(d. loop – nrc) pdf

32
Astronomy Technology Overview TMT 2 nd Genera9on instruments NRC Herzberg David Loop September 2015

Upload: dodan

Post on 31-Dec-2016

222 views

Category:

Documents


0 download

TRANSCRIPT

Astronomy Technology Program Overview

Astronomy  Technology  Overview  TMT  2nd  Genera9on  instruments  

NRC  Herzberg  

David  Loop  September  2015  

Astronomy Technology Program Overview 2

Program  Scope  

The  NRC  Herzberg  Astronomy  Technology  Program  (ATP)  is  •  a  science  driven  effort    •  that  develops  and  delivers  innova9ve  technology,  

instrumenta9on,  and  observatory  facili9es    •  in  support  of  the  NRC  parliamentary  mandate  to  

operate  and  administer  astronomical  observatories  on  behalf  of  the  Government  of  Canada    

Astronomy Technology Program Overview 3

Stakeholders  

•  Canadian  astronomy  community,  represented  by  CASCA  and  ACURA  

•  Interna9onal  observatories  that  Canada  is  partnered  with,                                                                                                                      CFHT,  Gemini,  ALMA,  TMT,  SKA,  VLA  

•  Canadian  academic  &  industry  technology  researchers,  with  support  from  NSERC  and  CFI  

•  Government  of  Canada  

Astronomy Technology Program Overview

Long  Range  Plan  (LRP)  ATP  priori9es  are  closely  aligned  with  the  Canadian  Long  Range  Plan  for  Astronomy  (LRP)  

LRP2000  called  for  a  ‘world  observatories’vision,  with  major  focus  on  Canadian  par9cipa9on  in  ALMA,  JWST,  TMT,  and  SKA  

LRP2010  reinforced  this  vision  

Astronomy Technology Program Overview 5

High  Level  Outcomes  

•  Increased  Canadian  astronomy  &  astrophysics  science  research  poten9al  

•  Advanced  technology  innova9on  transfer  to  Canadian  industry  

•  Increased  capacity  of  highly  qualified  people  in  Canada  

Astronomy Technology Program Overview 6

Business  Model  

Aligned  separately  with  each  interna9onal  observatory  agreement  •  A  range  of  in-­‐kind  and  fee-­‐for-­‐service  labour  

delivery  •  A  range  of  observatory  and    community  supported  

material  capital  cost  funding  •  Mul9ple  phase,  5  to  10  year  collabora9ve  

developments,  with  interna9onal  peer  reviews  

Astronomy Technology Program Overview 7

Program  Resources  

Cri9cal  mass  of  human,  infrastructure,  and  financial  resources  •  2  sites  -­‐  Victoria  and  Pen9cton,  with  well  

established  special  purpose  laboratories  •  A  new  TMT-­‐scale  Integra9on  &  Test  lab  under  

construc9on  in  Victoria  •  60  staff  -­‐  engineers,  scien9sts,  technicians,  and  

support  staff  –  matrix  organiza9on  

Astronomy Technology Program Overview

NRC  Herzberg  Key  Strengths  

Key strengths, •  Multidisciplinary technical and science expertise •  Co-located with strong science researchers •  Efficient matrix structure •  Systems engineering, project management •  Continuity, institutional ‘memory’ •  Collaboration expertise, international reputation •  Strong university and industry engagement

International Peer Review Committee (2009) comments, ‘HIA ranks among the best in the world in astronomy technology

and development for existing and future telescopes’

Astronomy Technology Program Overview

R&D  CompeJJve  Ranking  

Majority  of  projects  awarded  a^er  interna9onal  compe99on,  •  ALMA  Band  3  -­‐  originally  to  be  done  by  NRAO,  but  we  

demonstrated  that  we  have  the  exper9se  •  Gemini  GPI  -­‐  LLNL  led  group  competed  with  U  Arizona  

led  group  •  TMT  NFIRAOS  facility  AO  system  -­‐  competed  with  

Caltech  •  TMT  WFOS  Instrument  -­‐  competed  with  Caltech,  

Rochester  Ins9tute  of  Technology  •  Gemini  GLAO  -­‐  competed  with  U  Arizona  &  U  Durham  

Astronomy Technology Program Overview

World  Class  R&D    ATP  has  made  many  world  class  contribu9ons,  

•  ALMA  Band  3  receivers  -­‐  approaching  the  theore9cal  limits  of  receiver  noise  performance  

