d5.3 - specification of advanced incentive design and decision -assisting algorithms for cas

24
SmartSociety Hybrid and DiversityAware Collective Adaptive Systems When People Meet Machines to Build a Smarter Society Grant Agreement No. 600854 Deliverable D5.3 Work package WP5 Specification of advanced incentive design and decision assisting algorithms for CAS Dissemination level (Confidentiality) 1 : PU Delivery date in Annex I: 31/12/2014 Actual delivery date: 31/1/2015 Status 2 : F Total number of pages: (keep in mind that the page limit is 25 excluding pages before the Table of Contents, annexes and references) Keywords: Incentive design, decisionmaking, online mechanism 1 PU: Public; RE: Restricted to Group; PP: Restricted to Programme; CO: Consortium Confidential as specified in the 2 F: Final; D: Draft; RD: Revised Draft

Upload: smart-society-project

Post on 22-Jul-2016

217 views

Category:

Documents


0 download

DESCRIPTION

SmartSociety Work Package 5 deliverable for Year 2 of the project.

TRANSCRIPT

 

SmartSociety    

Hybrid  and  Diversity-­‐Aware  Collective  Adaptive  Systems    When  People  Meet  Machines  to  Build  a  Smarter  Society  

 Grant  Agreement  No.  600854  

 Deliverable  D5.3  Work  package  WP5  

 

Specification  of  advanced  incentive  design  and  decision-­‐assisting  algorithms  for  CAS  

 

 

Dissemination  level  (Confidentiality)1:  

PU  

Delivery  date  in  Annex  I:    31/12/2014  

Actual  delivery  date:   31/1/2015  

Status2:   F  

Total  number  of  pages:   (keep  in  mind  that  the  page  limit  is  25  excluding  pages  before  the  Table  of  Contents,  annexes  and  references)  

Keywords:   Incentive  design,  decision-­‐making,  online  mechanism    

 

1 PU: Public; RE: Restricted to Group; PP: Restricted to Programme; CO: Consortium Confidential as specified in the 2 F: Final; D: Draft; RD: Revised Draft

© SmartSociety Consortium 2013 - 2017 Deliverable D5.3

Page 2 of (24) http://www.smart-society-project.eu/

Disclaimer  

This  document  contains  material,  which   is   the  copyright  of  SmartSociety  Consortium  parties,  and  no  copying  or  distributing,  in  any  form  or  by  any  means,  is  allowed  without  the  prior  written  agreement  of  the  owner  of  the  property  rights.  The  commercial  use  of  any  information  contained  in  this  document  may  require  a  license  from  the  proprietor  of  that  information.  

Neither  the  SmartSociety  Consortium  as  a  whole,  nor  a  certain  party  of   the  SmartSociety  Consortium  warrant   that   the   information   contained   in   this   document   is   suitable   for   use,   nor   that   the  use   of   the  information  is  free  from  risk,  and  accepts  no  liability  for  loss  or  damage  suffered  by  any  person  using  this  information.  

This  document  reflects  only  the  authors’  view.  The  European  Community  is  not  liable  for  any  use  that  may  be  made  of  the  information  contained  herein.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Full  project  title:   SmartSociety  -­‐  Hybrid  and  Diversity-­‐Aware  Collective  Adaptive  Systems:  When  People  Meet  Machines  to  Build  a  Smarter  Society  

Project  Acronym:   SmartSociety  

Grant  Agreement  Number:   600854  

 

Number  and  title  of  work  package:   5  Incentive  Design  and  Decision-­‐Making  Strategies  

Document  title:   Specification  of  advanced  incentive  design  and  decision-­‐assisting  algorithms  for  CAS  

Work-­‐package  leader:   Kobi  Gal,  BGU  

Deliverable  owner:   Kobi Gal  Quality  Assessor:     Mark  Hartswood,  OXF    

Deliverable D5.3 © SmartSociety Consortium 2013 - 2017

© SmartSociety Consortium 2013 - 2017 Page 3 of (24)

List  of  contributors    

Partner  Acronym  BGU  BGU  BGU          

Contributor  Moshe  Mash  Avi  Segal  Kobi  Gal            

   

     

© SmartSociety Consortium 2013 - 2017 Deliverable D5.3

Page 4 of (24) http://www.smart-society-project.eu/

Executive  summary    

Deliverable  5.3  of  WP5  focuses  on  the  deployment  and  evaluation  of  incentive  mechanisms  for  CAS  in  the  real  world.  Building  on  the  results  of  deliverable  5.1  (an  initial  design  for  an  empirical  ride  sharing  application)  and  deliverable  5.2  (lab  studies  for  determining  which  incentive  mechanisms  to  use  for  CAS)  we  have  conducted  two  studies  focusing  on  the  design  and  evaluation  of  incentive  mechanisms  in  real  world  CAS  systems.  Following  the  reviews  from  Y1,  we  focused  or  efforts  on  the  design  and  evaluation  of    incentive  mechanisms  that  take  account  of  the  social  and  technological  context  of  interaction  problems,  and  in  particular,  are  robust  to  scale.      

Our  first  study  focused  on  incentives  for  enhancing  engagement  in  large-­‐scale  CAS  systems  that  are  loosely  coupled,  in  that  participants  work  individually  and  their  contributions  are  subsequently  aggregated  using  computational  methods.    We  based  this  study  on  citizen  science  systems  in  which  volunteers  collectively  create  or  analyze  data  at  a  scale  that  professional  researchers  cannot  accomplish  on  their  own.  Citizen  science  are  mass-­‐participation  platforms  in  which  computer  systems  can  play  a  key  role  in  task  allocation  and  data  aggregation,  thus  making  them  a  natural  candidate  for  smart  society  research.  Although  such  systems  are  highly  successful  in  drawing  large  amounts  of  committed  volunteers,  the  vast  majority  of  participants  exhibit  a  fast  turnaround  time  in  the  system,  becoming  active  participants  quickly  after  registering  and  leaving  after  a  few  days.  Even  a  small  increase  in  the  contribution  rates  of  these  participants  can  lead  to  a  significant  improvement  in  productivity  of  citizen  science.    We  designed  and  evaluated  a  general  methodology  for  reducing  disengagement  in  citizen  science  through  a  controlled  intervention.  We  analyzed  two  years’  of  user  participation  data  from  16  different  citizen  science  projects,  which  revealed  two  significant  cohorts  of  participants  leaving  the  system  shortly  after  their  initial  enrolment.  We  designed  and  targeted  an  intervention  strategy  for  these  groups  in  the  form  of  an  e-­‐mail  which  directly  addressed  the  factors  identified  in  the  survey  as  contributing  to  disengagement.  Participants  receiving  the  email  were  significantly  more  likely  to  return  to  activity  in  the  system  and  did  not  decrease  their  level  of  contribution  and  persistency  when  compared  to  a  control  group  of  users  who  did  not  receive  the  mail.  The  contribution  of  this  work  was  in  providing  a  general  methodology  for  identifying  and  alleviating  disengagement  in  citizen  science  projects  through  a  controlled  intervention  strategy  that  is  shown  to  be  highly  effective  in  several  different  projects.    Our  second  study  focused  on  the  question  of  how  to  design  incentive  mechanisms  for    large-­‐scale  CAS  systems  in  which  the  interactions  between  participants  are  tightly  coupled,  and  members  in  the  group  actively  need  to  cooperate  and  coordinate  in  order  for  the  group  to  succeed.  In  this  study  we  focused  on  the  design  of  incentive  schemes  for  a  ride  sharing  application  for  matching  between  riders  and  drivers  according  to  various  criteria.  The  application  was  developed  as  part  of  a  consortium  wide  collaboration.  We  designed  two  incentive  schemes  for  the  system,  one  that  consisted  of  a  reputation  mechanism  in  which  participants  were  able  to  rate  each  other’s  performance  in  the  system.  Another  consisted  of  community  messages  that  provided  motivating  messages  with  a  social  and  ecological  context  to  selected  users.  We  hypothesized  that  using  both  these  incentive  systems  would  increase  the  motivation  of  participants  in  the  system  to  use  it,  and  result  in  higher  efficiency  and  performance.  Our  results  were  as  follows.  First,  we  were  able  to  deploy  the  ride  sharing  system  at  BGU  university  and  recruit  150  users,  despite  the  intense  competition  consisting  from  3  registered  ride  sharing  applications.  Second,  the  reputation  mechanism  was  heavily  used  by  all  users  in  the  system.  Third,  there  was  no  significant  effect  of  using  community  messages  on  participant  behaviour  in  the  ride  share  system  (although  this  could  be  partly  explained  by  the  fact  that  the  messages  were  not  made  visible  enough).    These  two  studies  demonstrate  that  reasoning  about  human  factors,  rather  than  just  about  optimization,  is  key  to  the  design  of  successful  CAS  systems,  even  when  these  systems  are  very  different  from  each  other  in  terms  of  interaction  and  scale.    Our  studies  provided  a  general  methodology  for  motivating  disengaged  users  in  citizen  science  projects  and  increasing  their  contribution,  and  showed  the  importance  of  reputation  systems  in  sustaining  a  successful  ride  sharing  application.        

