of  the  test  specimen.  It  is  determine  by  an  extensometer  during  a  tensile  test.    

Cost  

Page 4: Day+3+Hydraulics

4  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

Extensometer  Test  

Extensometer  Test  

0,5%  

Page 5: Day+3+Hydraulics

5  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

Casing  Cost  per  Unit  Weight  

0  

50  

100  

150  

200  

250  

Q125  LTC/STC   P110  LTC/STC   C95/C90/L80  LTC/STC   N80  LTC/STC   J55/K55/H40  LTC/STC  

Price  pe

r  unit  w

eight  com

pared  to  H40  (%

)  

Casing  Price  per  Unit  Weight  for  Different  QualiPes,  STC  and  LTC  Couplings  

 H40  LTC/STC    

  lb/^ kg/m PRICE  ($/m) PRICE  ($/ton)

H-­‐40/17  -­‐  STC 17 25,30 28,23 1116

H-­‐40/20  -­‐  STC 20 29,76 33,22 1116

J-­‐55/20  -­‐  STC 20 29,76 33,63 1130

J-­‐55/23  -­‐  BTC 23 34,23 47,58 1390

J-­‐55/23  -­‐  LTC 23 34,23 39,36 1150

J-­‐55/23  -­‐  STC 23 34,23 38,68 1130

N-­‐80/23  -­‐  BTC 23 34,23 65,38 1910

N-­‐80/23  -­‐  LTC 23 34,23 61,61 1800

J-­‐55/26  -­‐  BTC 26 38,69 53,78 1390

J-­‐55/26  -­‐  LTC 26 38,69 44,50 1150

J-­‐55/26  -­‐  STC 26 38,69 43,72 1130

N-­‐80/26  -­‐  BTC 26 38,69 73,90 1910

N-­‐80/26  -­‐  LTC 26 38,69 69,65 1800

P-­‐110/26  -­‐  BTC 26 38,69 89,38 2310

P-­‐110/26  -­‐  LTC 26 38,69 83,58 2160

N-­‐80/29  -­‐  BTC 29 43,16 82,43 1910

N-­‐80/29  -­‐  LTC 29 43,16 77,68 1800

P-­‐110/29  -­‐  BTC 29 43,16 99,69 2310

P-­‐110/29  -­‐  LTC 29 43,16 93,22 2160

N-­‐80/32  -­‐  BTC 32 47,62 90,96 1910

N-­‐80/32  -­‐  LTC 32 47,62 85,72 1800

P-­‐110/32  -­‐  BTC 32 47,62 110,01 2310

P-­‐110/32  -­‐  LTC 32 47,62 102,86 2160

N-­‐80/35  -­‐  BTC 35 52,09 99,48 1910

N-­‐80/35  -­‐  LTC 35 52,09 93,75 1800

P-­‐110/35  -­‐  BTC 35 52,09 120,32 2310

P-­‐110/35  -­‐  LTC 35 52,09 112,51 2160

N-­‐80/38  -­‐  BTC 38 56,55 108,01 1910

N-­‐80/38  -­‐  LTC 38 56,55 101,79 1800

P-­‐110/38  -­‐  BTC 38 56,55 130,63 2310

P-­‐110/38  -­‐  LTC 38 56,55 122,15 2160

Casing  Pipe  Prices  for  7”  OD,  2003  1,000 meters 7 inch 23lb/ft (34.23 kg/m) N80 LTC costs 62,000 US$ in 2003

Page 6: Day+3+Hydraulics

6  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

Steel  Price  Development  (2/2)  

1000 meters 7 inch 23lb/ft (34,23 kg/m) N80 LTC costs 110,000 US$ in 2013

Casing costs of total well costs: Soft rock 50% Medium Hard 45% Hard 35%

Drilling/tripping Costs Soft rock 15% Medium Hard 30% Hard 40-50%

2014  

Cost  Comparison  of  Wells  

Page 7: Day+3+Hydraulics

7  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

Spec  5CT,  Casing  and  Tubing    Covers  seamless  and  welded  casing  and  tubing,  couplings,  and  connectors  in  all  grades.  Process  of  manufacture;  chemical  and  mechanical  property  requirements;  methods  of  tes.ng;  and  dimensions  are  included.    

