cxi sébastien boutet [email protected] cxi reference laser system preliminary design review...

36
CXI CXI Sébastien BOUTET [email protected] CXI Reference Laser System CXI Reference Laser System Preliminary Design Review Preliminary Design Review WBS 1.3.3 WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist Paul Montanez – CXI Lead Engineer Kay Fox – CXI Mechanical Designer March 3, 2009

Post on 21-Dec-2015

233 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien [email protected]

CXI Reference Laser SystemCXI Reference Laser System Preliminary Design Review Preliminary Design Review

WBS 1.3.3WBS 1.3.3

Sébastien Boutet – CXI Instrument ScientistPaul Montanez – CXI Lead EngineerKay Fox – CXI Mechanical Designer

March 3, 2009

Page 2: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

2

Outline

CXI OverviewReference Laser Physics RequirementsPreliminary Design and AnalysesDesign InterfacesControlsSafetyCost & ScheduleSummary

Page 3: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

3

Coherent Diffractive Imaging of Biomolecules

Combine 105-107 measurements into 3D dataset

Noisy diffraction pattern

LCLS pulse

Particle injection

One pulse, one measurement

Gösta Huldt, Abraham Szöke, Janos Hajdu (J.Struct Biol, 2003 02-ERD-047)

Wavefront sensor or second detector

Page 4: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

4

CXI Instrument Location

XCS

AMO(LCLS)

CXIEndstation

XPP

Near Experimental Hall

Far Experimental Hall

X-ray Transport Tunnel

Source to Sample distance : ~ 440 m

Page 5: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

5

Far Experimental Hall

Coherent X-ray ImagingInstrument

CXI ControlRoom

Lab Area

X-ray Correlation SpectroscopyInstrument

Hutch #6

XCS Control Room

Page 6: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

6

CXI Instrument in Hutch 5

Page 7: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

7

CXI Instrument Design

1 micron focusKB system (not shown)

0.1 micronKB system

Sample Chamber

Detector Stage

Diagnostics &Wavefront Monitor

Particle injector

LCLS Beam

Page 8: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

8

Reference Laser Purpose

PurposeRough alignment of the experiment without the X-ray beamProvides a visible line to align componentsGuarantee the detector hole is aligned with the LCLS beam

CXI DetectorCXI Detector Stage

Page 9: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

9

Requirements

Performance RequirementsSpan full length of CXI HutchNon-concurrent use of the laser and X-ray beamStability

Short term (a few days)5% of laser beam width

Long term (a few months)15% of laser beam width

Size RequirementsFWHM 5.5 mm or less

Highly collimated beam

Page 10: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

10

RequirementsPositioning Requirements

Two settingsIn or Out

Change settings in ~10 sec or less10 mm stay-clear when in the Out positionDeflected and focused by the X-ray KB mirrors

Laser to simulate distant LCLS sourceLCLS and laser centroid aligned to 100 microns

Over full length of CXI HutchRepeatable pointing to 100 microns over full length of hutch

100 microns over 20 meters5 µrad pointing repeatability

KB Mirrors

Page 11: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

11

Requirements

Vacuum Requirements10-7 Torr pressureUseable with any part of the instrument vented to air

Window valves all the way down the beamline

Controls RequirementsRemotely change In and Out stateAlignment with LCLS beam performed remotelySpatial overlap to be verified with a single diagnostic

LUSI Profile MonitorYAG screen

Multiple monitors to verify pointing4 monitors in total

Page 12: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

12

Requirements

Safety RequirementsVisible laser

Class 3R or less

Contained in an enclosureIn-vacuum mirror interlocked with LCLS shutters to prevent the direct beam from hitting the back of the mirror.

Page 13: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

13

Outline (2)

CXI OverviewReference Laser Physics RequirementsPreliminary Design and AnalysesDesign InterfacesControlsSafetyCost & ScheduleSummary

Page 14: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

14

CXI Reference Laser

1µm K-B System

0.1µm K-B System

Wavefront/IP Monitor

Profile/Intensity-Position Monitors

H6 Beamline

Preliminary Design and Analyses

Performance/Positioning RequirementsReference Laser span full length of CXI HutchSpatial overlap to be verified with a single diagnostic

LUSI Profile MonitorYAG screen

Multiple monitors to verify pointing4 monitors in total

Deflected and focused by the X-ray KB mirrors

Laser to simulate distant LCLS source

Page 15: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

15

Preliminary Design and Analyses (1)