Deliverable D5.3 © SmartSociety Consortium 2013 - 2017

© SmartSociety Consortium 2013 - 2017 Page 5 of (24)

Table  of  Contents    Table  of  Contents  ..............................................................................................................................................  5  2   Improving  productivity  through  controlled  intervention  ...........................................................................  6  

2.1     Background…….…………………………………………………………………………………………………………………..6  2.2    Related  work…………………………………………………………….……………………………………………………....8  2.3     Understanding  participation  and  disengagement  in  citizen  science…………………………….........9  2.4    Profiling  volunteer  populations…………………………………………………………………………………….……9  2.5    Interview  design  and  deliver………………................................................................................10  2.6   Assessment  of  effectiveness  of  intervention……………………………………………………………………..11  2.7.   Discussion…………………………………………………………………………………………………………………………12  

3            Community  messages  and  reputation  systems  as  incentive  mechanisms  in  CAS…………………………………13  3.1   Related  work…………………………………………………………………………………………………………………….13  3.2.   Experimental  design………………………………………………………………………………………………….………15     3.2.1   Background  and  technical  specification  for  RideShare  system……………………………..15  3.3.   BGU  Deployment  and  study  results…………………………………………………………………………………..17  3.4.     Adoption  results………………………………………………………………………………………………………………..18  3.5     Reputation  and  community  messages……………………………………………………………………………….20      

 

© SmartSociety Consortium 2013 - 2017 Deliverable D5.3

Page 6 of (24) http://www.smart-society-project.eu/

 

2. Improving  productivity  through  controlled  intervention  

This  study  was  conducted  in  partnership  with  WP1  and  in  collaboration  with  the  SOCIAM  consortium.  It  is  based  on  a  paper  that  is  currently  under  review  for  the  Web  Science  track  of  the  International  Conference  on  the  World  Wide  Web,  co-­‐authored  with  Avi  Segal  (BGU);  Robert  Simpson  (Oxford);  Victoria  Homsey  (Oxford)  and  Kevin  Page  (Oxford).  

2.1.  Background  

Volunteers  have  been  involved  in  scientific  research  for  over  100  years.  More  recently,  technological  developments  have  transformed  the  role  of  these  non-­‐professional  scientists  to  active  participants  in  large-­‐scale  endeavors,  termed  citizen  science,  in  which  volunteers  collectively  create  or  analyze  data  at  a  scale  that  professional  researchers  cannot  accomplish  on  their  own  [1].    

 Zooniverse  is  the  largest  citizen  science  platform  that  exists  today,  including  over  a  million  volunteers  and  25  live  projects  spanning  astrophysics,  zoology,  biology,  medicine,  climate  science,  and  the  humanities  [18].  In  all  of  these  projects  the  volunteers  identify,  classify,  mark,  and  label  data,  which  is  subsequently  aggregated  and  analyzed  in  order  to  reach  scientific  conclusions.  The  number  of  active  projects  is  steadfastly  growing,  from  8  live  projects  in  the  beginning  of  2012,  to  25  live  projects  in  2014,  and  its  user  base  includes  volunteers  from  varying  occupations,  age  groups,  level  of  education  and  geographical  location  [2].    

 Participants  in  Zooniverse  projects  differ  widely  in  contribution  rates  and  motivation  [3].  A  small  minority  of  participants  are  highly  committed  and  contribute  tens  of  thousands  of  tasks,  also  becoming  involved  in  higher-­‐order  participation,  such  as  forum  moderation.  Whilst  the  platform  could  not  function  without  these  committed,  high-­‐volume  contributors,  they  exists  within  a  long  tail  of  user  participation  in  Zooniverse.  

The  vast  majority  of  participants  in  Zooniverse  projects  undertake  only  a  few  classifications  each,  and  participate  for  just  a  few  days.  Despite  their  casual  participation,  these  users  contribute  a  substantial  fraction  of  the  overall  effort  going  into  Zooniverse.  This  is  demonstrated  in  Figure  1,  which  shows  the  fraction  of  total  contributions  as  a  function  of  the  number  of  contributions  per  user.  We  note  the  tall  spike  in  the  total  contribution  rate  for  users  with  small  number  of  contributions  (lef-­‐hand  side  of  the  figure),  which  form  the  vast  majority  of  Zooniverse  volunteers;  and  the  long  tail  of  decreasing  contributions  as  the  number  of  contributions  grows.    If  volunteer  disengagement  (the  point  at  which  users  stop  participating  in  the  system)  can  be  delayed  by  just  a  few  tasks,  then  overall  productivity  in  the  Zooniverse  could  improve  significantly.  As  the  Zooniverse  continues  to  expand  and  This  work  provides  a  comprehensive  study  of  participation  patterns  in  Zooniverse,  identifying  disengaged  populations  and  bringing  them  back  to  productivity  in  the  system  using  controlled  intervention.  Prior  work  has  showed  that  citizen  science  volunteers  are  driven  by  diverse  range  of  motivations  with  varying  degrees  of  commitment  and  engagement  [3,4,5].  These  studies  were  limited  to  isolated  citizen  projects,  and  were  not  used  to  implement  and  test  intervention  policies.    

Our  work  bridges  this  gap  by  moving  towards  a  general  methodology  for  reducing  disengagement  in  citizen  science  that  is  based  on  the  analysis  of  two  years’  of  participation  data  in  16  Zooniverse  projects.  This  methodology  includes:  (1)  surveys  to  reveal  the  motivations  that  drive  users’  participation  in  Zooniverse;  (2)  identifying  cohorts  based  on  the  survey  results  and  the  participation  data;  (3)  designing  an  intervention  strategy  that  targets  specific  cohorts  and  is  designed  to  increase  their  engagement  with  the  system;  (4)  analyzing  the  efficacy  of  this  strategy  over  time,  according  to  performance  and  persistence  measures.  

Deliverable D5.3 © SmartSociety Consortium 2013 - 2017

© SmartSociety Consortium 2013 - 2017 Page 7 of (24)

We  designed  and  administered  a  survey  to  3,000  randomly  selected  users  in  Zooniverse  who  participate  in  a  wide  variety  of  projects.  The  survey  identified  “classification  anxiety”  (overestimating  the  effects  of  individual  mistakes  [5]),  competition  from  other  life  demands  and  leisure  activities,  and  boredom  from  specific  Zooniverse  projects  as  prominent  causes  of  disengagement  among  volunteers.  For  many  users  the  cause  of  classification  anxiety  was  revealed  to  be  a  misunderstanding  of  the  collective  nature  of  citizen  science  projects,  in  which  aggregation  of  data  diminishes  the  effects  of  individual  mistakes.  

To  identify  target  communities  for  the  intervention  we  combined  our  analysis  of  the  survey  with  findings  revealed  by  clustering  two  years’  worth  of  user  participation  data  from  16  different  projects.  We  focused  our  intervention  on  two  cohorts  who  quickly  left  the  system  after  an  initial  burst  of  activity.  Volunteers  in  the  first  cohort  spent  less  than  a  day  making  contributions,  and  those  in  the  second  spent  between  one  and  ten  days  as  active  volunteers.  These  cohorts  are  significant  as  they  capture  the  vast  majority  of  user  participation  in  the  system  for  all  projects.      

We  designed  interventions  in  the  form  of  emails  that  directly  addressed  the  causes  of  disengagement  that  were  revealed  in  the  survey  and  sent  to  each  user  in  two  cohorts  described  above.  We  compared  the  effectiveness  of  this  intervention  method  with  a  control  group  that  included  participants  with  similar  participation  patterns  who  did  not  receive  any  email  notification.    

The  results  showed  that  participants  from  the  intervention  group  were  significantly  more  likely  to  return  to  activity  in  Zooniverse  than  participants  from  the  control  group,  without  experiencing  a  drop  in  contribution  rates  and  activity  in  the  system,  as  compared  to  the  control  group.  In  addition,  returning  participants  from  the  intervention  group  resumed  activity  at  least  as  fast,  and  remained  active  in  the  system  for  at  least  as  long  as  returning  participants  from  the  control  group.      

Our  work  has  insights  for  the  designers  of  citizen  science  platforms  in  general,  providing  an  example  of  methodology  for  reducing  disengagement  in  citizen  science  projects  that  identifies  meaningful  cohorts  in  the  population,  uncovers  the  factors  that  reduce  participation  of  different  groups  in  the  system  and  targeted  group  interventions  that  stimulate  re-­‐engagement.      

 

   Figure  1:  Fraction  of   total   contributions   to  Zooniverse  per  user   in   the  Galaxy  Zoo  project.  Note  the  sharp  spike  for  users  with  very  small  contribution  rates  on  the  left-­‐hand  side  of  the  Figure.    

 

© SmartSociety Consortium 2013 - 2017 Deliverable D5.3

Page 8 of (24) http://www.smart-society-project.eu/

2.2     Related  work  

This  work  relates  to  several  bodies  of  work  on  identifying  participation  patterns  in  citizen  science  and  designing  environments  for  improving  user  engagement  and  productivity.  We  relate  to  each  of  these  in  turn.  