•  1/3  of  worldwide  installa.ons  are  according  API  specifica.ons.  •  1/3  of  installa.ons  have  size,  steel  grade  and  wall  thickness  of  API  

casing  but  have  special  non  API  connectors,  such  as  VAM  connec.ons.  •  1/3  are  of  non  API  steel  grade  and  may  have  non  API  connectors.    

API  and  Non-­‐API  Casing  

Note:  Non-­‐API  casing,  tubing  and  connec.ons  generally  have  manufacturing  tolerances  equal  to  or  superior  API  specifica.ons    

•  API  Round  threads  in  short  (STC)  and  long  (LTC)  design  

•  API  BuWress  squared  threads  (BTC)  are  longer  and  stronger  connec.ons  

•  API  Integral  joint  (extreme  line,  XL)  with  smaller  ID,  OD  are  strong  connec.ons  but  expensive  

Standard  API  Casing  Connec.ons  

Page 8: Day+3+Hydraulics

8  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

VAM  Big  Omega  Connec.on  Big Omega is a large diameter connection with improved running performances, for conductor pipes, surfaces and intermediate casings, up to 26". Big Omega is a very strong coupled connection. The pin thread is cut directly into the pipe. Standard coupling ODs are identical with API; they may be increased for higher grades and larger wall thickness if matched internal pressure resistance is required. The standard coupling length is 10 5/8" (269,9 mm)as with API. A make-up arrestor positions the coupling accurately on the mill end. Pin to pin torque shoulder for positive torque stop on the field end allows over-torque and compression resistance.   Ref:  www.vam-­‐usa.com  

Design  Steps  •  Decide  on  objec.ves  

–  Size  and  number  of  tubulars,  poten.al  for  drilling  beyond  planned  total  depth,  semng  depths,  failure  consequences  

•  Iden.fy  life.me  loads  –  Load  means  anything  ac.ng  upon  pipe  such  as  a  force  like  

tension,  compression,  bending,  pressures,  torsion,  weight,  fric.on,  corrosion,  dynamic  forces  during  opera.ons,  or  environment  like  temperature,  H2S,  CO2  =>  discuss  design  scenarios  

•  Sa.sfy  management  guidelines    –  Economics,  risk  versus  cost  

•  Create  criteria  •  Make  computa.ons  •  Select  casing    

Page 9: Day+3+Hydraulics

9  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

Simple  Calcula.on  Principles  

•  Es.mate  loads  (pipe  internal,  external  pressures,  tensional  load,  bending  load,  torsional  load)  

•  Define  design  factors  (DF)  •  Compare:    

PipeProperty (from API Tables) ≥ DF Load−Backload( )Uni-­‐axial  Bi-­‐axial  Tri-­‐axial  

Design  Factors  Design  Scenarios  

Page 10: Day+3+Hydraulics

10  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

Principal  Mechanical  Loads  on  Casing  

•  External  pressure  (collapse)  –  pressure  of  mud  or  forma.on  fluids  on  the  empty  casing,  pressure  

of  expanding  salts  

•  Tension  –  weight  of  the  casing  string  in  empty  hole  

•  Biaxial  stress  (collapse  plus  tension)  –  reduc.on  of  yield  strength  due  to  tensional  load  (above  TOC)  

•  Bending  –  bending  stress  at  dog-­‐legs  

•  Internal  pressure  (burst)  –  pressure  of  fluids  inside  the  casing  when  the  annulus  is  empty  (e.g.  

above  TOC)  

Maximum  Loads  Versus  Depth  

Stress

Dep

th

Tension- Tensile stress due to weight of string is highest at top

Burst - Assume full reservoir pressure all along the wellbore (may subtract the gas gradient if known)

Collapse - Hydrostatic pressure increases with depth

Page 11: Day+3+Hydraulics

11  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

API  Design  Factors  (typical)  

•  Collapse      1.125  

•  Tension            1.8  

•   Burst                  1.1  

Required    

10,000  psi    

100,000  lbf    

 10,000  psi  

Design    

11,250  psi    

180,000  lbf    

 11,000  psi  

Worst  Case  Collapse  Loads  on  Casing  

•  Assume  evacuated  casing.  •  Apply  mud  hydrosta.c  outside  of  the  casing.  •  Conserva.ve  design  does  not  account  for  

fluid  hydrosta.c  inside  the  casing  (par.ally  filled).  However,  this  assump.on  can  be  true  under  some  circumstances.  

