cse 599e lecture 4: signal processing and machine learning for … · 2012. 4. 6. · r. rao, 599e:...

32
1 R. Rao, 599E: Lecture 4 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI 2 R. Rao, 599E: Lecture 4 What’s on the menu? F Signal Processing Spike sorting Frequency analysis Wavelets Time domain analysis Bayesian Filtering, Kalman and Particle filtering F Machine Learning Regression: Linear regression, Neural networks Classification: LDA, SVM Cross Validation

Upload: others

Post on 07-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

1 R. Rao, 599E: Lecture 4

CSE 599E

Lecture 4:

Signal Processing and

Machine Learning for BCI

2 R. Rao, 599E: Lecture 4

What’s on the menu?

F Signal Processing Spike sorting

Frequency analysis

Wavelets

Time domain analysis

Bayesian Filtering, Kalman and Particle filtering

F Machine Learning Regression: Linear regression, Neural networks

Classification: LDA, SVM

Cross Validation

Page 2: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

3 R. Rao, 599E: Lecture 4

Components of Brain-Computer Interfacing

Classification

or Regression

4 R. Rao, 599E: Lecture 4

Feature Extraction and Signal Processing

Page 3: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

5 R. Rao, 599E: Lecture 4

Invasive Recording: Spike Sorting

Sorting by Amplitude

Sorting using Window

Discriminators

6 R. Rao, 599E: Lecture 4

Signal Processing for Semi-Invasive and Non-

Invasive Recordings

Page 4: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

7 R. Rao, 599E: Lecture 4

Example: ECoG Signal

Rest Period Hand movement

Slow oscillations

have disappeared

Faster fluctuations

are apparent

8 R. Rao, 599E: Lecture 4

Decomposing a signal into components:

Frequency domain analysis

=

+

+

Recorded

signal

Increasing

frequency

Page 5: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

9 R. Rao, 599E: Lecture 4

Example of Frequency Domain (Fourier) Analysis

Signal as a

function of

time

Signal as a

function of

frequency

10 R. Rao, 599E: Lecture 4

Fourier Analysis

F Express any signal as an infinite sum of sines and cosines

F Obtain each “Fourier coefficient” via correlation with signal:

11

0

21210

)sin()cos(2

)2sin()sin()2cos()cos(2

)(

n

n

n

n tnbtnaa

tbtbtataa

ts

dttntsT

b

dttntsT

a

T

Tn

T

Tn

)sin()(2

)cos()(2

2/

2/

2/

2/

Page 6: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

11 R. Rao, 599E: Lecture 4

Amplitude and Power Spectra

F Amplitude Spectrum

F Power Spectrum

F Fast Fourier transform (FFT): Efficient way of computing

coefficients and power spectrum For signal with T time points, runs in time approximately T log T

22

2

1)( nn banA

)(4

1)()(

222

nn banAnP

)2sin()sin()2cos()cos(2

)( 21210 tbtbtata

ats

12 R. Rao, 599E: Lecture 4

ECoG Signal Power Spectrum

Low- and High-Frequency Band

(LFB/HFB) “features” can be used to

detect hand movement

Page 7: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

13 R. Rao, 599E: Lecture 4

Problem with Fourier Analysis

F Sines and cosines occupy an

infinite temporal extent

F Fourier transform does a poor

job of representing finite and

non-periodic signals, and

signals with sharp peaks and

discontinuities

14 R. Rao, 599E: Lecture 4

Wavelets

F Represent signals as

linear combinations

of finite basis

functions called

wavelets

F Each wavelet is a

scaled and translated

copy of a single

mother wavelet

F Allows multi-

resolution analysis

Example Mother Wavelets

Page 8: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

15 R. Rao, 599E: Lecture 4

Example: Wavelet Decomposition of EEG

(Hinterberger et al., 2003)

16 R. Rao, 599E: Lecture 4

Autoregressive (AR) Models

F Natural signals tend to be correlated over time

F Predict the next measurement based on past few values:

F Adaptive Autoregressive (AAR) model uses time-varying

set of coefficients ai,t:

F The ai,t capture local statistics of signal and can be used as

features for classification in a BCI

it

p

i

it xax1

tit

p

i

tit xax

1

,

Page 9: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

17 R. Rao, 599E: Lecture 4

Bayesian Filtering:

Kalman filters and Particle filters

18 R. Rao, 599E: Lecture 4

Bayes’ Rule

normalizer

prior likelihood

)(

)()|()(

)()|()()|(),(

yP

xPxyPyxP

xPxyPyPyxPyxP

Posterior

Page 10: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

19 R. Rao, 599E: Lecture 4

Example: Estimating brain state from neural data

F Suppose we measure ECoG signal z

F What is P(HandMovement|z)?