Existing  work  has  identified  different  classes  of  populations  in  peer  production  sites.  Preece  and  Shneiderman’s  Reader-­‐to-­‐Leader  framework  defined  categories  of  users  that  are  distinguished  by  their  depth  of  social  engagement  within  the  community:  ‘readers’  who  lurk  in  the  background,  ‘contributors’  who  create  content  and  contribute  to  the  community;  ‘collaborators’  who  work  together  and  regularly  contribute  and  ‘leaders’  who  participate  in  the  governance  of  the  site  [6].    

The  majority  of  the  labor  in  general  peer  production  sites  is  often  apportioned  to  1%  of  users  of  the  website  [7].  In  contrast,  the  ratio  of  contributors  is  significantly  higher  for  citizen  science  projects  and  contributors  exhibit  a  variety  of  contribution  styles.  Eveleigh  who  studied  user  participation  patterns  in  the  ‘Old  Weather’  Zooniverse  project,  identified  'dabblers'  and  'drop-­‐outs'  as  important  classes  of  volunteers  [5].    Dabblers  exhibit  a  low-­‐commitment  attitude,  a  weak  tie  to  projects,  and  an  intermittent  approach  to  participation,  with  occasional  short  bursts  of  activity.  These  casual  contribution  styles  form  the  majority  of  user  contributions  to  Zooniverse,  and  collaborators  and  leaders  represent  a  small  minority.    

Several  works  have  specifically  studied  the  engagement  patterns  of  citizen  science  volunteers.    In  an  ecological  fieldwork  project,  Rotman  describes  a  ‘circuit  of  engagement’  whereby  volunteers,  motivated  initially  out  of  curiosity,  may  subsequently  leave  the  system  if  they  are  not  made  to  feel  part  of  the  wider  scientific  community  [9].  Eveleigh  cites  competition  with  other  life  activities,  anxiety  over  making  mistakes  and  boredom    as  the  main  reasons  driving  disengagement  in  the  Old  Weather  citizen  project  [5].  Kittur  also  cites  boredom,  in  addition  to  low  work  quality  and  inappropriate  task  assignment  as  major  reasons  for  early  disengagement  [10].    Mao  et  al  used  machine  learning  to  predict  disengagement  in  the  Galaxy  Zoo  project,  identifying  two  cohorts  of  user  groups  spending  5  and  30  minutes  in  the  system,  respectively  [8].  

Many  studies  have  focused  on  environment  design  for  facilitating  user  engagement  in  citizen  science.  The  FoldIt  project  is  framed  in  the  context  of  a  game  in  order  to  enhance  user  engagement.  Some  Zooniverse  projects  exhibit  badges  and  leader  boards  functionalities,  although  there  is  evidence  that  competitive  game  elements  may  be  counterproductive  and  work  to  de-­‐motivating  casual  contributors  and  reduce  the  quality  of  the  work  [11,  12,  13].  Although  recommendations  towards  an  improved  environment  are  often  derived  from  these  types  of  study  few  papers  also  include  evidence  of  successful  intervention.  At  the  same  time  Zooniverse  itself  deploys  a  variety  of  mechanisms  designed  to  enhance  volunteers’  experience  and  engagement,  including:  chat  and  discussion  forums,  use  of  narrative  or  storytelling  (e.g.  being  the  captain  on  a  ship,  or  engaging  with  the  fight  against  cancer),  active  links  and  participation  with  scientists  via  blog  posts  and  from  within  discussion  forums,  and  words  of  encouragement  (exhortations  to  ‘keep  going’  as  in  the  Cell  Slider  project).  However  the  effects  of  these  mechanisms  were  not  studied  in  a  principled  way.  

Building  on  these  findings  our  approach  has  been  to  formulate  a  four  stage  multidisciplinary  process  of:  (1)  Contacting  volunteer  populations  to  understand  reasons  for  participation  and  disengagement;  (2)  profiling  volunteer  populations  to  reveal  distinct  cohorts  that  may  be  targeted  by  interventions;  (3)  Intervention  design  and  delivery  based  upon  prior  stages;  (4)  Evaluation  and  follow-­‐up  to  determine  effectiveness.  In  the  following  sections  we  walk  through  this  process  for  our  intervention,  and  in  the  discussion  offer  suggestions  for  how  this  approach  may  be  made  more  general.  

 

Deliverable D5.3 © SmartSociety Consortium 2013 - 2017

© SmartSociety Consortium 2013 - 2017 Page 9 of (24)

2.3  Understanding  participation  and  disengagement  in  citizen  science  

This  aspect  of  the  methodology  we  implemented  a  questionnaire  to  uncover  reasons  for  patterns  of  engagement  and  disengagement  within  Zooniverse.    It  was  carried  out  by  WP1  and  is  detailed  in  their  deliverable.  To  summarize,  a  survey  was  sent  on  July  7th  2014  to  3,000  participants  randomly  selected.    The  three  most  common  classes  of  reasons  as  to  why  people  reported  disengaging  from  Zooniverse  were  (roughly  in  order  of  significance  ):    

1. Competition  from  other  demands  on  the  participant’s  time,  sometimes  expressed  as  forgetting.  

2. Concern  about  making  mistakes,  termed  “classification  anxiety”.  3. Boredom  or  disinterest.  

The  survey  shows  that  there  is  a  significant  ‘re-­‐engagement  potential’  for  participants  who  disengage,  which  might  be  activated  by  a  suitable  reminder.  Such  a  reminder  might  usefully  provide  reassurance  about  classification  accuracy,  as  well  as  well  as  directing  ‘bored’  participants  towards  other  projects  they  could  try.    

2.4.     Profiling  volunteer  populations  

To  understand  which  Zooniverse  sub-­‐population  we  might  usefully  target  with  an  intervention  (i.e.  which  may  be  prone  to  distraction,  anxiety  or  boredom)  we  analyzed  the  engagement  patterns  of  Zooniverse  volunteers  in  16  projects  out  of  the  25  Zooniverse  projects.  This  sample  is  representative  of  the  gamut  of  different  topics  (e.g.,  biology,  nature,  astronomy)  and  popularity  with  volunteers,  as  measured  by  the  number  of  registered  users  as  of  July  2014.  Table  1  provides  a  general  description  of  these  projects.  Data  was  collected  beginning  September  2012  for  all  projects,  with  the  exception  of  the  Planet  Hunters  project,  for  which  data  was  already  available  from  December  2010.    

We  measure  users’  activity  in  the  system  by  the  number  of  days  elapsed  since  their  first  and  last  seen  login.    Let  t_k    be  the  current  timestamp.  Let  t_i  be  the  timestamp  of  the  user’s  first  login  to  the  The  figure  clearly  identifies  two  distinct  groups  that  make  up  the  vast  majority  of  activity  in  the  system.  The  largest  cohort  of  users  consists  of  those  who  spent  less  than  a  day  as  active  users,  which  we  will  denote  the  "1-­‐day"  cohort.    This  cohort  included  56  to  87  percent  of  Zooniverse  volunteers.    Another  large  cohort  consists  of  volunteers  who  spend  between  one  to  nine  days  as  active  users  in  the  system,  which  we  will  denote  the  “10-­‐day”  cohort.  This  cohort  included  4  to  14  percent  of  volunteers.  Together  these  cohorts  make  up  at  least  60%  of  the  user  population  in  Zooniverse.  We  thus  decided  to  focus  our  intervention  strategy  on  these  two  cohorts.  Even  a  small  increase  in  the  contributions  of  these  populations  can  lead  to  significant  benefits  to  citizen  science.  Let  t_j  be  the  timestamp  representing  the  user’s  most  recent  login  to  the  system.  We  measure  a  user’s  activity  in  Zooniverse  as  the  difference  between  t_j  and  t_i.  Figure  2  describes  users'  activity  in  the  system  for  all  of  the  supplied  projects.  The  X-­‐axis  shows  range  groups  of  participation  time  spans,  and  the  Y-­‐axis  shows  the  ratio  of  users  that  fall  into  each  group.  The  figure  clearly  identifies  two  distinct  groups  that  make  up  the  vast  majority  of  activity  in  the  system.  The  largest  cohort  of  users  consists  of  those  who  spent  less  than  a  day  as  active  users,  which  we  will  denote  the  "1-­‐day"  cohort.    This  cohort  included  56  to  87  percent  of  Zooniverse  volunteers.    Another  large  cohort  consists  of  volunteers  who  spend  between  one  to  nine  days  as  active  users  in  the  system,  which  we  will  denote  the  “10-­‐day”  cohort.  This  cohort  included  4  to  14  percent  of  volunteers.  Together  these  cohorts  make  up  at  least  60%  of  the  user  population  in  Zooniverse.  We  thus  decided  to  focus  our  intervention  strategy  on  these  two  cohorts.            

