cwt/e, october 2016tbasten/presentations/cwte2016.pdf · wireless electronic systems electronic...

10
Electronic Systems CWT/e, October 2016 Twan Basten Wireless Electronic Systems: Trading off performance, reliability and energy efficiency Eindhoven University of Technology & TNO Embedded Systems Innovation Joint work with Marc Geilen, Hailong Jiao, Majid Nabi, José Pineda, and many others partners ‘Knowing is not understanding.’ Charles Kettering Electronic Systems 2 The Electronic Systems group Electronic Systems Mission Scientific basis for design trajectories From function to realization Constructive design Electronic Systems Electronic Systems medical imaging chip fabrication automotive circuit design networked systems systemsonchip computer architecture sensing and actuation 3 Electronic Systems Mission Scientific basis for design trajectories From function to realization CElectronic Systems Electronic Systems medical chip fabrication automotive networked systems SDF3: Modeldriven synthesis of dataprocessing applications POOSL: Fast discreteevent simulation Embedded control and signal processing Health monitoring CompSOC: Predictable multiprocessor platforms GPUs and accelerators Braininspired computing Ultralow power electronics smart electronic systems 4

Upload: others

Post on 29-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CWT/e, October 2016tbasten/presentations/cwte2016.pdf · Wireless Electronic Systems Electronic Systems 7 Reliability Performance Energy Efficiency • Cross‐technology interference

Electronic Systems

CWT/e, October 2016

Twan Basten

Wireless Electronic Systems: Trading off performance, reliability and energy efficiency

Eindhoven University of Technology & TNO Embedded Systems Innovation

Joint work with Marc Geilen, Hailong Jiao, Majid Nabi, José Pineda, and many others

partners ‘Knowing is not understanding.’Charles Kettering 

Electronic Systems

2

The Electronic Systems group

Electronic Systems

Mission• Scientific basis for design trajectories• From function to realization• Constructive design

Electronic Systems

Electronic Systems

medicalimaging

chipfabrication

automotive

circuitde

sign

networked systems

systems‐on‐chip

compu

ter a

rchitecture

sensing and actuation

3

Electronic Systems

Mission• Scientific basis for design trajectories• From function to realization• Constructive design                                         

Electronic Systems

Electronic Systems

medicalimaging

chipfabrication

automotivenetworked systems

• SDF3: Model‐driven synthesis of data‐processing applications

• POOSL: Fast discrete‐event simulation

• Embedded control and signal processing

• Health monitoring

• CompSOC: Predictable multiprocessor platforms

• GPUs and accelerators

• Brain‐inspired computing

• Ultra‐low power electronics 

smart electronicsystems

4

Page 2: CWT/e, October 2016tbasten/presentations/cwte2016.pdf · Wireless Electronic Systems Electronic Systems 7 Reliability Performance Energy Efficiency • Cross‐technology interference

Electronic Systems

Kees Goossens

Bart Mesman

Jeroen Voeten

Jose Pineda de Gyvez

Henk CorporaalTwan Basten

Sander Stuijk

Marc Geilen

Electronic Systems

Hamid Pourshaghaghi

Lech JozwiakDip Goswami

Yifan He

Victor Sanchez

Martijn Koedam

Majid Nabi

Gerard de Haan

Guido Dolmans

Hailong Jiao

Marja de MolElectronic Systems

6

Wireless Electronic Systems

Electronic Systems

7

Reliability

Energy EfficiencyPerformance

• Cross‐technology interference • Device density• Limited transmit power• Wireless channel behavior

• Communication• Processing

• Latency and throughput requirements• Safety‐critical real‐time applications

Trade offs

and of course cost …

Electronic Systems

8 An integral approach

PHY

MAC

Network

Application

Circuit • Co‐design• Model‐driven development• Experimental validation

150 NXP JN5168 dongles

130 TI CC2650 SensorTags

CC2530 ZigBee Development kit

100 MyriaNed nodes

Page 3: CWT/e, October 2016tbasten/presentations/cwte2016.pdf · Wireless Electronic Systems Electronic Systems 7 Reliability Performance Energy Efficiency • Cross‐technology interference

Electronic Systems

9

Circuits

Electronic Systems

Approximate computing

Can you see the difference

between the two figures?