FEH H6

Motorized center mount w/ collimator

Viewport

100 l/s Ion Pump

In-vacuum motorized center mount w/ mirror

Motorized flipper w/ filter

Optics & Diagnostics Table

Page 16: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

16

Preliminary Design and Analyses (2)Performance/Positioning Requirements

Two settingsIn or Out

Non-concurrent use of the laser and X-ray beam10mm stay-clear when in the Out position

Mirror must be moved into visible light laser to align beamline components. With safety shutter open and FEL beam on, the mirror is not in danger of being moved into the FEL beam by vacuum loading thereby resulting in a “fail-safe” design

In PositionOut Position

Ø25mm through hole in connecting shaft

Page 17: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

17

Preliminary Design and Analyses (3)Vacuum Requirements

10-7 Torr pressureUseable with any part of the instrument vented to air

Window valves all the way down the beamline

DCO Vacuum ChamberReference laser will use a slightly modified version of the DCO vacuum chamberLeveraging existing designs (when applicable) reduces our overall engineering/design effort. Additionally, helps to ensure commonality within the LUSI instrumentsThis chamber and its alignment stage have sustained a successful PDR (as part of the Intensity-Position Monitor review held on 9-Jan-09)Vacuum chamber is brazed 304 SST. Short in “Z” direction to conserve space“Z” Axis flanges 6.0 rotatable CFF with bellows module. Flange/bellows assembly is welded to chamber“X” axis ports NR 6.0 CFF brazed to chamber. These ports are available for pumping/viewports/etc.Pressure better than 10-7 Torr

Courtesy T. Montagne

Non-Rotatable CFF

Rotatable CFF

Y

Z

X

Page 18: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

18

Preliminary Design and Analyses (4)

Travel Range

X 10mm

Y 10mm

Z 10mm

Pitch ≈3˚

Roll ≈ 3˚

Yaw ≈ 3˚

DCO 6 Axis Alignment StageProvides for alignment of Reference Laser vacuum chamber

Courtesy T. Montagne

3X ¾-16 UNF-2B

3X ¼-20 UNC-2A

Page 19: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

19

Preliminary Design and Analyses (5)

0 10 20 30 40 50P osition (M illim eter)

W u = 8 .80 µ rad U m ax = 1 .48 µ rad W sm ax = 0 .00 µ rad

W a = 8 .51 µ rad U m it = 0 .45 µ rad W sm it = 0 .00 µ rad

R ota torische A bw eichung - S ta tis tische A usw ertung

-5

-4

-3

-2

-1

0

1

2

3

4

5W inke labw eichung (M ikrorad)

Pitch

0 10 20 30 40 50P osition (M illim eter)

W u = 9 .88 µ rad U m ax = 1 .73 µ rad W sm ax = 0 .00 µ rad

W a = 9 .16 µ rad U m it = 0 .71 µ rad W sm it = 0 .00 µ rad

R ota torische A bw eichung - S ta tis tische A usw ertung

-5

-4

-3

-2

-1

0

1

2

3

4

5

6W inke labw eichung (M ikrorad)

Yaw

Roll

Positioning/Pointing RequirementsLCLS and laser centroid aligned to 100 microns

Over full length of CXI HutchRepeatable pointing to 100 microns over full length of hutch

100 microns over 20 meters5 µrad pointing repeatability

Micos HPS-170 High Precision Stage (with linear encoder)

Bi-directional linear repeatability+/- 0.1µm

Angular repeatabilityPitch/Roll/Yaw < 1.0µrad

52mm strokeOf course we need a stiff structure to generate reproducible results of this order

Page 20: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

20

Preliminary Design and Analyses (6)Positioning Requirements

Two settingsIn or Out

Change settings in ~10 sec or less

Loading of Micos linear stage (in vertical orientation)Vacuum

SBC P/N 300 – 200 – 4 – XX (O.D. = 3.0in, I.D. = 2.0in)FPressure ≈ 70lb

FSpring Rate ≈ 20lb

GravityFWeight ≈ 10lb

FTotal = FPressure+ FSpring Rate+ FWeight

FTotal ≈ 100lb [450N]

MomentCenter of connecting shaft is offset 2.5in [0.064m] from slide mounting surface

MX ≈ 30 N-m

Micos HPS-170 linear stage is rated for FY = 100N (test data de-rated by a factor of 3) and MX = 300N-m

Add a 5:1 gearbox to obtain FY ≈ 1000N (test data de-rated by a factor of 1.5). With this gearbox the stage velocity is ≈ 7mm/s which means that the mirror can be moved In/Out in ≈ 8 sec Moment load (30N-m) is only ≈ 1/10 of the rated capacity