© SmartSociety Consortium 2013 - 2017 Deliverable D5.3

Page 10 of (24) http://www.smart-society-project.eu/

 

Table  1:  Zooniverse  projects  used  in  study  

 

Figure  2:  Activity  Patterns  In  Zooniverse  

2.5      Interview  design  and  delivery  

The  goal  of  the  intervention  was  to  bring  back  disengaged  users  to  being  productive  users  in  the  system  as  measure  by  whether  (and  how  quickly)  these  users  return  to  being  active  users  in  Zooniverse  following  the  intervention,  and  the  difference  in  contribution  rates  (i.e.,  persistence)  after  returning  to  the  system.    We  randomly  assigned  the  users  in  the  1-­‐day  and  10-­‐day  cohort  to  a  control  and  an  intervention  (test)  group.    The  intervention  group  received  a  reminder  email  that  was  designed  to  encourage  them  to  return  to  the  Zooniverse  system  and  to  make  contributions.  

The  email  directly  addressed  the  motivational  issues  that  were  uncovered  in  our  survey,  emphasizing  the  collective  nature  of  the  Zooniverse  projects,  the  tolerance  to  individual  mistakes  by  volunteers,  and  the  availability  of  other  projects  on  the  system.  The  control  group  received  no  such  email.    The  email  sent  out  to  the  1-­‐day  cohort  was  sent  a  week  after  the  user’s  last  login  to  the  system.  The  mail  for  the  1-­‐day  cohort  was  as  follows:  

“Thanks  for  trying  PROJECTNAME,  we  appreciate  your  clicks!  You're  not  alone  on  PROJECTNAME  -­‐  thousands  of  people  take  part  every  month.  You  can  discuss  the  images  you  see  on  PROJECTNAME  with  the  community,  and  the  project's  research  team,  by  visiting  Talk  at  PROJECTTALKURL.  Get  involved  again  at  PROJECTURL.  

Deliverable D5.3 © SmartSociety Consortium 2013 - 2017

© SmartSociety Consortium 2013 - 2017 Page 11 of (24)

We  know  that  some  people  worry  that  they  aren't  very  good  at  PROJECTNAME  -­‐  but  this  isn't  the  case.  We  can  use  all  volunteers'  clicks  to  learn  about  the  data,  and  multiple  people  will  see  each  image.  We  use  statistical  techniques  to  get  the  most  from  everyone's  answers,  and  the  occasional  error  does  not  affect  the  results.  

If  PROJECTNAME  didn't  suit  you,  then  check  out  all  of  the  other  Zooniverse  citizen  science  projects  at  www.zooniverse.org,  or  if  you  would  rather  not  receive  these  emails  you  can  unsubscribe  at  www.zooniverse.org/account/newsletters.  You  can  see  your  contributions  to  all  Zooniverse  projects  by  visiting  http://zooniverse.org/me.  We  look  forward  to  seeing  you  again,  

Rob  and  the  Zooniverse  Team.”  

The  email  to  the  10-­‐day  cohort  varied  slightly  in  addressing  the  volunteers  as  regular  contributors  rather  than  newcomers  and  providing  users  with  a  link  to  a  service  which  tracks  their  contributions  to  Zooniverse.    It  was  sent  two  weeks  after  the  user’s  last  login  to  the  system.  

The  intervention  was  conducted  between  the  dates  of  August  15th,  2014  and  September  24th,  2014.  On  each  day,  we  sent  out  the  relevant  email  to  the  volunteers  in  the  intervention  groups.  In  total,  the  intervention  group  consisted  of  306  randomly  selected  volunteers  from  the  1-­‐day  cohort  and  541  volunteers  randomly  selected  from  the  10-­‐day  cohort.  The  control  group  consisted  of  292  randomly  selected  volunteers  from  the  1-­‐day  cohort  and  540  volunteers  from  the  10-­‐day  cohort.  Note  that  volunteers  which  were  assigned  to  both  cohorts  and  received  both  mails  were  removed  from  the  analysis.  To  measure  the  interventions  impact,  Zooniverse  supplied  us  contribution  data  for  the  two  groups  for  the  aforementioned  dates,  including  user  ID,  task  ID  and  timestamp  of  task  contribution.  

We  wished  to  examine  the  following  hypotheses:  

1. Sending  emails  to  the  intervention  group  will  have  a  significant  and  positive  effect  on  the  return  of  volunteers  to  activity  as  compared  to  the  control  group.  

2. Returning  volunteers  from  the  intervention  group  will  resume  activity  at  least  as  fast  as  returning  volunteers  from  the  control  group.  

3. Returning  volunteers  from  the  intervention  group  will  be  at  least  as  persistent  (remain  active  in  the  system)  as  returning  volunteers  from  the  control  group.    

4. Returning  volunteers  from  the  intervention  group  will  provide  at  least  as  many  contributions  to  Zooniverse  as  returning  volunteers  from  the  control  group.    

2.6. Assessment  of  effectiveness  of  intervention  

We  first  compared  the  number  of  volunteers  from  the  intervention  and  control  group  that  returned  to  activity  in  the  system.  As  shown  by  Figure  3,  the  ratio  of  volunteers  who  returned  to  the  system  following  the  intervention  was  significantly  higher  for  the  intervention  group  than  for  the  control  group  (Chi  square  p<0.03).  The  bars  in  the  figure  represent  95%  confidence  intervals.  

© SmartSociety Consortium 2013 - 2017 Deliverable D5.3

Page 12 of (24) http://www.smart-society-project.eu/

   

Figure  3:  Return  ratio  for  intervention  and  control  groups  

Group   Contributions  Before  (num.  of  tasks)  

Contributions  After  (num.  of  tasks)  

Days  active  After  

Intervention   20   18   1.5  Control   21   23.5   1.2  

Table  2:  Persistence  for  intervention  and  control  groups.  

 

We  next  compared  the  speed  in  which  volunteers  returned  to  the  system  in  both  groups  as  measured  by  the  number  of  days  from  sending  out  the  email  to  their  first  login  back  to  the  system.  We  found  that  the  average  return  time  for  volunteers  in  the  intervention  group  (4.1  days)  was  less  than  that  of  the  control  group  (5.7  days),  although  this  result  was  not  statistically  significant  (one-­‐tailed  non-­‐paired  t-­‐test,  p=0.052).      

One  may  suspect  that  although  email  interventions  are  able  to  bring  back  more  volunteers  that  their  persistence  (as  measured  by  their  activity  time  in  the  system  after  they  return  and  the  number  of  classifications  they  perform)  is  lower  than  that  of  volunteers  in  the  control  group,  who  return  to  the  system  on  their  own  accord  and  may  be  more  highly  motivated  to  contribute.  To  check  this,  we  looked  at  the  median  number  of  classifications  before  and  after  the  reminder  for  both  groups,  as  shown  in  the  Table  2.      The  results  show  that  there  was  no  statistically  significant  difference  between  the  two  groups  in  the  number  of  classifications  before  and  after  the  intervention.  We  chose  to  present  the  median  rather  than  the  average  contribution  rate  to  offset  the  effect  of  “outlier”  volunteers  whose  contribution  rates  are  exceptionally  high.  When  looking  at  average  contribution  rates,  we  see  a  decrease  for  both  groups  in  the  number  of  classifications  before  and  after  the  intervention  (not  shown  in  the  table).  However,  this  decrease  was  significantly  more  pronounced  for  the  control  group  than  for  the  intervention  group  (non-­‐paired  t-­‐test,  p<0.03).  

Lastly,  there  was  no  statistically  significant  difference  between  the  number  of  days  active  in  the  system  after  the  intervention  between  the  intervention  group  (1.5  days)  and  the  control  groups  (1.2  days,  one-­‐tailed  non-­‐paired  t-­‐test,  p=0.32).    Thus,  we  conclude  that  our  reminder  intervention  ensures  persistence,  which  does  not  fall  from  the  persistence  of  those  returning  without  a  reminder.    

2.7. Discussion  

In  this  section  we  wish  to  reflect  upon  some  of  the  strengths  and  weaknesses  of  our  approach  that  reveal  important  principles  and  trade-­‐offs  inherent  to  the  design  of  interventions  for  citizen  science  platforms.  

Deliverable D5.3 © SmartSociety Consortium 2013 - 2017

© SmartSociety Consortium 2013 - 2017 Page 13 of (24)

Applying  the  methodology  revealed  that  disengagement  is  triggered  by  life  distractions,  classification  anxiety,  and  boredom.  We  identified  target  communities  for  the  intervention  that  capture  the  vast  majority  of  user  participation  in  the  system  for  all  projects.    We  designed  interventions  in  the  form  of  emails  that  directly  addressed  underlying  issues  uncovered  by  the  survey.  The  methodology  was  shown  to  successfully  promote  re-­‐engagement  of  users  across  16  different  citizen  science  projects.  Returning  participants  from  the  intervention  group  resumed  activity  at  least  as  fast,  and  remained  active  in  the  system  for  at  least  as  long  as  returning  participants  from  the  control  group.    Our  methodology  is  an  example  of  the  new  engineering  approach  combining  social  and  computational  elements  [14,15]  and  the  work  by  Burke  et  al.  [17]  suggesting  to  target  intervention  to  specific  users  to  increase  their  social  contribution.  