10X 10= 100

10X 10≈ 99

10

100% accuracy is not always necessary

Electronic Systems

Trade off between power, performance, area and accuracy

POWER

COMPUTATIONACCURACY

POW

ER

ERROR

TRADE OFF

Approximate data• Simplified logic• Bit‐width representation

11

Approximate timing• Clock frequency• Supply & threshold voltage

Electronic Systems

Better‐Than‐Worst‐Case Design – Approximate timing

+++Power, +++Area

• Enhanced performance

• Lower power consumption

• Smaller silicon area

at the cost of 

• Reduced reliability

12

Page 4: CWT/e, October 2016tbasten/presentations/cwte2016.pdf · Wireless Electronic Systems Electronic Systems 7 Reliability Performance Energy Efficiency • Cross‐technology interference

Electronic Systems

Wireless baseband processing in the Internet of Things

• Targeting IEEE 802.15.4 / WiFi standards • Requires protocol / circuit co‐design 

13

13

QoS‐AB project, with NXP Electronic Systems

Potential approximate modules14

Security coprocessor AES Encryption / 

Decryption

Adaptive Channel Quality Estimation 

for TSCH

Interrupt Generator

Configuration / Status Registers

Protocol Timers

DMA ControllerChecksum generator

Checksum verifier

Serialiser

Deserialiser

CCA (various modes)

Link Quality Indicator

Beacon Generator

Automatic Acknowledge

Energy Detection and SNR

Slotted/UnslottedCSMA

Backoff Controller

Symbol Counter

TSCH Accelerator

TX modulator

RX demodulator

Radio module

Protocol accelerator

Micr

ocon

troller b

us

QoS‐AB project, with NXP

Electronic Systems

Approximate multiplier – Approximate data

A low power accuracy-controllable iterative-approximate multiplier• Basic idea: piece-wise linear approximation, shift operations• Low error rate (0.13% NMED, normalized mean error distance)

15

Area savings Power savings

32‐bit Approximate Multiplier Based 5th Order 

FIR Filter‐26 % ‐49 %

Electronic Systems

16

Protocol Stacks

Page 5: CWT/e, October 2016tbasten/presentations/cwte2016.pdf · Wireless Electronic Systems Electronic Systems 7 Reliability Performance Energy Efficiency • Cross‐technology interference

Electronic Systems

17

Protocol StacksWBAN

Electronic Systems

Wireless Body‐Area Network (WBAN) communication

ODLF

ODLF: On‐Demand Listening and Forwarding

Star

Multi‐hop

18

WBAN• One gateway• Number of nodes known• Highly dynamic link quality

ODLF• Hybrid star and gossiping

protocol• Gateway dynamically

requests transmission support

• Efficient implementation with a support bitmap

SECON 2012

Electronic Systems

Wireless Body‐Area Network (WBAN) communication19

(FG: Full Gossiping)

Trading off performance and energy

Energy dissipation increaseswith lower‐quality links 

Support set Ψ growswith lower‐quality links

SECON 2012 Electronic Systems

Link Quality Estimation (LQE)

• Prerequisite for many adaptive mechanisms, many variants• Typical parameters: window size w and coefficient α• Agility and stability trade offs

20

MSWiM 2013

Page 6: CWT/e, October 2016tbasten/presentations/cwte2016.pdf · Wireless Electronic Systems Electronic Systems 7 Reliability Performance Energy Efficiency • Cross‐technology interference

Electronic Systems

WBAN LQE: Smoothed Link Likelihood Factor (SLLF)21

MSWiM 2013

• Prerequisite for many adaptive mechanisms, many variants• Typical parameters: window size w and coefficient α• Agility and stability trade offs

Electronic Systems

22

Protocol StacksIVN

Electronic Systems

Cross‐technology interference – in‐vehicle networking23

Electronic Systems

802.15.4 ‐ Time‐Slotted Channel Hopping (TSCH)

• Provides guaranteed access to the medium• Prevents persistent multi‐path fading • Eliminates blocking of wireless links

262119151411

802.

15.4

Cha

nnel

Time

A C DF DC BA

TSCH Slotframe

DF

DC

BA

A C

Hopping Sequence 

List

index Ch #

0 11

1 26

2 19

3 14

4 15

5 21

A C DF DC BA

DF

DC

BA

A C

B F BA AB CE

BA

AB

CE

B F

B F BA AB CE

BA

AB

CEB F

Channel Offset = 0

Channel Offset = 2

N+1 N+2 N+3 N+4 N+5 N+6 N+7 …Sequence Number:

24

Page 7: CWT/e, October 2016tbasten/presentations/cwte2016.pdf · Wireless Electronic Systems Electronic Systems 7 Reliability Performance Energy Efficiency • Cross‐technology interference

Electronic Systems

Enhanced TSCH (ETSCH) 25

Slotframe  i ‐ 1 Slotframe  i Slotframe  i + 1. . . . . .