20 R. Rao, 599E: Lecture 4

Causal vs. Diagnostic Reasoning

F P(HandMovement|z) is diagnostic.

F P(z|HandMovement) is causal.

F Often causal knowledge is easier to obtain or learn.

F Bayes rule allows us to convert causal knowledge to

diagnose events:

)(

)()|()|(

zP

HMPHMzPzHMP

count frequencies!

Page 11: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

21 R. Rao, 599E: Lecture 4

Hand Movement Example

F P(z|HM) = 0.6 P(z|HM) = 0.3

F P(HM) = P(HM) = 0.5

67.03

2

45.0

3.0

5.03.05.06.0

5.06.0)|(

)()|()()|(

)()|()|(

zHMP

HMPHMzPHMPHMzP

HMPHMzPzHMP

If z is measured, it raises the probability of hand

movement from 0.5 to 0.67

From past data

22 R. Rao, 599E: Lecture 4

Combining Measurements over Time

F Suppose we make another measurement z2.

F How can we integrate this new measurement?

F More generally, how can we estimate

P(x| z1...zn )?

Page 12: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

23 R. Rao, 599E: Lecture 4

Bayesian Filtering

),,|(

),,|(),,,|(),,|(

11

11111

nn

nnnn

zzzP

zzxPzzxzPzzxP

Markov assumption: zn is independent of z1,...,zn-1 if we know x.

)()|(

),,|()|(

),,|(

),,|()|(

),,|(

),,|(),,,|(),,|(

...1

...1

11

11

11

11

11111

xPxzP

zzxPxzP

zzzP

zzxPxzP

zzzP

zzxPzzxzPzzxP

ni

in

nn

nn

nn

nn

nnnn

From previous time step!

Bayes’ Rule

24 R. Rao, 599E: Lecture 4

Kalman Filtering

F State linearly evolves according to:

F Measurement linearly related to state:

F nt and mt are zero-mean Gaussian noise with covariance

matrices Q and R respectively

F Bayesian filtering:

F Because everything is Gaussian and linear, posterior is also

Gaussian:

ttt nAxx 1

ttt mBxz

11111

111

1

),,|()|()|(

),,|()|(),,|(

tx

tttttt

tttttt

dxzzxPxxPxzP

zzxPxzPzzxP

t

),ˆ(),,|( 1 tttt SxNzzxP

Page 13: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

25 R. Rao, 599E: Lecture 4

Kalman Filter Equations

F Prediction from one time step to next:

F Correction upon measuring zt:

F “Kalman” gain dictates how much weight to

give to prediction error versus prediction

QAASM

xAx

T

tt

tt

1

1 RBSK T

tt

111 )(

)(ˆ

t

T

t

ttttt

MBRBS

xBzKxx

)( tt xBz

Mean

Covariance

Mean

Covariance

tx

26 R. Rao, 599E: Lecture 4

Kalman Filter: Prediction and Correction Cycle

Page 14: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

27 R. Rao, 599E: Lecture 4

Kalman filter assumes linear and Gaussian

model

How do we handle non-linearity and multi-

modal distributions?

28 R. Rao, 599E: Lecture 4

Enter…Particle Filtering

Samples approximate posterior probability distribution

New measurement provides importance weights

Importance sampling Prediction step and new samples

Page 15: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

29 R. Rao, 599E: Lecture 4

Spatial Filtering (across electrodes) and

Feature Extraction

30 R. Rao, 599E: Lecture 4

Spatial filtering: Simple Techniques

F Bipolar filtering

F Laplacian filtering

F Common Average

Re-referencing

jiji sss =~,

.4

1=~

i

i

ii sss

.1

=~

1=

i

N

i

iiN

sss

Page 16: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

31 R. Rao, 599E: Lecture 4

What if you are faced with this…

http://people.brandeis.edu/~sekuler/imgs/rwsEEG.jpg

32 R. Rao, 599E: Lecture 4

Reducing Dimensionality of Input Data

High Density EEG Recording

Can we extract and use a small set of features rather than

the large number of input channels?

http://people.brandeis.edu/~sekuler/imgs/rwsEEG.jpg

Page 17: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

33 R. Rao, 599E: Lecture 4

Principal Component Analysis (PCA)

F Convert high-dimensional

input into a small set of

linear “features” Eg., 256 EEG channels

10 “features”

F Features determined by

directions in data with

maximal variance

F Data can be reconstructed

(with some error) by linear

combination of features

Example: 2D to 1D

34 R. Rao, 599E: Lecture 4

Principal Component Analysis (PCA)

F Suppose each of the N data points is L-dimensional Form L x L data covariance matrix A

F Compute eigenvectors of A these are the “feature” vectors

or spatial filters

F Pick N largest eigenvalues and use their eigenvectors as your

features/filters

N

i

T

iiN

A1

))((1

xxxx

Page 18: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

35 R. Rao, 599E: Lecture 4

Example: PCA for images of faces

F PCA extracts the

eigenvectors v1, v2, v3,

... vK of covariance

matrix A

F Each one of these

vectors is a direction in

image space What do these look like?