•  Collapse  design  factor,  DFe  =  1  -­‐  1,125    •  On  the  other  hand,  collapse  resistance  is  

reduced  in  bent  sec.ons  and  under  tensional  load.  Thus,  worst-­‐case  design  would  give  addi.onal  safety.  

Pe

Pi = 0?

Page 12: Day+3+Hydraulics

12  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

Worst  Case  (Conserva.ve)  Burst  Load  on  Casing  

•  Assume  forma.on  pressure  (e.g.  a  shut-­‐in  gas  kick  while  drilling  next  sec.on)  exerted  over  the  length  of  the  casing  string.  

•  Conserva.ve  design  does  not  account  for  external  fluids  or  fracturing  of  the  forma.on  while  a  kick  migrates  upwards  along  the  open  hole  sec.on  (compare  the  discussed  scenarios).  

•  Burst  design  factor,  SFi  =  1  -­‐  1,33  •  On  the  other  hand,  burst  resistance  capability  

may  be  reduced  by  casing  wear  and  longitudinal  defects.  Thus,  conserva.ve  design  would  give  addi.onal  safety.  

Pi = Pf?

Pe = 0?

Conserva.ve  Tensile  Load  on  Casing  

•  Assume  full  air  weight  of  the  casing.  •  But  conserva.ve  design  does  not  account  for  a  wellbore  

containing  fluid.  In  mud,  air  weight  can  be  reduced  by  mul.ply  it  with  a  buoyancy  factor.    

   •  Also,  in  inclined  wells  the  casing  string  lays  at  the  low  side  of  

the  wellbore  which  reduces  its  weight.  •  Tension  design  factor  SFt  =  1,6  –  1,8  •  On  the  other  hand,  tensile  strength  may  be  significantly  

reduced  by  bending  loads  created  by  crooked  wellbores  or  by  improper  connec.on  make-­‐up.  

steel

mudBFFactorBuoyancyρρ

−=1,

Page 13: Day+3+Hydraulics

13  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

Worst-­‐Case  Design  Scenario  for  Surface/Intermediate  Casing  Collapse  

Pe = Pform

(Pe = Pmud hyd@casing point)

Assume:  Lost  Circula.on    Pe Pi

Air

Cement

Mud

Lost Circulation

Pi = 0

Alterna.ve  Design  Scenario  for  Surface  Casing  Burst  

Pi

Cement

Next Mud

Kick Frac

Pe = 0

Assume:  Kick    

Pi  =  ρfrac  g  Dshoe  -­‐  ρgas  g  Dshoe  

Pe Pi

BOP

Page 14: Day+3+Hydraulics

14  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

Alterna.ve  Design  Scenario  for    Intermediate  Casing  Collapse  

Pe = Pform

(Pe = Pmud hyd@casing point)

Assume:  Lost  Circula.on    

Pe Pi

Air

Cement

Next Mud

Lost Circulation

Pi = Pmud hyd (H2) H2

H1

Alterna.ve  Design  Scenario  Intermediate  Casing  Burst  

Pe = 0

Assume:  Kick    Pe Pi

Gas

Cement

Next Mud Frac

Pi  =  ρfrac  g  Dshoe  -­‐  ρgas  g  Dshoe  

BOP

Kick

Page 15: Day+3+Hydraulics

15  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

Worst  Case  Design  Scenario  Produc.on  Casing  Collapse  

Pi = 0

Pe = Pform

(Pe = Pmud hyd@casing point )

Extremes:  Floa.ng,  par.ally  filled  casing,  plugged  perfora.ons    

Cement

Mud

Tubing

Packer (Pi  =  Pgas  hyd  inside  casing  )  

Gas Pe

Plugged Perforations Pi

Completion Fluid

Worst  Case  Design  Scenario  Produc.on  Casing  Burst  

Assume:  Tubing  Leakage    

Pe = 0

Pi = Pform-Phydrostatic gas

Cement

Mud

Tubing

Packer

Gas

Pe

Completion Fluid

Pi Leaky Tubing

Page 16: Day+3+Hydraulics

16  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

API  Pipe  Body  Internal  Yield  Pressure  (Burst)  

API  Pipe  Body  Internal  Yield  •  According  to  API,  the  following  formula  is  used  

to  calculate  pipe  body  internal  yield  pressure  at  minimum  yield  strength:  

⎥⎦

⎤⎢⎣

⎡=

D

tYP p2

875.0

YP  =    minimum  yield  strength  of  pipe,  psi  t  =  wall  thickness,  in.  D  =  Outside  diameter,  in.  

p   p  Internal  Pressure  

For  example:  7  in.,  23  lb/^,  N80    

P = 0.8752 *80, 000 * 0.317

7

!

