cw2 submitted copy.pdf

30
Please be warned that the University employs methods for detecting breaches of the assessment regulations, including the use of electronic plagiarism-detection software where appropriate. COURSEWORK COVERSHEET (CA1) I confirm that I understand what plagiarism is and have read and understood Section 10 of the Handbook of Academic Regulations. The work that I have submitted is entirely my own (unless authorised group work). Any work from other authors is duly referenced and acknowledged. STUDENTS MUST COMPLETE THIS SECTION ONLY - IN FULL AND IN CAPITALS SURNAME FIRST NAME REGISTRATION NUMBER COURSE MODULE TITLE MODULE CODE ASSIGNMENT NUMBER DEADLINE MARKER JOINT ASSIGNMENTS Tutor’s summary comments and feedback to student(s): All marks are subject to confirmation by the relevant Subject Board DATE STAMP: 24 hrs late / Over 24 hrs late MARK: SVENSSON JOSEF 1 3 4 6 1 1 3 7 Building Science A C S S 4 0 0 22 02 2012 John Begg E3 CW2 Lab Report Svensson, Josef Szelag, Marlena 133685081 Ten, Stanislav 133184171 Wang, Xu 136072501 Woods, Nicholas 133795461 E3

Upload: korvgryta

Post on 18-Nov-2015

43 views

Category:

Documents


3 download

TRANSCRIPT

  • Please be warned that the University employs methods for detecting breaches of the assessment regulations, including the use of electronic plagiarism-detection software where appropriate.

    COURSEWORK COVERSHEET (CA1)I confirm that I understand what plagiarism is and have read and understood Section 10 of the Handbook of Academic Regulations.The work that I have submitted is entirely my own (unless authorised group work). Any work from other authors is duly referenced and acknowledged.

    STUDENTS MUST COMPLETE THIS SECTION ONLY - IN FULL AND IN CAPITALS

    SURNAME FIRST NAME

    REGISTRATION NUMBER COURSE

    MODULE TITLE

    MODULE CODE

    ASSIGNMENTNUMBER DEADLINE

    MARKER

    JOINT ASSIGNMENTS

    Tutors summary comments and feedback to student(s):

    All marks are subject to confirmation by the relevant Subject Board

    DATE STAMP:

    24 hrs late / Over 24 hrs late

    MARK:

    SVENSSON JOSEF

    1 3 4 6 1 1 3 7

    Building Science A C S S 4 0 0

    22 02 2012

    John Begg

    E3

    CW2 Lab Report

    Svensson, Josef

    Szelag, Marlena 133685081

    Ten, Stanislav 133184171

    Wang, Xu 136072501

    Woods, Nicholas 133795461

    E3

  • ACSS400 E3 22/02/12

    1

    YoungsModulusofElasticity

    BySvenssonJosef,SzelagMarlena,TenStanislav,WangXu,WoodsNicholas

  • ACSS400 E3 22/02/12

    2

    Contents:

    1. Objectivespg.32. Procedurepg.33. Observationspg.34. Resultspg.45. Discussion pg.66. Conclusion pg.107. References pg.118. Bibliography pg.119. CertificatesofAttendance

    andSignedDeclaration pg.12

  • ACSS400 E3 22/02/12

    3

    Objective:TodetermineEforsoftwood(ParanaPine)andonehardwood(Mahogany[Keruing])usingathreepointbendingjig.

    TodetermineEforoneferrousmetal(LowCarbonSteel0.3%)andonenonferrous(Brass60/40)usingaanelectronicextensometer.

    Procedure:AsLabSheet.

  • ACSS400 E3 22/02/12

    4

    Observations:TogetYoungsModulus,E,formetals,suchasBrassandMildSteel,thetestinvolvesloadingthespecimenintensionandmeasuringtheresultingextension.Duringtheexperiment,therewasnovisiblechange.Themetalsamplestestedintension,didnotchangevisiblyinanyway,normadeanysound.

    SincemetalshaveahighYoungsmoduli,largeforcesmustbeappliedtoproducemeasurableextensionsinsmallspecimens,howevernoneofthemodificationswerenoticeableaswedidnotgopasttheYoungsmodulus,thereforenotcausinganyvisibledeformation.

    YoungsModulus,E,fortimberismeasuredbycarryingoutthetestincompressionmodeusingtestingmachinefittedwithathreepointbendingjig.Inthiscase,howeverthechangesweredetectible,asthetimbersamplesdidslightlybendundertheappliedloadandsprungbackwhentheloadwasremoved.

  • ACSS400 E3 22/02/12

    5

    Results:

    60/40Brass87x25.74600=F=1639.4N0.0180.002=x=0.016mm1639.4/pix(7.97/2)^20.016/50=102690Nmm^2102690x10^6=102690000000Pa=102.69GPaYoung'smodulusof70/30BrasshasYoung'smoduluswithavalueof100GPa.Ourcalculatedvalueisthereforerelativelycorrect.