36 R. Rao, 599E: Lecture 4

Low Dimensional Representation and Reconstruction

Filtering: Input is converted to eigenvector coordinates using dot

products (“projection”):

Reconstructed image

Compressed representation (K usually much smaller than size of input)

Input

Page 19: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

37 R. Rao, 599E: Lecture 4

PCA applied to EEG

(Jung et al., 1998)

5 of the 22

Eigenvectors

a1 a2

(spatial filters for EEG channels)

38 R. Rao, 599E: Lecture 4

Independent Component Analysis (ICA)

F PCA produces a matrix V of eigenvectors (columns of V)

such that the output a is uncorrelated:

F ICA tries to find a matrix W of filters (columns of W) such

that the output a is statistically independent:

F ICA assumes sources are linearly mixed to produce x

F ICA can be used to recover the “independent sources” of

mixed brain signals such as EEG

)( xxa TV

xaTW )()( that such

1

M

i

iaPP a

Page 20: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

39 R. Rao, 599E: Lecture 4

ICA for unmixing EEG signals

http://sccn.ucsd.edu/~scott/icons/TimeCourseFig_web.jpg

40 R. Rao, 599E: Lecture 4

ICA for Artifact Removal in EEG

(Jung et al., 1998)

Page 21: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

41 R. Rao, 599E: Lecture 4

Common Spatial Patterns (CSP)

F Data is labeled with class to which each data vector belongs E.g., EEG obtained for right versus left hand imagery

F CSP finds a matrix W of spatial filters (columns of W) where

such that the variance of the filtered data (components of

vector a) for one class is maximized while the variance of

the filtered data for the other class is minimized

F CSP filters can significantly enhance discrimination ability

between the two classes

xaTW

42 R. Rao, 599E: Lecture 4

CSP applied to EEG for Right/Left Hand Imagery

http://www.sciencedirect.com/science/article/pii/S0165027007004657

Right

Left

Less variance

Page 22: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

43 R. Rao, 599E: Lecture 4

Components of Brain-Computer Interfacing

Classification

or Regression

44 R. Rao, 599E: Lecture 4

Outline

F Regression

Linear

Backpropagation neural networks

F Classification

Linear classifiers

Support vector machines

F Cross-validation

Model selection, preventing overfitting

Page 23: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

45 R. Rao, 599E: Lecture 4

Linear Regression

x y

1 3.1

2 6.4

3.1 8.9

0.9 2

y

x

Assumption: Output is a linear function of input, i.e.,

yi= wxi + noise

where noise is independent, gaussian, unknown fixed variance

input

output

46 R. Rao, 599E: Lecture 4

Linear Regression

Given: Data (yi, xi) where yi are drawn from N(wxi, 2)

Likelihood of data (yi, xi) for a given w is:

i p(yi | w, xi) which is equal to

i exp( -0.5 (yi – wxi))

2/2 (ignoring constants)

Goal: Maximize the likelihood of data given w

i.e., maximize: i -0.5(yi-wxi)2/2

i.e., minimize: i (yi –wxi)2

Can show that w = xi yi / (xi)2

Page 24: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

47 R. Rao, 599E: Lecture 4

But…typically, inputs in BCIs are

vectors of multiple neurons’

activities, multiple EEG

measurements, etc.

Need Multivariate Regression

Input vector

Output

(hand position)

48 R. Rao, 599E: Lecture 4

Multivariate Linear Regression

Suppose inputs xi are n-element vectors: yi =wTxi + noise

Write the m inputs as rows of matrix and outputs yi as vector:

Then, Y = Xw + noise

Find maximum likelihood w by minimizing over all data

w = (XTX)-1XTY

mnmm

n

n

xxx

xxx

xxx

21

22221

11211

X

my

y

y

2

1

Y

2XwY

Page 25: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

49 R. Rao, 599E: Lecture 4

Nonlinear Regression: Neural Networks

Input nodes aeag

1

1)(

a

(a) 1

The most common

activation function:

Sigmoid function:

Squashes wTu to be between 0 and 1.

The parameter controls the slope.

g(a)

)(

)(

332211 uwuwuwg

gv T

uw

u = (u1 u2 u3)T

w

Output v

Want to learn a mapping from inputs to

outputs, given training data (um,dm).

How is w learned?

50 R. Rao, 599E: Lecture 4

Multilayer Networks

How do we learn these

weights?