Page 21: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

21

Preliminary Design and Analyses (7)Performance Requirement

StabilityShort term (a few days)

5% of laser beam widthLong term (a few months)

15% of laser beam width

Vibration induced steering errors In-vacuum mirror needs to remain stable

Natural frequency above 100Hz to prevent resonance from nearby equipment, i.e. pumps/HVACChoose materials with high elastic modulus, e.g. SST 304

Connecting shaft is a thick walled SST tubeTransverse deformation of beams is the sum of flexure and shear deformation. Shear deformations are usually neglected for the analysis of slender members, for “stout” members shear is likely to have a substantial effect on the natural frequency of the member and that frequency will be substantially lower than that predicted by flexure theory.A “rule-of-thumb” is that the slenderness ratio should be > 10 for slender members

Span/Depth (slenderness ratio) = 7.6 → borderlineCalculate each flavor assuming an undamped, “Fixed-Free” (cantilevered) beam with end mass

Slender beam: f1 ≈ 360HzStout beam: f1 ≈ 1850Hz

Page 22: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

22

Preliminary Design and Analyses (8)Size/Safety Requirements

FWHM 5.5 mm or lessHighly collimated beam

Visible laserClass 3R or less

Contained in an enclosureOptomechanical parts list

Laser source size = 6.6mm, divergence = 0.007˚. At downstream end of hutch size beam ≈ 9mmLaser enclosure provided primarily to prevent accidental interference with optomechanical equipment – laser is safe (restricted beam viewing, Class 3R)

Device Model Company

Fiber-coupled laser (635nm, 2.5mW, Class 3R)

S1FC635 Thorlabs

Fiber-coupled collimator F810FC-635 Thorlabs

Shearing Interferometer SI100 Thorlabs

Fiber Optic Cable P1-630A-FC-2 Thorlabs

Laser Enclosure (9"x21"x12") XE25C3 Thorlabs

In-vacuum motorized center mount 8817-8-V New Focus

1" Motorized Center Mount 8816-8 New Focus

1" Mirror 5101 New Focus

Neutral Density Filter Set 5247 New Focus

1" Motorized Flipper 8892 New Focus

Page 23: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

23

Courtesy P.Stefan

FEH

Preliminary Design and Analyses (9)“Ray-trace” for possible location of FEL in the FEH based on steering from M2H through C6

At the nominal Reference Laser location in FEH Hutch 5, possible x-ray beam excursions within ≈ Ø33mm (> Ø25mm through hole in connecting shaft)A collimator will be required upstream of the Reference Laser to prevent unwanted illumination of component surfaces. An ideal location would be upstream of XCS (FEH H4) monochromator in the XRT where the collimator would be common to both instruments

Page 24: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

24

Design Interfaces

UpstreamVAT Series 10 Gate Valve

Welded bellows assembly on upstream side of vacuum chamber allows for alignment

DownstreamSlits

Welded bellows assembly on downstream side of vacuum chamber allows for alignment

Optics standDCO ICD with XPP defines hole pattern on vacuum chamber alignment stage

Controls GroupThe linear stage uses a standard 2 phase stepper motor (200 steps/rev) Use any controller/driver that can accommodate closed loop stepper with A Quad B encoder feedbackOptomechanics controls

Page 25: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

25

ControlsSafety & Controls Requirements

In-vacuum mirror interlocked with LCLS shutters to prevent the direct beam from hitting the back of the mirror.Remotely change In and Out stateAlignment with LCLS beam performed remotely

Results of discussions with Controls GroupQuestion Answer

Micos linear stage Can the stepper motor supplied with the selected translation stage be readily controlled?

Yes, we can control this with the MForcePlus2 controller. This controller supports the A quad B remote encoder option.

Micos linear stage limit switches

Can the integrated linear stage motion limit switches be easily be integrated with beamline interlocks?

Yes, they are standard normally-closed limit switches

New Focus Picomotor actuators Can you easily implement control of New Focus Picomotors?

No EPICS driver is listed for any New Focus products on the EPICS hardware page. However, this is a straight forward ASCII string communication device on the RS232 interface, so it should not be a problem. The ethernet interface provides a telnet input where the MCL commands can then be issued, so is similar.

Laser Can you provide remote control of the laser?

Yes, Controls can provide a 0-5V signal to turn the laser on/off

Motorized flipper mount Can you provide remote control of the motorized filter flipper?