    0.3%CarbonSteelMildsteel(110x80)(110x22)=F=6380N0.040.01=x=0.03mm6380/pix(7.97/2)^20.03/50=213138.99Nmm^2213139x10^6=213139000000Pa=213.139GPaTheYoung'smodulusofourmildsteelisapproximately213GPa,thevaluethatwearegivenaccordingtothetableis210whichisthereforerelativelycorrect.

  • ACSS400 E3 22/02/12

    6

    TimberParanaPine(120^3/419.637.63^3)340/3.96 =4254Nmm^24254110^6=4254000000Pa

    =4254MPa

    TimberMahogany(120^3/4x20.08x7.55^3)290/2=7248Nmm^27248x1x10^6=7248000000Pa=7248MPa

    Material Published value CalculatedvalueMildsteel 210GPa 213.139GPaBrass 100GPa 102.69GPa

    Mahogany 010000MPa 7249MPa

    Pine 1120020000MPa 4253MPa

    Toconclude,inmosttheresultsfromtheexperimentpresenteduswithaYoung'sModulusclosetothegivenvaluesforthematerials.Thefindingspresentediswith3GPaincaseofthetestedmetalsandtimberpublishedvaluescouldonlybefoundinthetermsofMPa.Mega=1x10^6Giga=1x10^9

  • ACSS400 E3 22/02/12

    7

    Discussion:

    Question1:CompareyourresultswithpublishedvaluesofE.Comment.

    Material Published value CalculatedvalueMildsteel 210GPa 213.139GPaBrass 100GPa 102.69GPa

    Mahogany 010000MPa 7249MPa

    Pine 1120020000MPa 4253MPa

    ThetableaboveshowsthevaluesofEthatwegotfromourexperimentandtheprovidedvaluesthatarequotedonvariousinternetandbooksourcesastowhattheactualvalueis(Kermani1999,andMatbase).

    Thetableshowsthatthemildsteelandbrassvaluesarerelativelyclose,withonlyasmallvariationfromthepublishedvalues,howeverthetimbermaterialsofParanaPineandMahoganyseemtobeoutbyalargeamount,pineinparticular.Thiscanindicatethatthemetalshavelessvariationinqualityofthematerial,asthesamplestestedwasclosetotheindustrystandardsone,whereasthePinematerialmayhavebeenanolderorweakerdespitebeingofthesameorigin.

    WehavedoublecheckedtheEvaluesfortimbertomakesurethatourvalueswerecorrectandhaveresearchedseveralotherwebsitesthatmayprovideuswiththepublishedvaluesofE,inallcasesParanapinewasoutbyalargeamountwhereasmahoganyfellwithintheapproximaterange,showingthatthesamplethatwehadwouldnothavemettheindustrystandardsastheEvalueisconsiderablylessthanthosethathavebeenpublished.

    ThepublishedvalueofBrassthatwehaveusedwasintheexperimenthandbook,thegivenvaluewasgivenfor70/30brass,meaningthatitwas70%copperand30%zinc,whereasoursamplewas60/40.DuetocopperhavinghigherYoungsmodulusthanzinc,thatwouldmeanthattheoreticallyourvalueof60/40shouldhavebeenlowerthanthatof70/30,itwasinfacthigher,butstilllikelywithinarationalmarginoferror,ourvaluesmayhavebeendifferentduetoerrorincalculationoftheareaorcalculationofthegradientofthegraphthatwewereprovidedwith.

    Insummary,thevaluesthatwehaveattainedhavebeenrelativelyclosetothepublishedvalueswiththeexceptionoftheParanapine,itmayhavebeenduetofaultysampleorotherunknownvariationthatcausedtheEvaluetobeconsiderablylowerthanthepublishedvaluesfoundontheinternet.

  • ACSS400 E3 22/02/12

    8

    Question2:Distinguishbetweencomponentstiffnessandmaterialstiffness.

    Stiffnesscanbedescribedastheabilityofamaterialtomaintainitsshapewhenacteduponaload(CraneandFurness1997p.92)anddependsontheYoungsmodulusofthematerial,howtheloadisperformingonitandbythegeometricalshapeofthespecificpieceofthatmaterial.

    Thecomponentstiffnesswillchangedependingontheshape,size,lengthandapplicationofthematerial.IllustratedinFigure1itisevidentthatasthesampleismodified,itisabletowithstandmoreload.However,thecomponentstiffnessdoesnotonlydependontheyoungsmodulusofthematerialusedbutalsoonhowthematerialisloadedwhetherthroughtensionorbending.