We  now  mention  three  issues  with  our  approach  and  explain  how  each  corresponds  to  a  type  of  trade-­‐off   inherent   when   designing   interventions   for   “non-­‐uniform”   populations   in   which   volunteers   vary  widely  in  the  extent  of  contribution.      First,  we  identified  two  cohorts,  those  who  disengage  after  a  day,  and  those  who  remain  in  the  system  for  up  to  10  days  before  disengaging.  But  as  far  as  our  intervention  is  concerned,  we  treat  these  as  a  single   population.   On   the   one   hand   this   is   sensible   because   combined   they   represent   the   larger  population  of  contributors  who  rapidly  disengage  (corresponding   to  Eveleigh  et  als’   ‘drop-­‐outs’   [5]).  On  the  other  hand,  better  tailored  interventions  may  be  more  effective  for  each  cohort  as  presumably  those  disengaging  after  a  day  have  a  different  shared  experience  to  those  disengaging  after  a  few  days.  Moreover,   it   may   be   possible   to   disaggregate   these   populations   even   further   based   on   finer  differentiations   of   engagement   patterns   and   underlying   motivational   issues,   enabling   increasingly  more  focused  and  efficient  interventions.  That  said,  we  have  been  successful  with  a  relatively  simple  (yet   crude)   instrument,   and   ever   more   refined   approaches   would   incur   correspondingly   greater  overheads  in  terms  of  cost  and  complexity.    A  second  issue  relates  to  the  presumption  that  our  survey  findings  map  onto  the  experience  of  those  1-­‐day  and  10-­‐day  cohorts   identified   in   the  participation  profile.  We  are  assuming   that  distracting   life-­‐events,   anxiety   and   boredom   count   as   significant   reasons   for   disengagement   within   these   cohorts,  without  being  able  to  precisely  identify  what  the  actual  reasons  are  for  any  individual  who  disengages,  nor   denying   that   there   may   well   be   a   mix   of   other   reasons   that   we   have   yet   to   encounter.   This  imprecision   is   related   to   methodological   limits   of   qualitative   research,   particularly   surveys,   where  generalizations  need   to  be  made   in  order   to  map   from   the   survey   sample   to   the  overall   population.  Again,   there   is   a   trade-­‐off   here,   since   greater  precision  attracts  overheads  –  not   least  ultimately   the  risk  of  annoying  or  alienating  volunteers.    Finally,  the  e-­‐mail  intervention  works  much  less  like  a  hunting  spear  and  much  more  like  a  net  in  the  way   that   it   ensnares   several   (presumed)   sub-­‐populations   simultaneously   (those   who   have   been  distracted  from  their  project,  are  anxious  or  who  are  bored).  These  messages  may  also  act  in  concert  on   those  occasions  where  both   reassurance  and  a   reminder  are  needed,  but   they  may  also  miss   the  mark  where  disengagement  occurs  for  some  other  reason.  On  the  plus  side,  the  e-­‐mail  message  has  a  degree   of   generality,   it   can   speak   to   multiple   audiences   simultaneously,   but   this   increases   the  challenges  of  assessing  its  effectiveness.    To  summarize,  we  have  presented  a  general  methodology  for  incentivizing  participants  in  large  scale  CAS   system   (citizen   science)   that   is   based   on     the   analysis   of   two   years   of   participation   data   in   16  projects.   This   methodology   included:   (1)   surveys   to   reveal   the   motivations   that   drive   users’  participation   in   citizen   science;   (2)   identifying   cohorts   based   on   the   survey   results   and   the  participation  data;  (3)  designing  an  intervention  strategy  that  targets  specific  cohorts  and  is  designed  to   increase   their   engagement  with   the   system;   (4)   analyzing   the   efficacy   of   this   strategy   over   time,  according  to  performance  and  persistence  measures.    While  the  work  described  here  has  produced  a  significant   improvement   in   productivity   from   a   specific   intervention,   we   believe   further   cyclic  iterations   of   the   4-­‐step  methodology   will   uncover   additional   insights   into   the  motivations   of   other  

© SmartSociety Consortium 2013 - 2017 Deliverable D5.3

Page 14 of (24) http://www.smart-society-project.eu/

citizen   science   sub-­‐populations;   future   work   will   design   interventions   to   address   these   needs.   As  discussed  in  this  paper,  we  wish  to  further  explore  the  effectiveness  of   interventions  when  targeting  large   heterogeneous   populations   and   seek   to   gather   further   qualitative   and   empirical   evidence   to  better  understand  these  trade-­‐offs.    3. Community  messages  and  reputation  systems  as  incentive  mechanisms  in  CAS    

 In  this  section  we  describe  a  study  for  designing  a  CAS  of  an  online  community  in  which  participants  are  incentivized  to  coordinate  and  collaborate.  Specifically,  we  examined  the  influence  of  two  incentive  mechanisms  -­‐-­‐-­‐  community  messages  and  reputation  mechanisms  -­‐-­‐-­‐  on  coordination  and  collaboration  in  CAS.      3.1  Related  work      This  study  relates  to  the  use  of  incentives  to  enhance  collaboration  and  coordination  in  groups.  We  mention  prior  work  using  community  messages,  reputation  systems,  and  gamification  elements  to  attempt  to  steer  user  behavior.    There  is  ample  evidence  showing  that  community  messages,  gamification  elements  can  increase  the  contributions  of  participants  in  online  communities  [21,20,19].  At  the  same  time,  there  is  increasing  evidence  (see  our  study  on  citizen  science)  showing  that  populations  can  be  deterred  or  put  off  by  such  measures.  We  present  some  examples  of  both  of  these  works  below.    Kim  and  Keller  [19]  focused  on  motivational  and  volitional  messages  that  adhere  to  the  ARCS  model:  attention  (create  interest  and  curiosity),  relevance  (use  concrete  and  familiar  language  and  examples),  confidence  (demonstrate  likelihood  of  success)  and  satisfaction  (during  and  post  participation).  They  showed  that  messages  encoded  with  such  components  are  able  to  significantly  increase  group  activities  as  compared  to  placebo  messages  in  a  technology  adoption  scenario.    Zhou    et  al.  [20]  showed  that  perceived  similarity  and  trust  can  increase  participation  in  online  communities,    Van  De  Velde  et  al.  [21]  found  that  messages  which  are  focused  on  the  opportunities  and  possible  solutions,  like  a  lower  energy  use  or  the  use  of  more  environmental  friendly  energy  sources,  will  be  more  effective  to  persuade  people  to  contribute  to  the  prevention  and  reduction  of  energy  and  environmental  problems,  instead  of  messages  which  strengthen  the  gravity  of  the  problem  and  the  detrimental  effects  of  it.    McKenzie-­‐Mohr  et  al.  [22]  claim  that  messages  should  emphasize  the  adoption  of  collaborative  systems  by  peers,  setting  collective  goals  for  participants,  providing  prompts  and  memory  aids,  feedback  to  performance,  and  perceived  Convenience  of  other  participants.      Badges  and  other  gamification  elements  like  leader  boards  have  been  shown  to  increase  positively  influence  users’  participation  in  citizen  science  projects,  question  forums  and  in  education.    Judd  and  Churchill  [23]  show  that  badges  serve  social  functions  for  participants  in  media  contexts:  goal  setting,  instruction,  reputation,  status/affirmation,  and  group  identification.      Anderson  et  al.  (24)  modeled  user  behavior  in  the  presence  of  badges  on  the  question-­‐answering  site  Stack  Overflow.  They  showed  that  the  model  was  able  to  predict  changes  in  user  contribution  as  a  function  of  badge  allocation  strategy.    All  of  these  works  were  constrained  to  loosely  coupled  interactions  in  which  the  group  effort  was  aggregated  from  the  individual  contributions  of  each  participant.  Our  goal  was  to  extend  incentive  mechanisms  to  settings  in  which  the    success  of  the  group  highly  depends  on  the  ability  of  the  individuals  to  form  coalitions  (rides)    by  matching  their  preferences.  

The  effects  of  reputation  systems  on  decision  making  in  lab  experiments  has  been  well  documented.    For  example,  Keser  [25]  utilized  an  “investment  game”  where  one  player’s  trust  increases  the  total  

Deliverable D5.3 © SmartSociety Consortium 2013 - 2017

© SmartSociety Consortium 2013 - 2017 Page 15 of (24)

payoffs  but  leaves  her  vulnerable  to  the  other  player  taking  an  unfair  portion.  When  subjects  who  had  not  previously  interacted  with  each  other  were  informed  of  each  other’s  past  play,  both  trust  (investment)  and  trustworthiness  (return  of  profits  to  the  trustor)  were  higher.  However,  the  nature  of  interaction  of  online  groups  is  significantly  different  from  the  lab,  consisting  of  large-­‐scale  interactions  of  thousands  of  users  with  little  prior  information  about  each  other’s  trustworthiness.    