"#$

%&= 6340psi

Page 17: Day+3+Hydraulics

17  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

API Internal  Yield  (Burst)  Pressure

Example  1:  Design  For  Burst  

•  Design  a  7”  Casing  string  to  10,000  ^.      •  Pore  pressure  gradient  =  0.5  psi/^  •  Design  factor,  SFi  =  1.1  •  Design  for  burst  only,  assume  a  worst  case  scenario.  For  the  selected  casing  quality,  check  the  safety  for  tension  (SFt=1.8),  neglect  buoyancy.    

Page 18: Day+3+Hydraulics

18  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

Example  1:  Solu.on  

1.  Calculate  probable  reservoir  pressure.  

psi    000  ,  5    ft  000  ,  10  *  ft  psi  5  .  0  p  res   =  =  

3.  Select  the  appropriate  csg.  grade  and  wt.  from  Casing  tables  7  in.,  23  lb/^,  N80  has  minimum  required  burst  resistance,  however,  weight  in  air  is  230.000  lb,  with  a  safety  of  1.8  the  tensional  load  is  414.000  lb,  joint  strength  o.k.  Note  that  a  L-­‐80,  with  same  pressure  data,  is  a  slightly  beWer  choice  for  H2S  environment.  

2.  Calculate  required  pipe  internal  yield  pressure  ra.ng  

psi    500  ,  5  1  .  1    *  000  ,  5  SF    *  p  p   i  res  i   =  =  =  

API  Collapse  Resistance  

Page 19: Day+3+Hydraulics

19  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

Collapse  Failure  

API  Collapse  Resistance  

•  There  are  four  different  types  of  collapse  pressure,  each  with  its  own  equa.on  for  calcula.ng  the  collapse  resistance  according  to  API:  

1.   Yield  strength  collapse  2.   Plas.c  collapse  3.   Transi.on  collapse  4.   Elas.c  collapse  

Page 20: Day+3+Hydraulics

20  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

4  API  Collapse  Pressures  •  If  axial  tension  is  zero:  

J-55 14.81 25.01 37.31

N-80 13.38 22.47 31.02

P-110 12.44 20.41 26.22

D/t  RaPo  

PlasPc   TransiPon   ElasPc  Yield  Strength  

API  Collapse  Pressure  Formulas  (1/2)  •  Calculate  D/t  to  determine  proper  equaPon  to  use  for  calcula.ng  the  collapse  pressure,  P  

Plas.c  Collapse  ,  PP:  

PYP = 2Yp

Dt

!

"#

$

%&−1

Dt

!

"#

$

%&

2

(

)

****

+

,

----

CB

t

DA

YP pp −

⎥⎥⎥⎥

⎢⎢⎢⎢

⎟⎠

⎞⎜⎝

⎛=

YP        =    minimum  yield  strength  of  pipe,  psi  

Yield  Strength  Collapse,  PYP:  

Page 21: Day+3+Hydraulics

21  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

API  Collapse  Pressure  Formulas  (2/2)  

⎥⎥⎥⎥

⎢⎢⎢⎢

⎟⎠

⎞⎜⎝

⎛= G

t

DF

YP pT

2

6

1

1095.46

⎥⎦

⎤⎢⎣

⎡−⎟⎠

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

×=

t

D

t

DPE

Transi.on    Collapse,  PT:  

Elas.c  Collapse,  PE:  

A,  B,  C,  F,  G  

A = 2.8762+1.0679×10−3Yp+ 2.1301×10−5 Yp( )2− 5.3132×10−8 Yp( )3

B = 0.026233+ 5.0609×10−4Yp

C = 30.867Yp−1.0483×10−2 Yp( )2+3.6989×10−5 Yp( )3

− 465.93

F =3,17×108 * B / A( )2

Yp*1000 * 1−B / A( )3

G = F B / A( )