    Figure1:Showingthreebeamswithequalcrosssectionarea.(CraneandFurness1997p.94)

    Therefore,duringthedesignstage,componentstiffnesscanbeimprovedamaterialcanbeusedtodeflectundermoreloadsbeforedeformingpermanently,whereasitisimpossibletochangethematerialsinheritedstiffnessalsoknownastheYoungsmodulus,whichisuniquetoallmaterials.Forexample,changingthecarboncontentcanimprovethestiffnessofamaterial,allowingittowithstandmoreweightthroughreinforcementofmoleculesbutthecomponentstiffnesscanbechangedwithoutmodificationonmolecularlevelbyjustvaryingthesizeorlengthofthesamematerial.AmaterialwithalowEvaluethatbysomereasonispreferredoveranothermaterial,byaestheticreasonsorotherproperties,cantherebyhaveitsstructuraldesignmodifiedsoitcanovercomeitsdisadvantagesofhavingalowmaterialstiffness.Forinstanceatimberjoistofaspecifictimbercanbeproduceswithdifferentdimensionstobeabletowithstanddifferentload.Thestiffnessofthetimberitselfwillnotchangebutthemanipulationofthegeometricalshapewillhavechangedthetimberjoistscomponentstiffness.

    Question3:Onthebasisofresults,whichmetalismostsuitableforstructuralapplications?Explainwhy

    Onthestressstraindiagramofourexperimentresults,itshowsastraightlinebetweenstressandstrain.Itmeansanincreasestressoccursaproportionateincreasestrain.This

  • ACSS400 E3 22/02/12

    9

    factisknownasHookesLaw.Itcanbeexpressedmathematicallyas=E.TheconstantofproportionalityEistheYoungsmodulus(Hibbeler,2011)p.156.Youngsmodulusisameasurementofmaterialsstiffnessorresistancetoelasticdeformationunderload(WilliamD.Callister,2010).Hence,thehigherEvalue,thestifferthematerial.Inthetable6.1somemetalsyoungsmodulusispresented.

    (WilliamD.Callister,2010)p.157

    Onthebasisofourexperimentresults,theYoung'sModulusofcarbonsteelis213.139GPa.ItismuchhigherthantheYoung'sModulusofbrass,whichis102.69GPa.Inotherwords,thecarbonsteelisrelativelyastiffermaterial.Astiffmaterialmeansitchangesitsshapeonlyslightlyunderelasticloads(UniversityofCambridge,DepartmentofEngineering,2002).Inrealitythestructuralapplicationsarerequiredtobeasstiffaspossible,sothatitisabletowithstandtheloadsappliedtobuildings.

    Furthermore,carbonsteelalsoisahighlyductilematerial.Itmeansitisabletoreturntoitsoriginaldimensionwhenthestressisreleasedwithinitselasticlimit.Ifthestresscarriesonbeyondtheelasticlimit,itwillnotbeabletoreturntoitsoriginaldimensionwhenthestressisreleased,butitwillnotbefracturedimmediately(Leslie,2007).

    Inconclusion,carbonsteelhashighstiffness,highductilityandelasticlimit.Thesepropertiesmeettherequirementsofstructuralapplicationsneedsaswellasitcanbeusedtocalculatetheloadbearingcapabilities.Thereforeitcanbeusedpreciselyandeconomically.Thatiswhycarbonsteelisthemostsuitableforstructuralapplicationsofthemetalstested.

  • ACSS400 E3 22/02/12

    10

    Conclusion:Inconclusion,theseseriesofexperimentstofindoutyoungmodulusofvariousmaterialshelpedustounderstandthateachmaterialhasadifferentloadbearingcapacitybeforeitbeginsdeformingpermanently.Asaresult,itiswisetoselectmaterialsappropriateforthespecificstructurebeforebeginningconstruction.Ifweknowwhatthetotalsumofallloadswouldbeonthebuilding,wecanuseappropriatematerials,suchasusingmetalswithhighcarbonpercentageforthebuildingswhichareexpectedtosustainbigloadstomakesurethatthebuildingdoesnotcollapseasaresultofmaterialdeformation,whichcanoccuraftertheEvaluehasbeenreached.

    Wehavealsodiscoveredthecomponentandmaterialstiffness,andidentifiedthedifferencesinboth,whereascomponentstiffnesscanbeimprovedthroughmodificationofsizeofthesampleorlength,thematerialstiffnessremainsthesameunlessthematerialitselfismodifiedinawayourswere,suchasthebrassbeingcombinationofcopperandzinc,changingthe%wouldhaveadirectimpactupontheyoungsmodulus.

    Theexperimentalsoshowedthateverymaterialhasauniqueyoungsmoduli,notallmetalshavethesameEvalue,nordoalltimber.Insomecasescombiningthematerialssuchasthebrassbeingcombinationofcopperandzinc,theyoungsmoduluswasactuallylowerthanthosematerialswouldhavehadindividually,despitetheloweryoungsmodulus,itislikelythatthecomponentstiffnessofthematerialwasgreaterthaniftheyweretestedindividually.

    Wehavealsoworkedwithwhatappearedtobeafaultysample,asthequotedbookvalueofEwasconsiderablyhigherthanwhatwehadattained;thissortofexperimentisusefulindeterminingwhetherthematerialprovidedbythesupplierisingoodenoughconditiontobeusedfortheplannedconstruction;decreasingthechanceofaccidentsorcollapseofthebuilding.

