crude oil and fuel spill clean up by using exfoliated

86
The Pennsylvania State University The Graduate School Department of Civil and Environmental Engineering CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED GRAPHITE ENVELOPED IN SPUN POLYOLEFIN A Thesis in Environmental Engineering by Fatih Temiz 2014 Fatih Temiz Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science May 2014

Upload: others

Post on 03-Feb-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

The Pennsylvania State University

The Graduate School

Department of Civil and Environmental Engineering

CRUDE OIL AND FUEL SPILL CLEAN UP BY USING

EXFOLIATED GRAPHITE ENVELOPED IN SPUN POLYOLEFIN

A Thesis in

Environmental Engineering

by

Fatih Temiz

2014 Fatih Temiz

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

May 2014

Page 2: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

The thesis of Fatih Temiz was reviewed and approved* by the following:

Frederick S. Cannon Professor of Environmental Engineering Thesis Advisor

John M. Regan Professor of Environmental Engineering

Rachel A. Brennan Associate Professor of Environmental Engineering William Burgos Professor of Environmental Engineering and Professor in Charge of Graduate Programs

*Signatures are on file in the Graduate School

Page 3: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

iii

ABSTRACT

This paper is aiming to address the problem of oil spills occurring on water bodies. 81%

of oil spills that occur are less than 50 US barrels in volume and these are considered as minor

spills. There is no perfect solution for this problem and oil spills are a real threat to nature. As an

alternative way of combating smaller scale oil spills, Exfoliated Graphite (EG) is being examined.

Production temperature of Exfoliated Graphite is effective in the oil capturing capacity and it is

covered by results gathered from tests. The higher the exfoliation temperature, the more surface

area Exfoliated Graphite gains, so this large surface area makes it possible to capture petroleum

products and hold it. To see the capturing efficiency of Exfoliated Graphite, motor oil, gasoline

and diesel fuel mixture, Texas crude oil and Pennsylvania crude oil were used in the experiments.

Also, the material was tried in fresh water and sea water.

Additionally, a product is designed for real life application purposes which consists of

Exfoliated Graphite and an envelope made from Spun Polyolefin (PO, cap). Other envelope

materials were also used (fiberglass, tulle, ribbon, artificial silk). In addition to the tests that

Exfoliated Graphite was tried in, pumps were put in a water tank and surface of water was

agitated to see how the product would act in such quiescent and turbulent conditions. These tests

consisted of 20 cycles and each cycle consisted of 10 minute dipping, then squeezing, weighing,

and again dipping. In an attempt to mimic similar conditions in a quiescent area, such as a harbor,

5-second dripping readings were noted, once the pouch was taken out of the water tank with oil in

it, the pouch was left to drip for 5 seconds. These tests with Exfoliated Graphite enveloped in

Spun Polyolefin pouches gave 37 g gasoline and diesel fuel mixture (50-50 by volume) / g pouch;

54 g Texas crude oil / g pouch; and 59 g motor oil / g pouch. When these data were further

analyzed, individual contributions of Spun Polyolefin and Exfoliated Graphite were calculated.

Page 4: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

iv

So, for motor oil capturing, 35 g oil / g Spun Polyolefin was achieved and 115 g oil / g Exfoliated

Graphite efficiency was attained.

Experiment data also showed us that when Exfoliated Graphite is enveloped within Spun

Polyolefin, the envelope material, Spun Polyolefin, rebounded with 97% of its first-cycle oil

retention capacity, while the Exfoliated Graphite rebounded with 65% of its first-cycle oil

retention capacity in motor oil capturing tests.

By the end of 20 cycles of motor oil loading and squeezing, the caps had captured 1,105

g oil in total and pouches had captured 1,698 g oil in total giving 395 g oil / g PO and 606 g oil /

g EG+PO efficiency values, respectively. For 50-50 by volume gasoline and diesel fuel mixture

tests, 875 g oil was captured by EG+PO pouches at the end of 20 cycles (364 g oil / g EG+PO)

and 622 g oil was captured by PO alone (259 g oil / g PO). In the Texas crude oil tests, the pouch

removed 1105 g crude oil (790 g oil / g EG+PO) and PO removed 1,131 g crude oil (808 g oil / g

PO) after 20 cycles of 5-second dripping readings.

