cytochrome reactions in chromatium

2
\:OL. 28 (I958) PRELIMINARY NOTES 227 of incubation were not long enough for the attainment of a constant ratio of concentrations (intra- cellular/extracellular), the effect of 4nsulin and fasting on the final equilibrium could not be- determined. These results indicate that future concepts of insulin action must be broadened to include the stimulation of both sugar and amino acid penetration. Further studies of amino acid penetration and intracellular-concentrating processes and the influence of dietary and hormonal factors thereon are currently in progress. Departments of Medicine and Biochemistry, DAVID M. KIPNIS* Department o/ Obstetrics and Gynecology, Washington University MATTHE~V W. NOALL School o[ Medicine, St. Louis, Mo. (U.S.A.) 1 M. E. KRAHL, J. Biol. Chem., 200 (1953) 99. 2 F. M. SINEX, J. MACMULLEN AND A. ]3. HASTINGS, .]. Biol. Chem., 198 (1952) 615. 3 M. W. ~NOALL, T. R. RIGGS, L. M. W~ALKER AND H. N. CHRISTENSEN, Science, 126 (1957) lOO2. 4 M. W. NOALL AND H. N. CHRISTENSEN, Biochem. Preparations, in the press. 5 D. M. KIPNIS AND C. F. CORI, J. Biol. Chem., 224 (1957) 681. Received February 3rd, 1958 * John and Mary Markle Scholar in Medical Science. •EE 0 0 ,r -.04. -.08. Cytochrome reactions in Chromatium Spectrophotometric investigations 1,2 of Rhodospirillum rubrum have indicated that cytochromes are involved in electron transport during bacterial photosynthesis. The present study of the purple sulfur bacterium Chromatium, strain D, substantiates this concept. The bacteria were grown at 29 ° under anaerobic conditions in a liquid inorganic medium containing sulfide, thiosulfate, and bicarbonate as substrates. Tungsten lamps furnished illumina- tion. The bacterial cultures were examined after most of the sulfur had disappeared from the cells. A double-beam spectrophotometer s was used to record absorption changes upon irradiation of a sample with near infrared (~ ~ 700 mff) light; a split-beam spectrophotometer 4 was used to obtain the difference spectra of pairs of samples in the dark. .o4. ~ I/ 400' '430' '460 7,(my) [- .01 I> f -'°' [ --.02 520 550 580 Fig. I. Absorption-spectrum changes upon irradiation under anaerobic conditions. The trough locations are 423, 524, and 553 mff. The ratio (AD42s--zJD44o)/(AD55s--ADs~o) is approximately 4.5- Two different cultures were used for the two spectral intervals shown. // /" //" / / /" /" / D422-D470 =,0.008 / I I ~ / t ! / -t---'~ .... /--71--7---F---I----i .... I I I I ,o ,oo , ,/4U/.- : s t , , I~ ~ , -- -I----~---~---7 . . . . . . t---- {~-~I i ! ~'-', I I I I I I I l I I l [ , , , !f'~. i . - , - , - - - , - - . - - . - - , - - - , .... ', ', i \ ~ \ Light off ~ \ Fig. 2. Kinetics of the anaerobic light effect. The change in absorp- tion at 422 mff minus the change at 47 ° mff has been recorded. When anaerobic suspensions were irradiated with near infrared, the change in absorption spectrum for the region 39o to 58o mff indicated the oxidation of cytochrome (Fig. I). The kinetics of the light-on transition were diphasic, and the kinetics of the light-off transition were triphasic (Fig. 2). The differences between the spectra of these various phases showed that more than one cytochrome species was involved in the total light reaction.

Upload: john-m-olson

Post on 21-Oct-2016

216 views

Category:

Documents


1 download

TRANSCRIPT

\:OL. 28 ( I958) PRELIMINARY NOTES 227

of incubat ion were not long enough for the a t t a i n m e n t of a cons tan t rat io of concentra t ions (intra- cellular/extracellular), the effect of 4nsulin and fast ing on the final equil ibr ium could not be- determined.

These resul ts indicate t ha t fu ture concepts of insulin action m u s t be broadened to include the s t imula t ion of bo th sugar and amino acid penetra t ion. F u r t h e r studies of amino acid penet ra t ion and intracel lular-concentrat ing processes and the influence of d ie tary and hormona l factors thereon are current ly in progress.

Departments of Medicine and Biochemistry, DAVID M. KIPNIS*

Department o/ Obstetrics and Gynecology, Washington University MATTHE~V W. NOALL School o[ Medicine, St. Louis, Mo. (U.S.A.)