  • ACSS400 E3 22/02/12

    11

    References:CraneF.A.A.andFurnessJ.(1997)SelectionandUseofEngineeringMaterials,3rdEd,ElsevierScience&TechnologyBooks

    KermaniA.(1999)StructuralTimberDesign,Cambridge:Blackwellscience

    LESLIE,J.A.A.T.(2007).Designtech:Buildingscienceforarchitects..1stEdition.Oxford:ElsevierLtd.

    MatbaseMECHANICAL,PHYSICALANDENVIRONMENTALPROPERTIESOFMATERIALS,[online]Availablefrom:http://www.matbase.com/material/wood/

    WILLIAMD.CALLISTER,J.D.G.R.(2010).Materialsscienceandengineering:anintroduction.8thEdition.USA:JohnWiley&Sons,Inc.

    Bibliography:

    HIBBELER,R.C.(2011).MechanicsofMaterials.8thEdition.USA:PearsonPrenticeHall

    UniversityofCambridge,DepartmentofEngineering,(2002).PropertyInformationYoung'sModulusandSpecificStiffness[online]Availablefrom:[Accessed30Jan2012]

  • ACSS400 E3 22/02/2012

    17

    AnisotropyofTimber

    BySvenssonJosef,SzelagMarlena,TenStanislav,WangXu,WoodsNicholas

  • ACSS400 E3 22/02/2012

    18

    Contents:

    1. Objectivespg.192. Procedurepg.193. Observationspg.204. Resultspg.225. Discussionpg.286. Conclusion pg.337. References pg.34 8. Bibliography pg.349. CertificatesofAttendance pg.35

    AndSignedDeclaration

  • ACSS400 E3 22/02/2012

    19

    Objectives: Samplesofstraightgrainpine,plywoodandchipboard,at0,45and90aregiventoexaminehowtheyareaffecteddifferentlywhencompressionforceisapplied.Forthemaininvestigationweareaimingtoestablishtherelationshipbetweenstrengthandgraindirection.Twospecimensofeachmaterialateachorientationweretested.

    Procedure:AsLabSheet.

  • ACSS400 E3 22/02/2012

    20

    Observation:Duringtheexperiment,wehavetestedstraightgrainedtimber,plywoodandchipboardinturns,withcutsparallel,45degreesandperpendiculartothegrainineachofthesamples.Thedifferentsampleshaveallexperiencedsomesortofvisibledamage,insomecasesitwasseveresuchastheexamplefallingapartcompletelybutinmosttherewerevisiblecracksandloudcreakingwhenthepressurewasappliedonthem.

    StraightGrainedtimberwasthefirstsamplestested,slightcreakingcouldbeheardduringtheapplicationoftheweightanddeformationofthesampleshasbecomeevidentafterweremovedthesamples.

    Theplywoodsampleshaveexperiencedconsiderablymoredamagethanthetimber,althoughthedamagewasnotapparentuntilweveremovedthepressurefromthesamples,audiblecreakingcouldbeheardassamplesbeganbreakingasaresultoftheload.

    Figure2:Plywoodaftercompression,Fromrighttoleft:04590

    Figure3showshowthechipboardhasbeenaffectedbythepressure,inthecaseonfarright,thesamplehascrackednoticeably,whereasthesamplesthathaveparallelandthe45degreecuthavenotexperiencedasdrasticofachangeintermsofdamage.Duringtheexperiment,loudaudiblecreakingcouldbeheard,butlikeinthecaseofPlywood,visibledamagewasnotapparentuntilafterthe

    Figure1:StraightGrainedTimber(BritishColumbianPine)aftercompression.Fromrighttoleft:04590

    Figure3Chipboardaftercompression,Fromrighttoleft:04590

  • ACSS400 E3 22/02/2012

    21

    sampleshavebeenremoved.

    Duetoourinexperiencewithusingthisparticulartestingequipmentwefailedtocorrectlyadjusttheequipmentbetweensamplesonafewoccasionswhichledtoinconclusivedataasaresult.Thesesampleswerereplacedwithsamplesofthesamepropertiesandthetestingwasredone.Allresultspresentedbelowarefromsamplestestedcorrectly.

  • ACSS400 E3 22/02/2012

    22

    Results:FailureStress=FailureLoad/OriginalCrosssectionalarea

    FailureStress/Area=FailureLoad

    TabulateddimensionsandresultsforAnisotropyofTimber.StraightGrainedTimber(BritishColumbianPine).