Page 22: Day+3+Hydraulics

22  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

Use  Yield  Pressure  Formula  if  Condi.on  is  True  

Use  Plas.c  Collapse  Formula  if  Condi.on  is  True  

Page 23: Day+3+Hydraulics

23  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

Use  Transi.on  Collapse  Formula  if  Condi.on  is  True  

Use  Elas.c  Collapse  Formula  if  Condi.on  is  True  

Page 24: Day+3+Hydraulics

24  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

Example  2:  Uniaxial  Collapse  Determine  the  collapse  strength  of  a  5  1/2”  O.D.,  14.00  lb/^  J-­‐55  casing  under  zero  axial  loads.  

1.  Calculate  the  D/t  ra.o:    2.  Check  the  mode  of  collapse:      3.  The  plas.c  collapse  is  calculated  from:  

D

t=

5.500

0.244= 22.54

For  J-­‐55  casing  with  14.81  <  D/t  <  25.01  the  mode  of  failure  is  plasPc  collapse.      

Note,  tables  rounds  off  to  3,120  psi  

Pp =Yp

A

D / t−B

"

#$

%

&'−C = 55,000

2.990

22.541− 0.0541

(

)*+

,-−1, 205=3,115psi

API  Collapse  Resistance  

Page 25: Day+3+Hydraulics

25  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

API  Biaxial  Design  

The  Biaxial  Load  

•  The  biaxial  load  concept  is  necessary  to  inves.gate  the  combined  loads  of  tension/compression  and  collapse.    

•  This  combined  load  is  of  special  importance  in  the  area  above  the  cement  head.  

•  When  the  casing  is  empty  and  a  tensional  stress  exists  between  surface  and  cement  head,  there  must  be  an  correc.on  of  the  collapse  resistance.  

Page 26: Day+3+Hydraulics

26  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

Collapse  and  Axial  Stress  

4  The  collapse  pressure  resistance  of  a  pipe  depends  on  the  axial  stress  

4  The  collapse  resistance  of  a  pipe  is  reduced  when  tensional  loads  are  present  

4  The  collapse  resistance  of  a  pipe  is  increased  when  compression  loads  are  present  

Collapse  and  Axial  Stress  •  Yield  strength  -­‐  with  axial  stress:  use  this  equa.on  to  

correct  the  yield  strength  Yp  (API  collapse  equa.ons)  

⎪⎭

⎪⎬

⎪⎩

⎪⎨

⎟⎟⎠

⎞⎜⎜⎝

⎛−

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−=

P

a

P

aPPA YY

YYσσ

5.075.01

2/12

         YPA  =    yield  strength  of  axial  stress  equivalent  grade,  psi            YP        =    minimum  yield  strength  of  pipe,  psi            σa        =    axial  stress,  psi  (tension  is  posi.ve)  

⎪⎭

⎪⎬

⎪⎩

⎪⎨

⎟⎟⎠

⎞⎜⎜⎝

⎛+

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−=

P

a

P

aPPA YY

YYσσ

5.075.01

2/12

Tension  -­‐  collapse  

Compression  -­‐  collapse  

Page 27: Day+3+Hydraulics

27  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

Burst  and  Axial  Stress  

4  The  burst  pressure  resistance  of  a  pipe  depends  on  the  axial  stress  

4  The  burst  resistance  of  a  pipe  is  increased  when  tensional  loads  are  present  

4  The  burst  resistance  of  a  pipe  is  reduced  when  compression  loads  are  present  

p  

Biaxial  Stress  Equa.ons  -­‐  Summary  

Page 28: Day+3+Hydraulics

28  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

Example  3:  Biaxial  Collapse  (1/3)  •  Determine  the  collapse  strength  for  a  5  1/2”  O.D.,  14.00  

lb/^,  J-­‐55  casing  under  axial  load  of  100,000  lbs.  