•  Wavefront  sensors  –  ATP  delivered  the  1st  on-­‐instrument  wavefront  sensor  for  CFHT  MOS/SIS  in  1992  -­‐  most  major  ground  and  space  telescopes  have  now  adopted  this  approach  

•  Integrated  Modeling  –  ATP  developed  integrated  modeling  tools  that  are  comparable  to  the  space  mission  tools  developed  by  JPL  -­‐  our  integrated  modeling  is  being  used  for  TMT,  GPI,  NFIRAOS    

•  Workhorse  instruments  –  ATP  has  contributed  to  many  workhorse  instruments  at  CFHT,  JCMT,  Gemini,  ALMA    

•  AO  systems  -­‐  Gemini  ALTAIR  system  was  9ghtly  integrated  with  the  observatory  -­‐  proved  that  ‘push-­‐budon’  AO  opera9on  possible  

Astronomy Technology Program Overview

Canada  France  Hawaii  Telescope  (CFHT)  

•  ATP contributions –  HRCam High Resolution Camera first camera with fast tip-tilt correction –  MOS/SIS multi-object spectrograph and imaging spectrograph –  PUEO adaptive optics system with

curvature wavefront sensor –  MEGAPRIME wide field corrector and

focus stage –  IMAKA GLAO, and SITELLE

instrument studies –  SPIRou NIR cryomechanics –  Next generation ngCFHT/MSE

Astronomy Technology Program Overview

Gemini  Observatories  North  &  South  

•  ATP  contribu9ons  –  OCS  Observatory  Control  System    –  GMOS  Mul9  Object  Spectrographs  –  ALTAIR  NGS/LGS  adap9ve  op9cs  –  GLAO  studies  –  Flamingos-­‐2  OIWFS  On-­‐Instrument  

Wavefront  Sensor  –  GPI  Gemini  Planet  Imager  –  GRACES  fiber  link  to  CFHT  ESPADons  

hires  op9cal  spectrograph  –  GHOST  hires  op9cal  spectrograph  –  MOVIES  spectrograph  study  

Astronomy Technology Program Overview

Gemini  Planet  Imager  (GPI)  • Project management (LLNL) • Systems engineering (HIA) • AO system (LLNL, HIA) • Calibration Unit (JPL) • Coronograph (AMNH) • Science IFS (UCLA, U. Montreal) • Top Level Computer (HIA) • Opto-Mechanical Structure (HIA)

Astronomy Technology Program Overview

Atacama  Large  Millimeter  Array  (ALMA)  66  movable  12  meter  antennas  ~2012,  Atacama,  Chile  US,  Europe,  Japan,  Chile,  Taiwan,  Canada    33  GHz  to  1  THz  in  10  bands  

•  ATRG-­‐V  par9cipa9on  –  Band3  cryogenic  receivers  –  Band1  cryogenic  components  

Astronomy Technology Program Overview

Extended  Very  Large  Array  (EVLA)  

27  movable                        25  meter  antennas  Socorro,                            New  Mexico  ~2005,  NRAO    1  to  50  GHz  

•  HIA  par9cipa9on  –  WIDAR  Correlator,                                                          

>  4  million  channels,        frequency  resolu9on  <  1  Hz  

Astronomy Technology Program Overview

James  Webb  Space  Telescope  (JWST)  

6.5  meter  infrared  telescope  ~2018,  L2  orbit  NASA,  ESA,  CSA    0.6  to  27  µm  wavelengths  NIRCam,  NIRSpec,  MIRI,  TFI  science  instruments  

•  ATP  par9cipa9on  –  John  Hutchings,  CSA  Project  Scien9st    –  FGS  detector,  op9cs,  mechanics  consul9ng,  with  U  de  Montreal    

Astronomy Technology Program Overview

Thirty  Meter  Telescope  (TMT)  

30  meter  op9cal/IR  telescope  ~2023,  Mauna  Kea  site  U  Cal,  Caltech,  Canada,            Japan,  China,  India      •  ATP  par9cipa9on  

–  VLOT  precursor  design  –  System  Engineering  –  Instrumenta9on  

Management  –  Telescope  &  Enclosure    –  WFOS,  IRMOS,  IRIS  OIWFS,  

and  PFI  instrument  studies    –  NFIRAOS  Mul9  Conjugate  

AO  system  

Astronomy Technology Program Overview

Square  Kilometer  Array  (SKA)  SKA1-­‐Mid  133  dish  antennas  SKA1-­‐Low  130,000  elements  UK,  Netherlands,  Italy,  Sweden,  Australia,  South  Africa,  India,  China,  Canada    70  MHz  to  20  GHz  