    Timberat0

    1. Area:14.9915.31=229.5mm75.1229.4969=17,235N(FailureLoad)

    2. Area:14.8715.13=225.0mm59.8225=13455N

    Timberat45

    1. Area:15.7615.03=236.9mm13.1236.9=3103.39N

    2. Area:15.6615.16=237.4mm21.3237.4=5056.74N

    Timberat90

    1. Area:15.4715.23=235.6mm7.2235.6=1696.32N

    2. Area:15.1015.68=236.8mm6236.8=1420.60N

    Table1

    TimberStraightGrainedTimber[BritishColumbianPine]

    Width(mm)

    Thickness(mm)

    Originalcrosssectionalarea(mm)

    Maximumload(N)

    FailureStress(N/mm)

    FailureLoad(N)

    At0degrees 14.99 15.31 229.5 17,244 75.1 17,235

    At0 14.87 15.13 225.0 13,458 59.8 13,455

    At45 15.76 15.03 236.9 3,107 13.1 3,103

    At45 15.66 15.16 237.4 5,064 21.3 5,057

    At90 15.47 15.23 235.6 1,702 7.2 1,696

    At90 15.10 15.68 236.8 1,413 6.0 1,421

  • ACSS400 E3 22/02/2012

    23

    Resultsinaverage,calculatedfromtableabove

    Table2

    Graph1:ShowingThefailurestressofBritishColumbiaPinesamplestested

    TabulateddimensionsandresultsforAnisotropyofTimber.Plywood.

    Plywoodat0

    1. Area:14.6715.16=222.40mm30.3222.4=6738.7N

    2. Area:15.1214.50=219.24mm39.9219.24=8747.7N

    75,10

    13,107,20

    59,80

    21,30

    6,000

    10

    20

    30

    40

    50

    60

    70

    80

    Failu

    reStress(N/m

    m)

    Graindirection

    BrittishColumbiaPine sample1 sample2

    0 degree 45degeree 90degree

    TimberStraightGrainedTimber[BritishColumbianPine]

    Width(mm)

    Thickness(mm)

    Crosssectionalarea(mm)

    MaximumLoad(N)

    FailureStress(N/mm)

    FailureLoad(N)

    At0 14.93 15.22 227.3 15,351 67.45 15,345

    At45 15.71 15.1 237.2 4,086 17.2 4,080

    At90 15.29 15.46 236.4 1,558 6.6 1,559

  • ACSS400 E3 22/02/2012

    24

    Plywoodat45

    1. Area:14.6514.77=216.38mm10.1216.38=2185.4N

    2. Area:14.7214.65=215.70mm9.9215.7=2135.4N

    Plywoodat90

    1. Area:14.9814.91=223.40mm29.5223.4=6590.3N

    2. Area:14.9814.62=219.00mm28.4219=6219.6N

    Table3

    Resultsinaverage,calculatedfromtableabove

    Table4

    Plywood Width(mm)

    Thickness(mm)

    Originalcrosssectionalarea(mm)

    Maximumload(N)

    FailureStress(N/mm)

    FailureLoad(N)

    At0degrees 14.67 15.16 222.4 6,733 30.3 6,739

    At0 15.12 14.50 219.2 8,757 39.9 8,748

    At45 14.65 14.77 216.4 2,183 10.1 2,185

    At45 14.72 14.65 215.7 2,127 9.9 2,135

    At90 14.98 14.91 223.4 6,587 29.5 6,590

    At90 14.98 14.62 219.0 6,222 28.4 6,220

    Plywood Width(mm)

    Thickness(mm)

    Crosssectionalarea(mm)

    MaximumLoad(N)

    FailureStress(N/mm)

    FailureLoad(N)

    At0 14.9 14.83 221.0 7,745 35.1 7,744At45 14.69 14.71 216.1 2,155 10 2,160At90 14.98 14.77 221.3 6,405 29 6,405

  • ACSS400 E3 22/02/2012

    25

    Graph2:ShowingThefailurestressofPlywoodsamplestested

    TabulateddimensionsandresultsforAnisotropyofTimber.Chipboard.

    Chipboardat0

    1. Area17.6917.80=314.90mm19.9314.9=6267N

    2. Area17.7017.66=312.60mm20312.6=6252N

    Chipboardat45

    1. 17.7517.74=314.90mm19.3314.9=6078N

    2. 17.7317.62=312.40mm19312.4=5937N

    30,30

    10,10

    29,50

    39,30

    9,90

    28,40

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    Failu

    reStress(N/m

    m)

    Graindirection

    Plywood sample1 sample2

    0 degree 45degeree 90degree

  • ACSS400 E3 22/02/2012

    26

    Chipboardat90

    1. 17.9617.69=317.70mm18.9317.7=6005N

    2. 17.6817.84=315.40mm17.7315.4=5583N

    Table5

    Resultsinaverage,calculatedfromtableabove

    Table6

    Chipboard Width(mm)

    Thickness(mm)

    Originalcrosssectionalarea(mm)

    Maximumload(N)

    FailureStress(N/mm)

    FailureLoad(N)

    At0degrees 17.69 17.80 314.9 6,216 19.9 6,267

    At0 17.70 17.66 312.6 6,241 20.0 6,252

    At45 17.75 17.74 314.9 6,080 19.3 6,078

    At45 17.73 17.62 312.4 5,933 19.0 5,937

    At90 17.96 17.69 317.7 5,998 18.9 6,005

    At90 17.68 17.84 315.4 5,574 17.7 5,583

    Chipboard Width(mm)

    Thickness(mm)

    Crosssectionalarea(mm)

    MaximumLoad(N)

    FailureStress(N/mm)