ETSCH

ATSCH

 ED period Idle timeslotTx/Rx timeslot

Timeslot

Energy dectection

• ATSCH = energy detections in payload slots + whitelisting• ETSCH = NICE + smart whitelisting

CCATx

Rx Listening

macTsTxOffset

Tforward Tbackward

Silent period TX Packet

macTsRxOffset

TX Packet

macTsCCAOffset

Max  Max 

NICE, Non‐Intrusive Channel‐quality Estimation, usessilent period in coordinator time slots •

energy detections to asses channel quality •

MASS 2015 Electronic Systems

Enhanced TSCH 26

MASS 2015

Electronic Systems

27

Intermezzo: the Environment

Electronic Systems

MoBAN: mobility model for WBANs28

• Reference point group mobility (RPGM)

• Markov chain for posture selection

• Spatial and temporal correlations

• Based on extensive measurements

• Intra‐WBAN and ambient network simulation

• Implemented in MiXiM

WBAN2: walking

WBAN1:lying down

WBAN4: sitting

WBAN3: walking

SimuTools 2011

Page 8: CWT/e, October 2016tbasten/presentations/cwte2016.pdf · Wireless Electronic Systems Electronic Systems 7 Reliability Performance Energy Efficiency • Cross‐technology interference

Electronic Systems

• Interference measurements inside a car (bluetooth, wifi)

• Interference from outside (mostly wifi) 

• Usable to drive simulations

Cross‐technology interference in vehicles29

MSWiM 2016 Electronic Systems

30

Networks

Electronic Systems

QoS provisioning in static trees31

Wireless sensor network

• 900 nodes

• 27 configurations per node

• 4 quality metrics

• Routing tree to data sink

27900 configurations in 4D space

ProblemHow to configure the network ?

ApproachCompositional computation following

the routing-tree structure

Less than 45 seconds …

MSWiM 2007 best paper Electronic Systems

Pareto algebra32

Goal: Compositional computation of trade-offs

producer-consumer operation

Fundamenta Informaticae, 2007

Page 9: CWT/e, October 2016tbasten/presentations/cwte2016.pdf · Wireless Electronic Systems Electronic Systems 7 Reliability Performance Energy Efficiency • Cross‐technology interference

Electronic Systems

QoS provisioning in dynamic trees33

non-optimised

global

semi-local

qual

ity lo

ss (%

)

01

2

3

4

5

1

local

900 node networkSimulated in the OMNET++ simulatorCalibrated for TelosB sensor nodes8 Mhz processor250 kbps tranceiver bit rate

par d Good quality reconfiguration within one minute

EWSN 2009 Electronic Systems

!accurate

Distributed QoS provisioning in dynamic networks34

TOSN 2015

Existing protocolstack

Distributed QoS estimation PHY

MAC

Routing

Reactive reconfiguration @ nodes

QoSestimates

RequiredQoS

Predictivemodels

Model adaptation

Reset

AnalysisParameter adaptation

accurate

accurate

Challenge: distribute contributions to QoS changes

Global feedback loop

Electronic Systems

Distributed QoS provisioning in dynamic networks35

• Model‐driven approach• Impact models with 4 parameters

(Xmin, ymin)

(Xmax, ymax)

Transmit power (mW)

Packet loss (%

) ActualModel

• Relations network & node parameters – QoS properties

TOSN 2015 Electronic Systems

Distributed QoS provisioning in dynamic networks36

Packet loss (%

)

Netw

ork lifetim

e (h)

and outperforms other approaches

end‐to‐end packet loss stays within a band

Page 10: CWT/e, October 2016tbasten/presentations/cwte2016.pdf · Wireless Electronic Systems Electronic Systems 7 Reliability Performance Energy Efficiency • Cross‐technology interference

Electronic Systems

37

Wrapping up

Electronic Systems

Conclusions – wireless electronic systems

• is all about trade offs

• requires co‐design of circuit, protocols and application

• model‐driven

• with experimental validation

38Reliability

Energy EfficiencyPerformance PHY

MAC

Network

Application

Circuit

Electronic Systems

Funding acknowledgement

• WASP – EC FP6 project IST‐034963• ALwEN – Dutch innovation program Point‐One, grant PNE07007• DEWI – ARTEMIS grant 621353.• RESIST – CATRENE grant CT217• QoS‐AB – SRC grant 2016‐IT‐2681

39

Electronic Systems

40 Thank you !

More info: www.es.ele.tue.nl/~tbasten/

www.es.ele.tue.nl/nes/

Questions ?

Twan Basten

PHY

MAC

Network

Application

Circuit