Thus  reputation  systems  in  online  settings  are  an  active  area  of  research.  Luca  [26]    has  shown  that  online  consumer  review  websites  substitute  more  traditional  forms  of  reputation.  In  particular,  a  one-­‐star  increase  in  online  reviews  of  restaurants  in  the  yelp  website  led  to  5-­‐9%  increase  in  the  revenue  of  the  restaurant.  In  addition,  participants  respond  more  strongly  to  ratings  that  contain  additional  information  and  opinions.    Løsang  et  al.  (27)  provide  an  overview  of  existing  and  proposed  systems  that  can  be  used  to  derive  measures  of  trust  and  reputation  for  Internet  transactions,  and  mention  current  trends  in  Amazon  and  e-­‐bay.  They  show  that  the  installment  of  a  reputation  systems  makes  users  more  reliable,  even  if  there  is  a  lack  of    De-­‐Afaro  et  al.  (28)  discuss  some  basic  design  principles  for  content-­‐driver  reputation  systems  which  rely  on  an  analysis  of  the  content  and  the  collaboration  process,  rather  than  on  explicit  user  feedback.  This  approach  was  implemented  in  the  Wikitrust  reputation  system  for  Wikipedia  and  the  Crowdsensus  reputation  system  for  Google  Maps  editors.  

3.2. Experimental  design    

Our  hypothesis  was  twofold.  First,  that    including  ratings  and  community  messages  will  contribute  to  the  successful  adaptation  of  a  CAS  system  in  a  designated  scenario.  Second,  that  community  messages  will  have  a  positive  effect  on  the  performance  of  the  CAS  system.    We  focused  our  study  on  the  use  of  ride  sharing  systems  in  organizations  to  increase  productivity  and  efficiency  in  commuting  times.    We  based  our  study  on  the  RideShare  system  (aka  SmartShare  beta)  developed  jointly  with  WP2-­‐5-­‐6-­‐1.  The  system  supports  community  messages  and  ratings  and  was  fully  deployed  since  mid  December  2014  at  Ben-­‐Gurion  University,  available  for  use  by  the  student  community  at  the  link  http://www.rideshares.info.    In  the  subsections  that  follow  we  provide  a  background  for  the  system,  then  proceed  to  describe  our  empirical  study.        3.2.1 Background  and  technical  specification  for  RideShare  system  

 The  RideShare  system  allows  users  to  offer  and  request  rides  (as  drivers  or  riders).  Users  publish  rides  that  include  departure  and  destination  points  and  time  window.  In  addition,  drivers  have  to  enter  the  number  of  seats  offered  for  riders.    There  are  several  features  in  SmartShare  that  were  developed  with  a  CAS  approach  in  mind  and  that  distinguish  it  from  traditional  ride  sharing  services  currently  available.  The  first  is  an  algorithm  that  searches  for  matches  between  rides  offered  by  drivers  and  requested  by  riders.  The  algorithm  looks  for  agreement  between  departure  and  destination  points,  as  well  as  for  an  overlap  between  the  time  windows  representing  the  departure  points.    The  output  for  each  matching  process  for  a  participant  is  the  list  of  all  possible  rides  that  are  available  to  the  participant  at  a  given  point  in  time.    Each  such  match  is  referred  to  as  a  “plan”  and  shown  to  the  relevant  participants.  Figure  4  describes  examples  for  rides  that  were  created  by  a  driver  and  two  riders  in  the  system.  Figure  5  shows  the  plans  that  will  be  created  according  to  the  rides  of  Figure  1  (the  matches  between  these  rides).      The  rides  include  the  following  information:  (a)  participants  of  the  ride;  (b)  departure  and  destination  points;  (c)  time  window;  (d)  whether  smoking  is  allowed.  The  lower  time  window  of  the  plan  is  determined  by  the  maximum  value  of  all  the  lower  times  of  all  the  rides  that  were  matched.  The  higher  time  is  determined  by  the  minimum  value  of  all  the  higer  times  of  all  the  rides  that  were  matched.  The  plans  are  described  in  Figure  5.  The  smoking  field  is  determined  by  the  profile  of  the  driver.  

© SmartSociety Consortium 2013 - 2017 Deliverable D5.3

Page 16 of (24) http://www.smart-society-project.eu/

username   role   departure  point   destination  point   date  and  time  

Moshik   Driver   Beer-­‐Sheva   Tel-­‐Aviv   9/12/14  12:00-­‐14:00  

Kobi   Rider   Beer-­‐Sheva   Tel-­‐Aviv   9/12/14  13:00-­‐15:00  

Ido   Rider   Beer-­‐Sheva   Tel-­‐Aviv   9/12/14  11:00-­‐18:00  

Figure  4:  examples  of  rides  that  created  by  a  driver  (Moshik)  and  two  riders  (Kobi  and  Ido)      The  plans  that  will  be  created  for  these  rides  are  shown  in  the  Figure  below:  

participants   departure  point  

destination  point  

date  and  time  

Moshik  (driver),  kobi  (rider),  Ido  (rider)  

Beer-­‐Sheva   Tel-­‐Aviv   9/12/14  13:00-­‐14:00  

Moshik  (driver),  kobi  (rider)   Beer-­‐Sheva   Tel-­‐Aviv   9/12/14  13:00-­‐14:00  

Moshik  (driver),  Ido  (rider)   Beer-­‐Sheva   Tel-­‐Aviv   9/12/14  12:00-­‐14:00  

Figure  5:  'matched  rides'  for  the  offer  and  requested  rides  in  Figure1    Each  participant  has  to  choose  between  'accept'  or  'reject'  each  plan  in  his  list.  This  two  tier  process  is  conducted  as  follows.  First,  the  driver  accepts  one  of  the  existing  plans,  and  then  each  rider  is  prompted  to  accept  the  same  plan.    Figure  6  shows  a  ride  request  GUI  that  is  presented  from  the  perspective  of  one  of  the  riders,  showing  two  accepted  ride  plans,  one  of  which  was  accepted  by  all  of  the  participants  (which  included  the  driver  and  the  single  rider).  

Lastly,  we  note  the  technical  specifications  of  the  application  (developed  in  collaboration  with  WP2-­‐5  and  6)  which  includes  four  services:  (a)  Reputation;  (b)  Matching;  (c)  Peer  manager  and  (d)  Provenance.  All  the  services  connected  to  the  Orchestrator  server,  designed  and  built  by  WP6,  which  synchronizes  the  processes  and  validates  that  the  users  are  allowed  to  use  the  service.  Whenever  the  client  sends  a  request  to  the  orchestrator  to  activate  a  service,  the  user  name  and  the  password  are  attached  to  the  request.  The  Orchestrator  validates  that  the  user  name  and  password  are  correct  and  then,  it  forwards  the  request  to  the  appropriate  service.  In  addition,  the  provenance  service,  designed  and  built  by  WP2,  is  connected  to  all  the  components  (Reputation,  Orchestrator,  Peer  manager  and  client),  in  order  to  log  the  activations  of  the  users  and  the  different  states  of  the  system  in  the  past.  This  allows  all  the  interactions  in  the  system  (and  in  particular,  the  reputation  reports  from  all  the  system  history)  to  be  logged  transparently  and  made  available  for  future  analysis.    

 

Deliverable D5.3 © SmartSociety Consortium 2013 - 2017

© SmartSociety Consortium 2013 - 2017 Page 17 of (24)

   

     

We  implemented  two  types  of  incentive  mechanisms  that  are  supported  by  the  SmartShare  system,  community  messages  and  reputation  systems.  We  decided  to  focus  on  these  two  incentive  schemes  following  a  detailed  survey  of  BGU  commuters  that  was  administered  a  few  months  ago  and  identified  lack  of  reliability  measures  and  lack  of  motivation  to  be  primary  causes  of  failure  to  adapt  existing  ride  sharing  systems  in  BGU.      The  first  incentive  mechanism  consisted  of  motivation  messages  that  are  displayed  to  the  user  to  promote  awareness  to  the  social  and  ecological  benefits  of  the  rideshare  system  to  the  community  and  the  individual  participant.  The  figure  below  shows  the  list  of  community  messages  we  chose  for  the  study,  as  well  as  an  example  of  their  visualization  to  the  users  in  the  GUI.        

     

Figure  7:  List  of  community  messages,  and  the  GUI  representation  on  the  right        

The  second  incentive  mechanism  was  the  inclusion  of  a  reputation  system  which  allowed  for  both  riders  and  drivers  to  rate  each  other’s  performance  in  the  system.    The  driver  can  rate  each  rider  in  the  ride,  and  the  riders  can  rate  the  driver  only.  The  rating  score  separated  to  three  categories:  (a)  overall;  (b)  on  time;  (c)  friendliness.  When  a  plan  is  created  the  average  rating  of  the  driver  is  presents  to  the  riders,  and  the  average  ratings  of  the  riders  are  presented  to  the  driver  (see  Figure  8).  The  added  transparency  to  the  system  transactions  and  additional  information  provided  to  participants  through  

Motivational  messages  

Ride  sharing  significantly  reduces  air  pollution  

Why  ride  alone  when  you  can  ride  together  Ride  sharing  will  reduce  your  monthly  expenses  Ride  sharing  contributes  for  creating  a  better  society  The  system  is  restricted  to  BGU  students  only!  