    FailureLoad(N)

    At0 17.7 17.73 313.8 6,251 19.95 6,260

    At45 17.74 17.68 313.6 6,007 19.15 6,008

    At90 17.82 17.77 316.7 5,786 18.3 5,794

  • ACSS400 E3 22/02/2012

    27

    Graph3:ShowingThefailurestressofChipboardsamplestested

    19,90

    19,30

    18,90

    20,00

    19,00

    17,70

    17,5

    18

    18,5

    19

    19,5

    20

    20,5

    Failu

    reStress(N/m

    m)

    Graindirection

    Chipboardsample1 sample2

    0 degree 45degeree 90degree

  • ACSS400 E3 22/02/2012

    28

    Discussion:

    Question1:Explainthevariationincompressivestrengthoftimberwithtestdirection.Anisotropyisthestateorqualityofhavingdifferentpropertiesalongdifferentaxes.Theanisotropyoftimbercanbetestedusingacompressiontest;thisconsistsoftwoplatescompressingtogethertotellustheboundsatwhichamaterialcantakebeforeeventuallyfailing.Wecanthenunderstandthematerialsstructuralpropertiesanditscompressivestrength.Compressivestrengthistheabilitytosupporttheforcesexertedontoamaterialatdifferentdegrees.Thematerialthenreachesalimittowhichitcanwithstandandthenbucklesundertheload.Atalternatedegreesamaterialhasdifferentcapacitiesatwhichitisabletosupportacompressiveload.

    Timberisanaturalmaterial,whichhasuniquecharacteristicsandstructuralproperties;thisisduetothenatureofthegrain.Thegraingivesthetimberitsstrength.Tounderstandthis,thenatureofthegrainwassubjecttoacompressivestrengthtest,twiceat0paralleltothegrain,twiceat45,andtwiceat90perpendiculartothegrain.Inordertotryandachievearoughaveragethetestwascarriedouttwice,thisalsocatersforfailedtests.

    Wecanclearlyseefromtheresultspresentedearlierthattestdirectionproducesdifferentresults.Itshowsusclearlythattestingparalleltothegrainiswherethetimberhasmostofitsstructuralproperties.Overthetworesultsofeachspecimenwecanalsounderstandthata90degreesturnofthetestdirectioncandecreasethestructuralpropertiesbyanaverageof13,794N.Thecompressivestrengthoftimberat0isgreaterthantimberat90tothegrain.Thevariationincompressivestrengthcouldbeduetothecellalignmentinthetimber.Thegrainismadeupoftimbercells,towhich90%ofthesearealignedvertically.Sowhenthespecimeniscompressedtheverticallyalignedtimbercellsresistthebendingmoment,actinglikeawebofasteelbeam.Theverticalcellsrequiremoreforcetocompresswhereaswhenthespecimenisrotated90thecellsareverticallyalignedmakingthemeasytocompressandeventuallycausingthematerialtobuckleundertheload.Oncethegrainisrotatedto45and90theresistancedecreases.Thisissincecovalentbondingispresentalongthedirectionofthemicrofibersintimber,whilsthydrogenbondsisactiveinbetweenthemicrofibers.Thusitwillrequirelessforcetobreakthebondingbetweenthecellwallsiftheforceisappliedperpendiculartothefibredirectiontheniftheforceisappliedalongthegraindirection.

  • ACSS400 E3 22/02/2012

    29

    Question2:Itisnotpossibletocomparemeaningfullythemagnitudesofthefailurestressesforthedifferentmaterials.Whyisthis?

    Itisnotpossiblesincewoodcomesfromalivingorganism.Therewillbedifferentpropertiesofdifferentsamplesdependingonthespecifictreethatthespecificpieceoftimberoriginatesfrom,independentofwhatgrainangleitiscut.Thereforeseeminglyidenticaltestpiecescanhavedifferentproperties.Anumberofcontributingfactorswilldeterminetheindividualpropertiesofthetestedsamplessuchasdensity,knots,otherdefectsandgrowthrate.Alsowhenusedinconstructionandstructurestimberisusedindifferentsizes,temperaturesandenvironmentsthenthosepresentinthisexperiment.Thiswillhavevaryingeffectonthepropertiesofthematerialsused.Evenifweassumethatallthesamplestestedwereofequalmoisturecontentandstoredinthesameenvironmenttherearefactorsthatcanhaveanimpactonthepropertiesofthematerials.

    Thedensityoftimbervariesnotonlybythemoisturecontentandtemperatureofthesamplebutcanalsobedependentontheamountoflatewoodandearlywoodinasample.Sincetreesgrowindifferentratesatdifferentstagesitaffectsthepropertiesofthewood.Strengthanddensitywillbelowestatthelowercenterofatreeandwillincreaseslightlyupwardsandoutwards(Desch&Dinwoodie1996).Theoriginofthetreewillalsoaffectthepropertiesofaspecificpieceoftimber.Twosamplesofidenticalsizethatarecutinthesameangletothegraincanhaveslightlydifferentpropertiesdependingonwhereonthetreetheyoriginatefromaswellasfromwhichtree.