•  ATP  contribu9ons  –  Science  Steering  Commidee  –  Engineering  Working  Group    –  SKA-­‐Mid  Correlator/Beamformer  –  Composite  reflector  antennas  –  Phased  array  feeds  &  digital  beam  forming  –  Cryogenic  Low  Noise  Amplifiers  –  Single  Pixel  feed  digi9zers  

Astronomy Technology Program Overview

Industry  Partnerships  ATP  has  developed  Canadian  industry  partnerships  to  share  our  

exper9se,  license  intellectual  property,  and  engage  in  collabora9ve  research  &  development.  

•  Dynamic  Structures  Ltd  (AMEC,  now  Empire)  -­‐  ongoing  rela9onship  on  telescope  &  enclosure  structures  

•  TMT  NFIRAOS  design  to  spec  contracts  –  INO,  ABB,  Comdev,  Quantum  Technologies  

•  Nanowave  Technologies  -­‐  produc9on  contracts  for  Band3  and  MeerKat  cryogenic  LNAs  and  mixer  assemblies  

•  Daniels  Electronics  -­‐  produc9on  contracts  for  Band3  materials,  QA,  cartridge  body  assembly  

•  MacDonald  Detwiler–  SKA  correlator  project  management  •  SED  Systems  –  SKA  composites  manufacturing  studies  

Astronomy Technology Program Overview

University  Partnerships  ATP  has  developed  partnerships  with  many  Canadian  universi9es  to  

collaborate  on  research  &  development  and  provide  support.  •  ACURA  -­‐  collabora9ve  effort  on  TMT  •  U  Toronto  -­‐  Arc9c  site  tes9ng,  Gemini  F2T2  tunable  etalon  filters,  

CFHT  IMAKA  GLAO  study,  IRIS  instrument  •  U  Bri9sh  Columbia  -­‐  TMT  NFIRAOS,  LGS  sodium  layer,  Arc9c  site  

tes9ng,  CFHT  IMAKA  GLAO  study  •  U  Montreal  -­‐  GPI  instrument,  JWST  FGS,  infrared  WFS,  SPIRou  

instrument  •  U  Victoria  -­‐  AO  test  bench,  Raven  on-­‐sky  MOAO  demonstrator,  

planar  antennas,  segmented  mirror  control  •  U  Laval  –  SITELLE  study,  SPIRou  instrument,  Pyramid  WFS  •  U  Manitoba  –  low  voltage  MEMS  deformable  mirrors  •  Dalhousie  –  cryogenic  bolometer  tes9ng  

Astronomy Technology Program Overview

InternaJonal  CollaboraJons  ATP  is  well  respected  in  the  interna9onal  astronomy  community  for  its  

ability  to  collaborate  on  projects.  •  ALMA  Band3  -­‐  NRAO,  U  Virginia,  RAL,  ASIAA  •  ALMA  Band1  -­‐  Chile,  ASIAA/NTU  Taiwan  •  TMT  IRIS  –  UCLA,  Caltech,  NAOJ,  U  Toronto  •  TMT  IRMOS  –  U  Florida  •  Gemini  GPI  -­‐  LLNL,  UCLA,  UCSC,  JPL,  U  Montreal,  AMNH,  UC  Berkley  •  Gemini  GMOS  -­‐  U  Durham,  UK  ATC  •  Gemini  GLAO  -­‐  U  Durham,  U  Arizona  •  Gemini  GHOST  –  AAO,  ANU  •  Gemini  MOVIES  –  U  Montreal,  Ohio  State  •  CFHT  MegaPrime  -­‐  CEA-­‐DAPNIA,  Obs  Paris,  IAP,  CNRS-­‐INSU,  Sagem  •  CFHT  SPIRou  –  Toulouse,  U  Montreal,  Laval,  Grenoble,  Geneva,  OHP  •  Raven  –  U  Victoria,  Subaru,  NAOJ    

Astronomy Technology Program Overview

TMT  InstrumentaJon  Interests  NRC  Herzberg  is  keenly  interested  in  aligning  its  TMT  instrumenta9on  interests  with  the  Canadian  science  community.  