Input u = (u1 u2 … uK)T

Output v = (v1 v2 … vJ)T; Desired = d

Page 26: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

51 R. Rao, 599E: Lecture 4

Idea: “Backpropagation” Learning Rule

2)(2

1),( i

i

i vdE wW

Start with random weights {W, w}

Given input u, network produces

output v

Find W and w that minimize total

squared output error over all output

units (labeled i):

))(( k

k

kj

j

jii uwgWgv

ku

52 R. Rao, 599E: Lecture 4

Backpropagation:

Output Weights

j

j

jjiii

ji

ji

jiji

xxWgvddW

dE

dW

dEWW

)()(

)( j

j

jii xWgv

ku

jx

Learning rule for hidden-output weights W:

2)(2

1),( i

i

i vdE wW

{gradient descent}

Page 27: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

53 R. Rao, 599E: Lecture 4

)( j

j

ji

m

i xWgv

m

ku

m

k

m

k

k

kjji

j

m

jji

m

i

m

i

imkj

kj

j

jkjkj

kjkj

uuwgWxWgvddw

dE

dw

dx

dx

dE

dw

dE

dw

dEww

)()()(

:But

,

{chain rule}

)( m

k

k

kj

m

j uwgx

Learning rule for input-hidden weights w:

2)(2

1),( i

i

i vdE wW

Backpropagation:

Hidden Weights

54 R. Rao, 599E: Lecture 4

Example Application in BCI

(Nicolelis, 2001)

Page 28: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

55 R. Rao, 599E: Lecture 4

Motivation: Why classification?

F Many BCI applications require selecting 1 out of N

commands or menu choices. E.g., Word spellers: select 1 out of 26 letters

Menu with icons: select 1 out of N icons

Semi-autonomous robot: select 1 out of N high-level commands

F Classification techniques can used to classify a given brain

signal into 1 of several classes Simplest case: 2 classes binary classificiation

56 R. Rao, 599E: Lecture 4

Binary Classification: Example

Suppose BCI is used to move a 1D cursor left or right

Want to use brain signals for Imagined left hand movement

vs. Imagined right hand movement

Data points for left hand movements (class C1)

Data points for right hand

movements (class C2)

How do we classify new data points?

Page 29: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

57 R. Rao, 599E: Lecture 4

Binary Classification: Linear Classifiers

Find a line (in general, a

hyperplane) (w, b)

separating the two sets

of data points:

g(x) = wTx + b = 0, i.e.,

w1x1 + w2x2 + b = 0

For any new point x, choose:

class C1 if g(x) > 0 and class C2 otherwise

x1

x2

g(x) = 0

g(x) < 0

g(x) > 0

C1 C2

58 R. Rao, 599E: Lecture 4

Linear Discriminant Analysis (LDA)

Assume each class is a Gaussian cloud

P(x|Ci) = N(i, ), i = 1,2

w and b are computed as follows:

w = -1(1 - 2)

b = wT(1 + 2)/2

Can show that this is equivalent to log likelihood ratio test for class 1 versus class 2

wTx + b = 0 C1

C2

Page 30: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

59 R. Rao, 599E: Lecture 4

Actually, many possible separating lines…

Which one is best?

60 R. Rao, 599E: Lecture 4

Support Vector Machines (SVMs)

Choose hyperplane with largest margin

Facilitates generalization to new data points

Can be shown: margin = 2/ wTw

Maximize margin subject to the following constraints:

wTxi +b > +1 for class1 points, wTxi +b < -1 for class2 points.

“Margin”

Solved with Quadratic Programming.

Page 31: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

61 R. Rao, 599E: Lecture 4

Overfitting and Generalization

Question: Which line is the best fit? Squiggly line overfits the data Won’t generalize to new data

Solution: Hold out some of the points, test regression or

classification performance on the held-out points What if points held out are bad (uncharacteristic of new data)?

Linear Regression Quadratic Regression

Squiggly-Regression

Holdout point

62 R. Rao, 599E: Lecture 4

Cross-Validation and Model Selection

F Repeat for different subsets of held-out points: For each choice of held-out points:

Fit model on remaining points Evaluate error on held-out points Add to total error score (this is the generalization error)

F Choose model with least generalization error

Page 32: CSE 599E Lecture 4: Signal Processing and Machine Learning for … · 2012. 4. 6. · R. Rao, 599E: Lecture 4 1 CSE 599E Lecture 4: Signal Processing and Machine Learning for BCI

63 R. Rao, 599E: Lecture 4

Types of Cross-Validation

F K-fold cross-validation: Split data into k blocks.

Each block is used as hold out set.

F Leave-one-out cross-validation: Each point is held

out once, model trained on remaining points, tested

on held out point, and cycle repeated for all points.

64 R. Rao, 599E: Lecture 4

Next Class:

Invasive BCIs – Early Studies

Presenters:

Shin Kira

&

Miah Wander