A ride plan that was accepted by the driver, and is still pending acceptance by the other riders.

A ride request that was accepted by all participants

Figure 6: Ride request GUI

© SmartSociety Consortium 2013 - 2017 Deliverable D5.3

Page 18 of (24) http://www.smart-society-project.eu/

the  reputation  system  was  hypothesized  to  induce  all  participants  to  be  more  reliable  and  to  increase  their  confidence  in  choosing  rides  in  the  system.          

 

 

3.3. BGU  Deployment  and  study  results    The  system  was  released  in  Ben-­‐Gurion  University  on  17  Dec,  2014  to  the  general  student  body.  We  report  results  that  were  analyzed  following  a  month  of  usage  of  the  system.  Currently,  students  at  BGU  primarily  use  designated  Facebook  pages  for  posting  and  searching  for  rides.  The  rides  are  posted  as  lists  of  offers  that  are  posted  by  potential  riders.  Commuters  scan  the  lists  by  hand  and  contact  the  drivers.  There  is  no  active  involvement  in  the  negotiation  process  between  drivers  and  commuters.    On  the  one  hand,  using  FB  allows  all  students  to  access  ride  requests  freely  and  quickly.  On  the  other  hand,  it  is  an  unwieldy  process  to  search  the  lists  and  find  the  best  reports.  

Initially,  we  allowed  students  to  be  compensated  $8  for  using  the  system.  In  practice,  only  half  of  the  students  showed  up  to  be  compensated.  This  result  serves  to  strengthen  that  the  system  was  successfully  adopted  by  BGU  students.  

3.4.     Adoption  results  

The  table  below  lists  general  statistics  about  deployment  and  usage  of  the  system  at  BGU.      

Registered  users   149  Individual  users  active  in  the  system  

84  

Ride  requests  (Driver)   193  Ride  Requests  (Commuter)  

276  

Agreed  plans   48  

Table  3:  General  statistics  about  deployment  of  SmartShare  system  at  BGU  

As  we  expected,  there  was  an  overwhelmingly  majority  of  requests  made  by  commuters  in  the  system.    In  all  70%  of  ride  requests  were  made  by  commuters,  while  30%  of  ride  requests  in  the  system  were  posted  by  drivers.      

Figure 8: GUI for reputation system

Deliverable D5.3 © SmartSociety Consortium 2013 - 2017

© SmartSociety Consortium 2013 - 2017 Page 19 of (24)

The  figure  below  shows  the  adoption  rates  of  the  system  at  BGU  through  a  timeline.    As  shown  by  the  figure,  there  was  a  steady  increase  in  the  number  of  users  signing  up  to  the  system,  the  number  of  users  posting  rides,  and  the  numbers  of  using  posting  plans,  since  the  inception  of  the  system.  The  “spikes”  in  contribution  and  enrollment  is  due  to  weekends  in  which  there  is  an  influx  of  commuting  activity  to  and  from  BGU.    

Figure 9: Adoption rates by timeline

The  distribution  over  gender  for  drivers  and  commuters  is  shown  below.    Interestingly,  there  were  significantly  more  ride  requests  posted  by  female  drivers  than  by  male  drivers,  and  significantly  more  ride  requests  posted  by  male  commuters  than  by  female  commuters.    Some  possible  explanations  for  this  phenomenon  is  that  more  female  students  own  a  car  then  male  students  and  that  male  students  are  less  weary  to  use  public  transportation.      

 

Figure  10:  Distribution  of  Male/Female  contributions  

The  figure  below  (left)  shows  the  distribution  of  agreed  plans  across  users.  As  shown  by  the  figure,  the  majority  of  registered  users  in  the  system  did  not  agree  on  a  plan  (and  in  fact  did  not  post  a  ride).  The  

© SmartSociety Consortium 2013 - 2017 Deliverable D5.3

Page 20 of (24) http://www.smart-society-project.eu/

median  number  of  plans  per  user  is  2.  As  we  can  see,  the  number  of  agreed  plans  exhibits  a  long-­‐tail  distribution  that  is  common  to  other  collective  online  enterprises  such  as  citizen  science  and  stack  overflow.  The  figure  below  (right)  shows  the  number  of  ride  plans  as  a  function  of  the  number  of  passengers.    As  can  be  seen  from  the  figure,  rides  had  one  passenger  accompanying  the  driver,  while  a  minority  of  the  rides  had  two  passengers.  

 

 

Figure  11:  Number  of  agreed  plans  for  different  number  of  users  (left);  number  of  ride  plans  for  different  number  of  passengers  in  plan  (right)    

Next,  we  measure  the  efficiency  of  the  rides  taken  using  the  system.  We  measure  the  efficiency  of  a  ride  by  dividing  the  maximal  number  of  commuters  in  the  search  result  of  the  matching  algorithm  with  the  number  of  commuters  who  actually  agreed  on  the  ride.  For  example,  is  a  ride  could  potentially  accommodate  4  commuters  but  the  agreed  ride  plan  only  included  2  commuters,  then  its  efficiency  would  be  ½.  As  can  be  shown  in  the  Table  below,  the  ride  share  system  enjoyed  a  high  efficiency  rating  (on  average).  This  means  that  when  rides  included  only  one  commuter,  there  was  no  other  ride  plan  that  met  the  necessary  matching  criteria.  For  ride  plans  that  include  more  than  one  commuter,  the  efficiency  rate  was  lower.      

Number  of  rides  

Efficiency  

42   1  3   1/2  3   1/3  

Total   0.93  

Table  4:  Average  Efficiency  of  rides  

3.5  Reputation  and  community  messages    We  used  two  conditions  in  the  study.  Students  in  the  Reputation/Community  messages  conditions  were  able  to  use  the  reputation  system.  The  system  allowed  these  students  to  rate  each  other  when  they  share  a  ride,  see  the  ratings  of  potential  users  when  searching  for  rides,  and  also  see  motivational  messages.  Students  in  the  reputation  messages  condition  were  able  to  use  the  reputation  system  but  did  not  observe  the  community  messages  during  their  interaction  with  the  system.    Students  were  allocated  to  the  conditions  in  a  random  fashion  upon  registering  to  the  system.      

Deliverable D5.3 © SmartSociety Consortium 2013 - 2017

© SmartSociety Consortium 2013 - 2017 Page 21 of (24)

 

Feedbacks  posted   137  Users  with  feedbacks   36  Avg  Total  rating   4.91  

Avg  total  “on-­‐time”   4.88  Total   4.89  

Table  5:  Reputation  information  

As  shown  by  the  table,  an  overwhelming  number  of  participants  posted  feedback  to  the  system,  showing  the  efficacy  of  the  reputation  system  and  its  usefulness  in  the  system.  Unsurprisingly,  most  of  the  ratings  were  high.  This  corresponds  to  rating  patters  in  other  collaborative  online  systems.  We  believe  (although  we  cannot  prove  it  statistically)  that  the  inclusion  of  the  rating  system  had  the  positive  effect  of  making  participants  behave  more  reliably  and  more  efficiently  as  compared  to  the  existing  FB  system.    

Lastly,  we  turn  to  measuring  the  effects  of  the  community  message  on  the  behavior  of  participants  in  the  system.  The  figure  below  shows  the  distribution  of  ride  requests  (left)  and  ride  plans  (right)  for  both  information  conditions.  Although  the  number  of  ride  requests  and  ride  plans  was  larger  for  the  conditions  in  which  subjects  did  not  see  the  community  messages,  this  difference  was  not  significant.  Thus  we  conclude  that  the  community  messages  did  not  have  the  desired  effect  of  making  participants  more  efficient  in  the  system.  A  possible  reason  for  this  is  that  the  messages  were  not  visible  and  not  emphasized  enough.  This  is  shown  in  the  table  below,  which  lists  the  number  of  participants  in  both  conditions  who  reported  to  see  the  community  messages  during  a  post-­‐study  survey  filled  by  a  sample  of  the  participants.    One  would  expect  that  participants  who  were  in  the  community  messages  condition  to  report  the  messages,  and  the  participants  who  were  in  the  reputation  system  condition  to  report  they  did  not  see  the  messages.  Interestingly,  only  two  out  of  10  participants  in  the  sample  acknowledged  the  messages.  We  believe  that  making  the  messages  more  visible  would  have  changed  the  result  above.  

 

Figure  12:  distribution  of  ride  requests  (left)  and  ride  plans  (right)  for  both  information  conditions  

 

 

 

Table  6:  Visibility  of  messages  as  reported  by  subjects  in  both  conditions    

 

Acknowledged  

Messages  

Did  not  acknowledge  

Messages  

reputation  Condition   2   5  

Community  msg  Condition   2   8  

© SmartSociety Consortium 2013 - 2017 Deliverable D5.3

Page 22 of (24) http://www.smart-society-project.eu/

We  can  summarize  the  main  achievement  of  the  ride  sharing  study  as  full  fledged  deployment  of  an  active  CAS  designed  and  implemented  by  the  consortium.    The  study  demonstrated  that  a  CAS  system  which  specifically  included  mechanisms  that  reason  about  the  human  could  be  adopted  by  participants  in  the  system.  At  BGU,  the  ride  share  system  successfully  overcome  the  “unbearable  lightness  of  FB”  curse,  by  which  applications  providing  services  are  created  as  FB  pages  and  compete  with  designated,  tailored  applications  that  were  designed  for  the  service  at  hand.      