Yes, Controls can provide a TTL pulse

Page 26: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

26

Safety

Laser enclosure provided Restricted beam viewingPrevent accidental interference with optomechanical componentsClass 3R laser

Safety covers will be used on moving elements to prevent “pinch-hazards”Prevent potential for over-pressurization of vacuum system during back-fill or from an accidental increase in pressure due to a system malfunction by providing an ASME UD certified and 10CFR851 compliant UHV burst disk (11.5 psi) in the vacuum region between gate valvesTo comply with OSHA/DOE regulations, all electronics will have certification either through a National Recognized Testing Laboratory (NRTL) or the Authority Having Jurisdiction (AHJ) as per the SLAC Electrical Equipment Inspection Program

Page 27: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

27

Cost & Schedule

Month end January 2009 data

Arrows indicate baseline dates

Page 28: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

28

Cost & Schedule (2)

Month end January 2009 dataControl Account / Work Package FY2007 FY2008 FY2009 FY2010 FY2011 FY2012 Cumulative

1.3.03.01 CXI Reference laser

9110331 Design & Engr - CXI Reference Laser BCWS -$ 14,603$ 53,727$ -$ -$ -$ 68,330$

BCWP -$ 15,469$ 3,575$ -$ -$ -$ 19,044$

ACWP -$ 14,125$ 956$ -$ -$ -$ 15,081$

9110332 Procurement - CXI Reference Laser BCWS -$ -$ -$ 23,417$ -$ -$ 23,417$

BCWP -$ -$ -$ -$ -$ -$ -$

ACWP -$ -$ -$ -$ -$ -$ -$

9110333 Fab & Assembly - CXI Reference Laser BCWS -$ -$ 19,633$ 13,148$ -$ -$ 32,781$

BCWP -$ -$ -$ -$ -$ -$ -$

ACWP -$ -$ -$ -$ -$ -$ -$

9110334 Testing - CXI Reference Laser BCWS -$ -$ -$ 1,199$ -$ -$ 1,199$

BCWP -$ -$ -$ -$ -$ -$ -$

ACWP -$ -$ -$ -$ -$ -$ -$

Control Account Totals: BCWS -$ 14,603$ 73,360$ 37,764$ -$ -$ 125,727$

BCWP 15,469$ 3,575$ -$ -$ -$ 19,044$

ACWP 14,125$ 956$ -$ -$ -$ 15,081$

Performance Data

Cumulative to Date At Completion

Control Account ActualWork Package Budgeted Cost Cost Variance Latest

Work Work Work Schedule Cost Budgeted Revised VarianceScheduled Performed Performed Estimate

1.3.03.01 CXI Reference laser

9110331 Design & Engr - CXI Reference Laser 21,333$ 19,044$ 15,080$ (2,289)$ 3,964$ 68,329$ 68,249$ 80$

9110332 Procurement - CXI Reference Laser -$ -$ -$ -$ -$ 23,417$ 23,417$ -$

9110333 Fab & Assembly - CXI Reference Laser -$ -$ -$ -$ -$ 32,781$ 32,781$ -$

9110334 Testing - CXI Reference Laser -$ -$ -$ -$ -$ 1,199$ 1,199$ -$

Control AccountTotals: 21,333$ 19,044$ 15,080$ (2,289)$ 3,964$ 125,726$ 125,646$ 80$

SPI = 0.89

CPI = 1.26

Page 29: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

29

Summary

Reference Laser preliminary design is well advancedControls issues have been addressed in partnership with the Controls Group and are easily implementedCost/Schedule

No foreseeable schedule issuesNegative schedule variance (cumulative-to-date) is due to effort status at the end of January, we are currently slightly ahead of schedule

Schedule Performance Index (SPI) = 0.89

Positive cost variance (cumulative-to-date) implies that we are efficient in accomplishing the work, i.e. costs are running under budget

Cost Performance Index (CPI) = 1.26

To Do listDesign supports from Optics Stand to laser breadboard and ion pumpDevelop an alignment plan

Design ready to advance to final design

Page 30: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

30

Page 31: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

31

Supporting Material8817-8-V

Tip angular range ≈ 9˚Tilt angular range ≈ 9˚

Page 32: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

32

Supporting Material (2)

Vacuum loading

Page 33: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

33

Supporting Material (3)

Page 34: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

34

Supporting Material (4)

Page 35: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

35

Supporting Material (5)

Page 36: CXI Sébastien BOUTET sboutet@slac.stanford.edu CXI Reference Laser System Preliminary Design Review WBS 1.3.3 Sébastien Boutet – CXI Instrument Scientist

CXICXISébastien Boutet - [email protected] Montanez – [email protected]

36

Supporting Material (6)