1 M. E. KRAHL, J. Biol. Chem., 200 (1953) 99. 2 F. M. SINEX, J. MACMULLEN AND A. ]3. HASTINGS, .]. Biol. Chem., 198 (1952) 615. 3 M. W . ~NOALL, T . R . RIGGS, L . M. W~ALKER AND H . N. CHRISTENSEN, Science, 126 (1957) lOO2. 4 M. W . NOALL AND H . N . CHRISTENSEN, Biochem. Preparations, in t h e p r e s s . 5 D. M. KIPNIS AND C. F. CORI, J. Biol. Chem., 224 (1957) 681.

Received Feb rua ry 3rd, 1958

* J o h n and Mary Markle Scholar in Medical Science.

•EE 0

0 ,r - . 0 4 .

- . 08 .

Cytochrome reactions in C h r o m a t i u m

Spect rophotometr ic invest igat ions 1,2 of Rhodospirillum rubrum have indicated t ha t cytochromes are involved in electron t r a n s p o r t dur ing bacterial photosynthes is . The present s tudy of the purple sulfur bac te r ium Chromatium, s t ra in D, subs tan t i a tes this concept.

The bacteria were grown at 29 ° under anaerobic condit ions in a liquid inorganic medium containing sulfide, thiosulfate, and b icarbonate as substrates . Tungs ten lamps furnished illumina- tion. The bacterial cul tures were examined after mos t of the sulfur had disappeared f rom the cells. A double-beam spec t rophotomete r s was used to record absorpt ion changes upon irradiation of a sample wi th near infrared (~ ~ 700 mff) light; a spl i t -beam spec t rophotometer 4 was used to obta in the difference spectra of pairs of samples in the dark.

.o4. ~

I/ 4 0 0 ' ' 4 3 0 ' ' 4 6 0

7, (my)

[- .01 I>

f -'°' [ -- .02

520 550 580

Fig. I. Absorp t ion-spec t rum changes upon irradiat ion under anaerobic conditions. The t rough locations are 423, 524, and 553 mff. The ratio (AD42s--zJD44o)/(AD55s--ADs~o) is approx imate ly 4.5- Two different cul tures were used for

the two spectral intervals shown.

• // /" / / " / / /" /" / D422-D470 =,0.008 /

I I ~ / t ! / - t - - - ' ~ . . . . / - - 7 1 - - 7 - - - F - - - I - - - - i . . . . I I I I

,o ,oo , , / 4 U / . - : s t , , I~ ~ , - - - I - - - - ~ - - - ~ - - - 7 . . . . . . t - - - -

{ ~ - ~ I i ! ~'-', I I I I I I I

l I I l [ , , , ! f ' ~ . i . - , - , - - - , - - . - - . - - , - - - , . . . .

', ', i

\ ~ \ Light of f ~ \

Fig. 2. Kinetics of the anaerobic light effect. The change in absorp- t ion at 422 mff minus the change

at 47 ° mff has been recorded.

When anaerobic suspensions were i rradiated with near infrared, the change in absorp t ion spec t rum for the region 39o to 58o mff indicated the oxidation of cy tochrome (Fig. I). The kinetics of the l ight-on t ransi t ion were diphasic, and the kinetics of the light-off t rans i t ion were tr iphasic (Fig. 2). The differences between the spect ra of these var ious phases showed tha t more than one cytochrome species was involved in the tota l l ight reaction.

2 2 8 PRFA.1MINARY N O T F S Vt)L. 2 8 ( I 9 5 8 )

T h e a d d i t i o n of o x y g e n in t h e d a r k c a u s e d t h e p a r t i a l o x i d a t i o n of t h e c v t o c h r o m e s y s t e i n . H o w e v e r , t h e c h a n g e s in a b s o r p t i o n u p o n a e r a t i o n w e r e o n l y 7 ° to 9 ° ~'0 a s g r e a t a s t h e c h a n g e s u p o n i r r a d i a t i o n . T h e a d d i t i o n of p h e n y l m e r c u r i c a c e t a t e (3 ° t o 6o 1~5I) t o a e r o b i c s u s p e n s i o n s r e s u l t e d in e v e n f u r t h e r o x i d a t i o n of t h e c y t o c h r o m e s y s t e m b v o x y g e n , w h e r e a s K e N (3 r a M ) p a r t i a l l y i n h i b i t e d t h e r e a c t i o n ( s ) w i t h o x y g e n .