ATP  has  capability  and  has  done  preliminary  work.  •  High  resolu9on  op9cal  spectrograph  –  recent  work  on  GRACES  and  GHOST  instruments  >  HROS  

•  High  resolu9on  NIR  spectrograph  –  recent  work  on  SPIRou  >  NIRES  

•  Mul9ple  Object  AO  –  recent  work  on  RAVEN  and  con9nuing  technology  research  >  IRMOS  

•  Exoplanets  –  recent  work  on  GPI  and  con9nuing  research  on  new  exoplanet  techniques  >  PFI  

Astronomy Technology Program Overview

Two  HROS  concepts  were  compe99vely  studied  as  part  of  the  TMT    instrument  feasibility  study  phase  in  2005  -­‐  2006.  One  concept  (“MTHR”)    originated  from  the  UC  Santa  Cruz  (PI:  S.  Vogt)  –  a  classical  Echelle  solu9on  ,  and  the  other  concept  (“CU-­‐HROS”)  was  proposed  by  a  University  of  Colorado  team  (PI:  C.  Froning)  –  a  design  leveraging  image  slicing  and  wavelength  division.  

HROS Top-Level Requirements

Astronomy Technology Program Overview 24

HROS “MTHR” Concept (UCSC)

   “classic”  echelle  design  using  a  1m  x  3.5m  gra9ng  mosaic     Very  large  instrument    -­‐  total  size  

10m  x  11m  x  4m     proven  technology  –  a  challenge  

to  implement  at  this  scale.  

Astronomy Technology Program Overview

25  

CU-­‐HROS  Concept    Concept  uses  high  performance  dichroics  and  image  slicing  to  divide  and  conquer...  Technology  yet  to  be  proven!    

Astronomy Technology Program Overview

HROS 2.0 (John Pazder-NRC)

Technology progress in the last decade seen progress in image slicing, dichroic, VPH grating, and detector capabilities and performance. These technologies are being applied to the NRC-H Gemini GHOST spectrograph to build a super efficient bench spectrograph. These technologies are going to be applied to HROS.

Astronomy Technology Program Overview

Infra-Red Multi-Object Spectograph (IRMOS)

Wide Field Multi-Object AO + Multi-IFU combines diffraction-limited resolution of TMT with a multiplex advantage that would make IRMOS a workhorse TMT instrument Great scientific potential •  Observe large samples of the first

objects to light up the universe •  Detailed studies of galaxies from the

peak era of star formation •  Metallicities and dynamics of star

clusters

Astronomy Technology Program Overview

Envisioning a MOAO instrument: IRMOS for TMT

5 arcmin field of regard ~100% sky coverage

Up to 50% Strehl ratio in H-band

8 LGS WFS

~20x 2” IFUs ~20 Deformable Mirrors

~20 Spectrographs ~20 2K NIR Arrays

TMT  IRMOS  Feasability  Study;  Eikenberry,  Andersen  et  al.  2006  

Astronomy Technology Program Overview

Canada can build upon MOAO experience gained in last decade

Demonstrated Open Loop Control on-sky using VOLT (Andersen et al.2008) Built CFI-funded Raven – 1st MOAO instrument on 8m class telescope (UVic, NRC, Subaru, 2014-2015)

Lardiere,  Andersen,  Bradley  and  the  Raven  team  

Raven  Pick-­‐off  Arms  

No  AO  

GLAO  

MOAO  

Tradi9onal  AO  

3  arcminute  field    

Astronomy Technology Program Overview

Technologies for MOAO/IRMOS Low voltage MEMS deformable mirrors under development with U Manitoba – bump bonded CMOS drive electronics concept under consideration

Avalanche photodiode (APD) NIR detectors under development by Selex Infrared in collaboration with ESO & UH

•  Small format WFS detectors working in-house

•  2k large format detectors under development for ESA

Pyramid WFSs prototyped on Mont-Megantic with INO & U Laval

30  

Astronomy Technology Program Overview

Challenges of MOAO/IRMOS IRMOS is an expensive instrument, even if just the cost of NIR arrays is considered

MOAO is still new and relatively unproven

•  Raven and Canary (ESO MOAO demonstrator) both work, but not as well as closed-loop AO systems

•  The risk of meeting expected performance is still big and it is difficult to retire

•  Calibration is critical for achieving the best system performance

Providing calibration for both the spectrographs and MOAO systems will require clever solutions

31  

Astronomy Technology Program Overview

Discussion  

Thank-­‐you