    Sinceknotsareanirregularityinthegrainandaffecttheangleofthegrainsitwillhaveanimpactonthestrengthofthematerial.Knotsvaryinsizeandcanoccuranywhereinapieceoftimberandtheeffectswillthereforevary.Iftheknotforinstanceispositionedontheedgeofapieceitwillhaveadifferentimpactonthepropertiesofthepiecethenifitispositionedinthecenterofthepiece.Itisthereforedifficulttoquantifytheeffectofknotsinspecificpiecesoftimber(Desch&Dinwoodie1996).

    Thepropertiesofplywoodandchipboardalsodepend,inthesamewayastimberpieces,greatlyonthespecificpiecesoftimberusedandnotonlyonthepropertiesoftheadhesiveorresinused.Sincebothplywoodandchipboardiscomposedofdifferentpiecesoftimberofdifferentkind,factorssuchasknotsandirregularitiesindensityhaveasmallereffectonthemechanicalpropertiesofthesematerials.Butthepropertiesoftheusedtimberwillreflectonthepropertiesonthemanufacturedplywoodorchipboard.Youcouldintheorycalculatethestrengthpropertyofplywoodwithdetailedinformationofthetimberpiecesandadhesiveused.(Illston1995).

    Sinceonlytwopiecesofeachgrainandcutanglewastesteditisnotpossibletodrawameaningfulconclusionsbasedonthetestsperformed.Andasseeninthegraphspresented

  • ACSS400 E3 22/02/2012

    30

    earliertherearevaryingdifferencebetweenthetwosamplestested.Anumberoftimberpiecesfromdifferentoriginandsuppliersofthesamekindandstandardwouldhavebeennecessarytobetterindicatethevariationsofthesamekindsofwood.

    Gradingoftimbernowadaysisdonewithstructuralsizedpiecesoftimbertobetterdeterminethepropertiesofdifferenttimbersinthewaytheywillperforminstructures.Thereforetheresultsintheexperimentwillbedifferentcomparedtostructuralsizedtesting.

    Inadditiontomeasuringthetestsamplesitcouldhavebeeninterestingtoweighthemtodeterminethedensityoftheindividualsamplesofthesamegrainandcutangletoidentifyanydifferences.Ifalargeramountofsamples,orlargerpieces,wastestedandweighedperhapssomeabnormalitiescouldhavebeenidentifiedandmoreaccuratelyindicativeresultscouldhavebeenpresentedforthedifferentpiecesoftimber.

    Question3:Comparethevariationinpropertiesfortimber,plywoodandchipboardandoutlinethesignificancefortheuseofthesematerials.Asstatedpreviously,wehavebeengiventimber,plywoodandchipboardsamplestotestthemintermsofcompressionresistance,andanalysethem.

    Timberasanaturalsourcehasclearlyvisibledifferencesthanplywoodandchipboard.Asshowninthetable1,timbercutparalleltothegraincanwithstandmuchmoreload(average15,351N)andittakesmoreFailureload(average15,345N)thancutat45or90.ItsbeenfoundthattheTensileandCompressionstrengthsisreachingmaximumatparallelpositiontothegrain,andminimumatperpendicular.Tocomparethistotheplywoodandchipboardresults,Timberhasthebestcompressionresistancecutparalleltothegrainthananyofthematerialatdifferentangles.Totakethesefactorsunderconsideration,Timberishighlyanisotropic,whichmeanhasdifferentpropertiesindifferentdirections.

    LookingattheTable4,whereplywoodresultsareaveraged,itcanbeassumedthatthismaterialcanbeslightlyanisotropic,whileitsmaximumloadisvisiblydecreasedwherethesampleswerecutat45,thanat0and90.

    ComparingtheconclusionsabovetotheTable6,wherethechipboardresultsaretabulated,thismaterialisnotanisotropic,asithasthesamepropertiesindependentontheanglecut.

    Beingatimberbasedmaterial,plywoodhastheabilitytoaccommodatetheoccasionalshorttermoverload;uptotwicethedesignload.Thismeans,thatwhenloadingisapplied

  • ACSS400 E3 22/02/2012

    31

    forashortterm,anelasticresponseispresent.Longtermloadingcancausecreep,whichfollowonfailureofthematerial.

    Particleboard isareconstitutedwoodpanelproductmanufacturedfromwoodparticles. Itcanalsobemanufacturedusingwoodflakesorstrands.

    Amatof individualwoodparticles iscoated inadhesiveresinandpressedtogether intoafinishedpanel.Asthewoodfibresintheparticlesarerandomlyoriented,thefinishedpanelhasuniformpropertiesineachdirection.

    Thismeans, that thepropertiesof thematerial,dependson its contents. Looking at thetable6,chipboardhassimilarmaximum loadand failure loadat thedifferentangles. It ispossibletogetthechipboardresistanttomoisture,ifadequateresinisusedtomanufacturethematerial.