References  

[1]   Silvertown,  J.  2009.  A  new  dawn  for  citizen  science.  Trends  in  Ecology  &  Evolution.  24,  9,  467  –  471.    

[2]   Raddick,  M.  J.,  Bracey,  G.,  Gay,  P.  L.,  Lintott,  C.  J.,  Murray,  P.,  Schawinski,  K.,  Szalay,  A.  S.,  and  Vandenberg,  J.  2009.  Galaxy  Zoo:  exploring  the  motivations  of  citizen  science  volunteers.  arXiv:0909.2925.  

[3]   Reed,  J.,  Raddick,  M.  J.,  Lardner,  A.,  and  Carney,  K.  2013.  An  Exploratory  Factor  Analysis  of  Motivations  for  Participating  in  Zooniverse,  a  Collection  of  Virtual  Citizen  Science  Projects.  46th  Hawaii  International  Conference  on  System  Sciences    (HICSS),  610-­‐619,  (Hawaii,  7-­‐10  Jan,  2013).  

[4]   Nov,  O.,  Arazy,  O.,  and  Anderson,  D.  2011.  Dusting  for  science:  motivation  and  participation  of  digital  citizen  science  volunteers.  I(iConference  '11).  ACM,  68-­‐74.  (New  York,  NY,  USA)  DOI=http://doi.acm.org/10.1145/1940761.1940771  

[5]   Eveleigh,  A.,  Jennett,  C.,  Blandford,  A.,  Brohan,  P.,  and  Cox,  A.,  L.  2014.  Designing  for  dabblers  and  deterring  drop-­‐outs  in  citizen  science.  In  Proceedings  of  the  SIGCHI  Conference  on  Human  Factors  in  Computing  Systems  (CHI  '14).  ACM,  2985-­‐2994.  (New  York,  NY,  USA)  DOI=http://doi.acm.org/10.1145/2556288.2557262.  

[6]   Preece,  J.,  and  Shneiderman,  B.  2009.  The  reader-­‐to-­‐leader  framework:  Motivating  technology-­‐mediated  social  participation.  AIS  Transactions  on  Human-­‐Computer  Interaction  1,1,  13-­‐32.  

[7]   Ortega,  F.,  Gonzalez-­‐Barahona,  J.  M.,  Robles,  G.  2008.  On  the  Inequality  of  Contributions  to  Wikipedia.  Proceedings  of  the  41st  Annual  Hawaii  International  Conference  on  System  Sciences.  304.  (7-­‐10  Jan.  2008)  DOI=10.1109/HICSS.2008.333  

[8]   Mao,  A.,  Kamar,  E.,  and  Horvitz,  E.  2013.  Why  Stop  Now?  Predicting  Worker  Engagement  in  Online  Crowdsourcing.  In  First  AAAI  Conference  on  Human  Computation  and  Crowd-­‐sourcing.  (November  7–9,  2013,  Palm  Springs,  California).  http://www.aaai.org/ocs/index.php/HCOMP/HCOMP13/paper/view/7498  

[9]   Rotman,  D.,  Preece,  J.,  Hammock,  J.,  Procita,  K.,  Hansen,  D.,  Parr,  C.,  Lewis,  D.,  and  Jacobs,  D.  2012.  Dynamic  changes  in  motivation  in  collaborative  citizen-­‐science  projects.  In  Proceedings  of  the  ACM  2012  conference  on  Computer  Supported  Cooperative  Work  (CSCW  '12).  ACM,  ,  217-­‐226.  (New  York,  NY,  USA)  DOI=10.1145/2145204.2145238  http://doi.acm.org/10.1145/2145204.2145238  

[10]   Kittur,  A.,  Nickerson,  J.  V.,  Bernstein,  M.  S.,  Gerber,  E.  M.,  Shaw,  A.,  Zimmerman,  J.,  Lease,  M.,  and  Horton,  J.  J.,  The  Future  of  Crowd  Work.  16th  ACM  Conference  on  Computer  Supported  Coooperative  Work  (CSCW  2013).  (December  18,  2012)  Available  at  SSRN:  http://ssrn.com/abstract=2190946  

[11]   Darch,  P.  2014.  Managing  the  Public  to  Manage  Data:  Citizen  Science  and  Astronomy.  International  Journal  of  Digital  Curation,  9,  1,  25–40.  

Deliverable D5.3 © SmartSociety Consortium 2013 - 2017

© SmartSociety Consortium 2013 - 2017 Page 23 of (24)

[12]   Eveleigh,  A.,  Jennett,  C.,  Lynn,  S.  and  Cox,  A.  L.  2013.  “I  want  to  be  a  Captain!  I  want  to  be  a  Captain!”:    Gamification  in  the  Old  Weather  citizen  science  project.  Short  paper  presented  at  Gamification  2013  (2-­‐4  October  2013,  Stratford,  Ontario).  https://uwaterloo.ca/gamification/sites/ca.gamification/files/uploads/files/gamification2013-­‐proceedings.pdf  

[13]   Preist,  C.,  Massung,  E.,  and  Coyle.  D.  2014.  Competing  or  aiming  to  be  average?:  normification  as  a  means  of  engaging  digital  volunteers.  In  Proceedings  of  the  17th  ACM  conference  on  Computer  supported  cooperative  work  &  social  computing  (CSCW  '14).  ACM.  1222-­‐1233.  (New  York,  NY,  USA)  DOI=http://doi.acm.org/10.1145/2531602.2531615  

[14]   Guest,  G.  2012.  Applied  Thematic  Analysis.  California:  SAGE  Publications,  Inc    

[15]   Pruitt,  J.,  &  Adlin,  T.  (2010).  The  persona  lifecycle:  keeping  people  in  mind  throughout  product  design.  Morgan  Kaufmann.  

[16]   Bernstein,  A.,  Klein,  M.,  and  Malone,  T.  W.  2012.  Programming  the  global  brain.  Commun.  ACM  55,  5  (May  2012),  41-­‐43.  DOI=http://doi.acm.org/10.1145/2160718.2160731    

[17]   Miorandi,  D.  and  Maggi,  L.  2014.  “Programming”  Social  Collective  Intelligence.  To  appear  in  IEEE  Technology  and  Society,  special  issue  on  Technology  for  Collective  Action  (2014).    

[18]   Zooniverse:  observing  the  world's  largest  citizen  science  platform.  Simpson,  R.  and  Page,  K.R.  and  De  Roure,  D.  In  Proceedings  of  23rd  international  conference  on  World  Wide  Web.  

[19]   Z. Zhou, J. P. Wu, Q. Zhang, and S. Xu, “Transforming visitors into members in online brand communities: Evidence from china,” Journal of Business Research, 2013. [20]              Kim,  ChanMin,  and  John  M.  Keller.  "Towards  technology  integration:  The  impact  of  motivational  and  volitional  email  messages."  Educational  Technology  Research  and  Development  59.1  (2011):  91-­‐111.    [21]         Van  de  Velde,  Liesbeth,  et  al.  "The  importance  of  message  framing  for  providing  information  about  sustainability  and  environmental  aspects  of  energy."Energy  Policy  38.10  (2010):  5541-­‐5549.    [22]     McKenzie-­‐Mohr,  Doug.  Fostering  sustainable  behavior:  An  introduction  to  community-­‐based  social  marketing.  New  society  publishers,  2013.    [23]   Antin,  Judd,  and  Elizabeth  F.  Churchill.  "Badges  in  social  media:  A  social  psychological  perspective."  CHI  2011  Gamification  Workshop  Proceedings  (Vancouver,  BC,  Canada,  2011).  2011.      [24]     Anderson,  Ashton,  et  al.  "Steering  user  behavior  with  badges."  Proceedings  of  the  22nd  international  conference  on  World  Wide  Web.  International  World  Wide  Web  Conferences  Steering  Committee,  2013.      [25]     Keser,  Claudia.  "TRUST  IN  A  NETWORKED  WORLD:  EXPERIMENTAL  GAMES  FOR  THE  DESIGN  OF  REPUTATION  MANAGEMENT  SYSTEMS."  (2003).    [26]   Luca,  Michael.  Reviews,  reputation,  and  revenue:  The  case  of  Yelp.  com.  No.  12-­‐016.  Harvard  Business  School,  2011.      [27]   Jøsang,  Audun,  Roslan  Ismail,  and  Colin  Boyd.  "A  survey  of  trust  and  reputation  systems  for  online  service  provision."  Decision  support  systems43.2  (2007):  618-­‐644.    

© SmartSociety Consortium 2013 - 2017 Deliverable D5.3

Page 24 of (24) http://www.smart-society-project.eu/

 [28]   De  Alfaro,  Luca,  et  al.  "Reputation  systems  for  open  collaboration."Communications  of  the  ACM  54.8  (2011):  81-­‐87.