I r r a d i a t i o n of a e r o b i c b a c t e r i a c a u s e d a b s o r p t i o n - s p e c t r u m c h a n g e s d u e t o f u r t h e r o x i d a t i o n of c y t o c h r o m e s . T h e k i n e t i c s o f t h e l i g h t - o n r e a c t i o n w e r e d i p h a s i c , i n c o o l e d s a m p l e s (3 t o 4 ' % a f a s t a n d a s l o w p h a s e w e r e c l e a r l y d i s t i n g u i s h e d . T h e s p e c t r a of t h e t w o p h a s e s s h o w t h a t t w o d i s t i n c t c v t o c h r o m e s w e r e o x i d i z e d . T h e s p e c t r u m of t h e t o t a l c h a n g e is t h e s a m e as t h a t o f t h e t i r s t p h a s e o f t h e l i g h t - o f f t r a n s i t i o n u n d e r a n a e r o b i c c o n d i t i o n s .

On t h e b a s i s o f t h e k i n e t i c a n d s p e c t r a l e v i d e n c e f o u r c v t o c h r o m e s a r e p o s t u l a t e d : C 42e , C 4 2 . ] 5 , C 426, a n d C 43o. T h e n u m e r i c a l d e s i g n a t i o n s i n d i c a t e t h e )~-peaks of t i le reduced- ro t ,u s - o x i d i z e d d i f f e r e n c e s p e c t r a . T h e c o r r e s p o n d i n g <l -peaks a r e l o c a t e d a t 555, 553, 55" , a n d 56o ml* r e s p e c t i v e l y . T i le r a t i o of 7 - t o (*-peak is 5 !: t f o r e a c h c v t o c h r o m e e x c e p t C 4.]0 fo r w h i c h t h i s r a t i o is r o u g h l y 1o. C 422 a n d C 430 a r e i n v o l v e d in b o t h a n a e r o b i c a n d a e r o b i c l i g h t e f fec t s , w h e r e a s C .123.5 a n d C 426 a r e i n v o l v e d in t h e a n a e r o b i c l i g h t e t l e c t a n d in r e a c t i o n s w i t h o x y g e n . (" 420 is a t ' O d f i n d i n g p i g m e n t 2 a n d p r e s u m a b l y r e a c t s d i r e c t h , w i t h m o l e c u l a r o x y g e n . T h e t w o h e m o p r o t e i n s i s o l a t e d b y NEXVTON AND KAMEN 5 f r o m a c e t o n e p o w d e r s of ( 'hromatiuln a p p e a r t o b e (7 4 2 3 . 5 a n d (" 426.

T h e s t e a d y - s t a t e o x i d a t i o n level of t i le c y t o c h r o m e s y s t e m in a n a e r o b i c b a c t e r i a d n r i n g i r r a d i a t i o n w a s m e a s u r e d o v e r a n i n t e n s i t y i a n g e c o v e r i n g 4-7 p o w e r s of t e n . : \ t v e r y low i n t e n s i t i e s i r r a d i a t i o n c a u s e d t h e o x i d a t i o n of o n l y (7 4.-'.].5..ks t h e i n t e n s i t y w a s i n c r e a s e d , C 426 b e c a m e o x i d i z e d a l s o ; a n d a t t h e h i g h e s t i n t e n s i t y ( w h e r e t h e l i g h t - e l f t r a n s i t i o n w a s t r i p h a s i c ) al l f o u r c o m p ~ m e n t s w e r e o x i d i z e d . T h e r e l a t i v e i n t e n s i t i e s ([/lmax} r e q u i r e ( l for h a l f - n m x i m u n l o x i d a t i o n of (7 423.5, (7 426, a n d t h e c o m b i n a t i o n of C 422 a n d C 4.]0 w e r e r e s p e c t i v e l y ~.3' lo ~, 0 . lo e, a n d 3 ' lo l