    Althoughtimbersmechanicalpropertiesarefixedbythegrowthcycle,plywoodandchipboardspropertiesarefixedbyresinbywhichtheywereglued,andwhichtimberpartstheyaremadeof.Examiningclosureanatureoftimer,betweenhardwoodsandsoftwoods,thereisadifferenceinstructure,butnotinmechanicalproperties.

    Durability

    Whileitisunlikelyincoolerenvironments,particleboardisstillsusceptibletofungiandtermites;howeveramoisturecontentofover18%wouldneedtobeachieved.Particleboardflooringisthemostcommonapplicationtoencountermoistconditionsandfungusresistantandtermiteresistantflooringisavailabletohelppreventdeterioration.

    Particleboardwillperformsatisfactorilyinareasofhighhumidityandcanalsoaccommodatetheoccasionalwaterspillagebutitisnotdesignedtobecontinuallywet.

    Particleboardshouldbeconditionedtohumidityleveloftheenvironmentitwillbeusedin,withanormalmoisturecontentrangeof1012%

    Thedurabilityofplywoodwillinpartdependonthebondqualityusedinmanufacturing.Althoughtheuseofadurableadhesiveprovidesabondoflongtermeffectiveness,itdoesnotguaranteethattheveneersbeingbondedtogetherwillhaveanylongtermdurability.

    Asstructuralplywoodismanufacturedfromarangeofhardwoodandsoftwoodspecies,itmaynotbedurableinexposedweathersituationssomustbetreatedwithpreservativetoensureitsfullservicelifecanbereached.

    Uses

    Plywoodisnotrecommendedforfullyexposedhorizontalapplicationslikedeckingbecauseseverecheckingcanoccur,butitisagoodsubstrateformembranesinthisapplication.Faceveneersarealsopronetocrackingifleftunprotectedinunsuitableweatherconditions.

  • ACSS400 E3 22/02/2012

    32

    Doors,ExteriorStairs,ExternalCladding,Flooring,Framing,InteriorRailsandBalustrades,InteriorStairs,InternalPanelling,InternalPanelling,TimberJoineryProductsandTimberPortalFramesareexamplesofpotentialuses.

    Timberisoneofthemostversatilematerialsforbothinternalandexternaluses.Whethermanufacturedfromsolidorengineeredtimber,therearemanyoptionsinfinishesthatwillnotcompromiseonstrengthandstructuralperformance.

    Materialswhichwehavebeengiventotestandanalysearemostlyusedinnonforce,orlittleforceappliedobjects.Timberandtimberlikesuppliesareknownofitsstrength,durability,flexibilityandeasyworkability.HoweverChipboardismainlyusedasafloorboard,itisalsostrongandnaturalmaterial.

  • ACSS400 E3 22/02/2012

    33

    Conclusion:Inconclusion,asdiscussedabove,timberishighlyanisotropic,duetoitsnaturalstructure.Itshowsgreatcompressivestrengthparalleltothegrainandleastperpendiculartothegrain.

    Thefailurestressoftimberisinconclusivetocomparesince,evenifthepiecestestedderivedfromthesametree,eachindividualpieceofthetimberhastheirownpropertiessuchasgrainangle,cellstructureanddensityetc.allofthesefactorsaffectthestrengthofthetimber.Forthevarietiesofthecharacteristicoftimberitisusedwidelyinourlifesuchasstructuralbeams,flooring,furniture,frameetc.

    Plywoodandchipboardaremanufacturedproducts.Plywoodisproducedbymeansofcrossbindingtimberveneers,thereforethecompressivestrengthparalleltothegrainandperpendiculartothegrainareapproximatelyequal.Thefailurestressdependsonthetypeofadhesiveusedandqualityoftheveneers.Itcanbeusedasconstructionstructurematerial,fordecorationorgeneralpurposeaccordingtothedifferenceofbondingperformance.

    Chipboardhassimilarmaximumloadandfailureloadatthedifferentangles,asitisproducedbypressingthewoodparticlesbondedtogetherwithadhesiveandithasuniformpropertiesineachdirection.Thepropertiesofchipboardwillvarybecauseitdependsonthesizeofthechip,densityoftheboardandthetypeoftheresinused.Chipboardismostlyusedasflooringandforfurniturepurposes.

  • ACSS400 E3 22/02/2012

    34

    References:DeschH.E.&DinwoodieJ.M.(1996)Timber,Structure,Properties,ConversionandUse,SeventhEd,London:Macmillan

    IllstonJ.M.(1994)ConstructionMaterials,TheirNatureandBehavior,SecondEd,Suffolk:E&FSpon

    Bibliography:FindlayW.P.K(1975)Timber,PropertiesandUses,London:CrosbyLockwoodstaples

    MerrittF.RickettsJ.(2000)BuildingDesignandConstructionHandbookSixthEd,McGrawHill

    WoodSolutions(2011)[online]Availablefrom:http://www.woodsolutions.com.au/WoodProductCategories/[Accessed10022012]

    CA1youngs in progressTimber in progress)