Pp

a

p

aPA Y

YYY

⎥⎥⎥

⎢⎢⎢

⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟

⎟⎠

⎞⎜⎜⎝

⎛−=

σσ5.075.01

2

( )psi

Area

Faa 820,24

012.55.54

000,100

22=

−==π

σ

         YPA  =    yield  strength  of  axial  stress  equivalent  grade,  psi            YP        =    minimum  yield  strength  of  pipe,  psi            σa        =    axial  stress,  psi  (tension  is  posi.ve)  

The  axial  tension  will  reduce  the  collapse  pressure  as  follows:  

Example  3:  Biaxial  Collapse  (2/3)  •  The  axial  tension  reduces  the  collapse  pressure  ra.ng  to:  

YPA = 1− 0.7524,820

55, 000

"

#$

%

&'

2

− 0.524,820

55, 000

"

#$

%

&'

(

)

**

+

,

--55, 000

= 38,216 psi

Here  the  axial  load  decreased  the  J-­‐55  ra.ng  to  an  equivalent    “J-­‐38.2”  ra.ng  (less  than  H-­‐40!)  

Page 29: Day+3+Hydraulics

29  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

Example  3:  Biaxial  Collapse  (3/3)  

Pp ≈ 2, 551 psi

…compared  to  3,117  psi  with  no  axial  stress!  

•  The  plas.c  collapse  is  then:  

∴Pp =YPA

A

D / t−B

#

$%

&

'(−C

= 38, 2162.9452

22.54− 0.0456

)

*+,

-.− 701.43= 2, 551 psi

Quality A B C 38,216 2,9452 0,0456 701,43

Appendix  API  Casing  Tables  

Page 30: Day+3+Hydraulics

30  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

API 5CT 5 1/2 in. Casing Performance Properties (1/2)

API 5CT 5 1/2 in. Casing Performance Properties (2/2)

Page 31: Day+3+Hydraulics

31  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

API 5CT 7 in. Casing Performance Properties (1/3)

API 5CT 7 in. Casing Performance Properties (2/3)

Page 32: Day+3+Hydraulics

32  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

API 5CT 7 in. Casing Performance Properties (3/3)

API 5CT 9 5/8 in. Casing Performance Properties (1/2)

Page 33: Day+3+Hydraulics

33  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

API 5CT 9 5/8 in. Casing Performance Properties (2/2)

Conversion Table

Meters 3,2808 Feet

Centimeters (cm) 0,3937 Inches

Millimeters (mm) 0,03937 Inches

Metric Tons 2204,6 Pounds

Decanewtons (daN) 0,22481 Wt Indicator (Lbs)

Newton 0,224809 Pounds Kilograms (Kg) 2,2046 Pounds

Kilogram/cubic meter 16,0184633 Pound/Cubic Foot Kg/M 0,67196 Weight (Lb/Ft)

Kg/M3 0,3505 Pounds per Barrel

Liters 0,00629 Barrels

Cubic Meters 6,2898 Barrels

Liters 0,2642 Gallons

Cubic Meters 264,173 Gallons

Liters/Stroke 0,00629 Barrels/Stroke

Cubic Meters/Stroke 6,2898 Barrels/Stroke

Liters/Minute 0,2642 Gallons/Minute

Liters/Minute 0,00629 Barrels/ Minute

Cubic Meters/Minute 6,2898 Barrels/Minute

Liters/Meter (L/M) 0,0019171 BBL/ Ft Capacity

Cubic Meters/Meter 1,917 BBL/Ft Capacity

Liters/Meter (L/M) 0,0019171 BBL/ Displacement

Cubic Meters/Meter 1,9171 BBL/Displacement

KPa/M 0,044207 Gradient PSI/Ft

Bar/M 4,4207 Gradient PSI/Ft

Kilograms/Liter (Kg/L) 8,3454 Mud Weight PPG

Kilograms/Cubic Mtr 0,0083454 Mud Weight PPG

Specific Gravity (SG) 8,3454 Mud Weight PPG

Kg/M3 6,24279 Mud Weight (Lb/Ft3)

Celsius Degrees 1.8 + 32 Farenheit Degree

Pascals (Pa) 0,000145 PSI

Kilopascals (KPa) 0,14504 PSI

Bar 14,50377 Psi

Page 34: Day+3+Hydraulics

34  Chair of Drilling Engineering - University Leoben

PE DESIGN, PART A - DRILLING ENGINEERING: Casing Design

hZp://www.sumitomo-­‐tubulars.com/materials/index.htm  

Duplex  Stainless  Steel  

Ni-­‐Based  Alloys  

API  5CT  Sour  Services