I t h a s b e e n p o s s i b l e to e s t i m a t e t h e q u a n t n m r e q u i r e m e n t fo r a p a r t i a l 1-eael ion ill p h o t o - s y n t h e s i s , t h e o x i d a t i o n of c v t o c h r o m e 423.5 in t h e i n t a c t cell . T h e i n i t i a l r a t e of a b s o r p t i o n c h a n g e a t 423 mj t u p o n i r r a d i a t i o n of a n a e r o b i c b a c t e r i a w a s l n e a s u r e d a t s e v e r a l i n t e n s i t i e s of 5 ' 9 m/* l i g h t p r o v i d e d b y a s o d i u m l a m p in c o n j u n c t i o n w i t h t w o \ V r a t t e n _,3 A l i l te rs ( to r e m o v e o t h e r e m i s s i o n l ines) a n d at C o r n i n g <)7"; f i l ter ( to r e m o v e n e a r i n f r a r e d ) . T h e i n t e n s i t y ef i r r a d i a t i o n w a s m o n i t o r e d b y at p h o t o t u b c w h i c h h a d b e e n c a l i b r a t e d s p e c t r o p h o t o n l e t r i c a l l y b y u s i n g a s o l u t i o n of c a r b o x y m y o g l o b m as a n a c t i n o i n e t e r ~. T h e f r a c t i o n of t h e a c t i n i c b e a m a b s o r b e d b y e a c h b a c t e r i a l s a i n p l e w a s m e a s u r e d b v n l e a n s of al l i n t e g r a t i n g s p h e r e . T h e a v e r a g e r a t e of 580 rll[t l i gh t ahs~n-pt i lm c o u l d t h u s be c a l c u l a t e d in e i n s t e i n s . I ~ - sec i. T h e i n i t i a l r a t e ~f c y t o c h r m n e 4.-'3-5 ~ ,x ida t i on u p o n i r r a d i a t i o n w a s c a l c u l a t e d on t h e a s s u m p t i o n t h a t Iv,, - o cn l t m 3 1 -I, a t y p i c a l \ a i m ' h)r cv t l )c l l r ( ) ines o[ t y t ) e b a n d c v. F r o m t h e 7 to ct r a t i o , :'l t'42a " ~ Ion t i n t m31 1 T h e i n i t i a l r a t e (if c \ t ( > c h r o m e o x i d a t i o n \vas m e a s u r e d o v e r a r a n g e of i n t e n s i t i e s u p t o 2. io 7 m i l l i e i n s t e i n s . c m 2 . sec l. l i v e r t h i s r a n g e t i le i n i t i a l r a t e w a s p r o p o r t i < ) n a l t o t i le r a t e of l i g h t abs t> rp t i tm , a n d tilt ' q u a ! a l u m r e q u i r e m e n t w a s c a l c u l a t e d to be t w o q l l a n t a / e ] e c t r o n ( seven sa l l lp les , 21 to 27~)i~ a b s o r p t i o n e l a c t i n i c l i gh t ) , l ) u r i n g i r r a d i a t i o n t i le c v t o c h r l m ~ e s \ s t e m a p p e a r s t o b e t i le m a i n p a t h w a y e l e l e c t r o n t r a n s f e r [roll l r e d u c e d s u l f u r c o m p o u n d s t o t h e p h o t o ( ) x i d a n t , s i n c e o x i d i z i n g e q u i x a l c n t s c a n he t r a n s f e r e d t o t h i s s y s t e m w i t h a q u a n t u m e f l i c i encv as h i g h as t h a t fo r t h e o x e r a l l p h o t o s y n t h e t i c ln 'ocess s.

;\ Hi,we d e t a i l e d a c c ~ m n t of t h i s w o r k will be p u b l i s h e d l a t e r .

.]o/~J~so~ l&sear~ h I:ou~zdatio~l, ( rJHversity o/I'cm~svlva~Ha, Plliladelp/lia, I'a. ( 17.S..t .)

J Olin M. OLSON* I~RITTON ( 'HANCE

i 1.. N. M. I)UYSENS, .\'atZt1"G i 73 (1954) 092. '2 1~. ('HANCV: AND'I . . SMITtl, Nalure, 175 (1055) 8o3. 3 l]. ('IIANCP-', ]IQ'iY..%'~'[. IJ~slr., 22 ( t 05 I) 034 . 4 C. ( . VAxC; ax1~ V. I .EGALLalS, leer. Nci. Instr . , 25 (1954) 8 e l . :' .]. \V. N l c w ' r o x :x.xl) M. 1). KAMEN, Hiochim. Biophys. Acta, 21 (1950) 71 . ~ B. CHAXCE, .]. Biol. Chem., 2o2 (1953) 4o7 . 7 }~. ( 'HANCF, i l l N. l ' . ( 'OLOXVICK AND N . O . K A P L A N , 3lelhods in Enzymology, Vol. 4, _ \ c a d e m i c

[>ress, Inc. , N e w Y o r k , 1<)57, P. 273. 1~. C. \VAsSlNK, E. K A r Z AND R. DORRESTE1N, P2nzymologia, 1o (T942) 285 .

R e c e i v e d F e b r u a r y t l t h , ic)58

* l ' r e d o c t o r a l F e l l o w o f t h e N a t i o n a l S c i e n c e F o u n d a t i o n .