Page 5: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

v

TABLE OF CONTENTS

List of Figures .......................................................................................................................... vi

List of Tables ........................................................................................................................... ix

Acknowledgements .................................................................................................................. x

Chapter 1 Introduction ............................................................................................................. 1

Chapter 2 Literature Review .................................................................................................... 5

Environmental Effects of Oil Spills ................................................................................. 5

Using Sorbent Materials for Cleaning Up Crude Oil Spills ............................................. 8

Chemical Dispersant Usage in Oil Spill Clean Up .......................................................... 11

Using Exfoliated Graphite in Crude Oil Spills ................................................................ 13

Using Polyolefins in Crude Oil Spills .............................................................................. 18

Chapter 3 Materials and Methods ............................................................................................ 22

Product Design and Water Tank Tests ............................................................................. 22

Pouch Dip Tests ............................................................................................................... 25

Envelope Material Tests ................................................................................................... 26

Grid Filter Protocol .......................................................................................................... 27

Mousse (Emulsion of Water and Oil) Tests ..................................................................... 27

Polyolefin Chunk Tests .................................................................................................... 28

Preparing of Sea Water .................................................................................................... 30

Chapter 4 Results and Discussion ............................................................................................ 31

Motor Oil Tests ................................................................................................................ 31

Gasoline and Diesel Fuel Mixture Tests .......................................................................... 39

Texas Crude Oil Tests ...................................................................................................... 44

Confined Packet Tests ...................................................................................................... 46

Steps That Led to Product Design .................................................................................... 52

Experiments with Polyolefin .................................................................................... 59

Experiments with Envelope Materials without Exfoliated Graphite ........................ 60

Experiments with Exfoliated-Graphite-600 ............................................................. 64

Experiments with Exfoliated-Graphite-800 ............................................................. 65

Application of Exfoliated-Graphite-800 in Spun Polyolefin Pouch ......................... 68

Chapter 5 Conclusions ............................................................................................................. 69

Chapter 6 Future Work ............................................................................................................ 71

References ................................................................................................................................ 72

Page 6: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

vi

LIST OF FIGURES

Figure 2-1. (a) Lattice Layers of Graphite Flakes (b) Exfoliated Graphite (Moustafa, 2009) ................................................................................................................................ 15

Figure 2-2. Normalized Expansion Volume versus Temperature of Formation (Moustafa, 2009) ................................................................................................................................ 16

Figure 2-3. Mass Gain of Exfoliated Graphite by Temperature It Was Formed (Moustafa, 2009) ................................................................................................................................ 17

Figure 2-4. Average Mass Gain versus Normalized Expansion Volume ................................ 17

Figure 2-5. Left – Polyolefin, Right – Polyolefin Gel (Methods and Compositions for

Absorbent for Hydrocarbon Recovery) ............................................................................ 19

Figure 3-1. Preparation of the Product, Spun Polyolefin and Exfoliated-Graphite-800 .......... 23

Figure 3-2. Water Tank Surface Diagrams with Maximum Wave Amplitudes, from Left to Right: 1-Pump, 2-Pump, and 3-Pump Test Plans ........................................................ 24

Figure 3-3. Oil Recovery by Mechanical Means (Pouch Squeezing) ...................................... 25

Figure 3-4. Polyolefin and Exfoliated Graphite Mixture Preparation ...................................... 29

Figure 4-1. Water Tank 5-Second Drip Oil Capture Tests with Cap (1.3-1.5 g PO) versus Pouch (0.9-1.0 g PO + 0.3-0.4 g EG) in 200 mL Motor Oil, Fully Turbulent Water ...... 34

Figure 4-2. Total Oil Capture Graph for Water Tank 5-Second Drip Tests with Cap (1.3-1.5 g PO) versus Pouch (0.9-1.0 g PO + 0.3-0.4 g EG) in 200 mL Motor Oil, Fully Turbulent Water ............................................................................................................... 34

Figure 4-3. Water Tank 40-Second Drip Oil Capture Tests with Cap (1.3-1.5 g PO) versus Pouch (0.9-1.0 g PO + 0.3-0.4 g EG) in 200 mL Motor Oil, Fully Turbulent Water ................................................................................................................................ 35

Figure 4-4. Total Oil Capture Graph for Water Tank 40-Second Drip Tests with Cap (1.3-1.5 g PO) versus Pouch (0.9-1.0 g PO + 0.3-0.4 g EG) in 200 mL Motor Oil, Fully Turbulent Water ............................................................................................................... 36

Figure 4-5. Water Tank 5-Second Drip Oil Capture Tests with Cap (0.6-0.8 g PO) versus Pouch (0.6-0.9 g PO + 0.3-0.5 g EG) in 200 mL Motor Oil, Turbulent Water ................ 36

Figure 4-6. Total Oil Capture Graph for Water Tank 5-Second Drip Tests with Cap (0.6-0.8 g PO) versus Pouch (0.6-0.9 g PO + 0.3-0.5 g EG) in 200 mL Motor Oil, Turbulent Water ............................................................................................................... 37

Figure 4-7. Water Tank 40-Second Drip Oil Capture Tests with Cap (0.6-0.8 g PO) versus Pouch (0.6-0.9 g PO + 0.3-0.5 g EG) in 200 mL Motor Oil, Turbulent Water .... 38

Page 7: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

vii

Figure 4-8. Total Oil Capture Graph for Water Tank 40-Second Drip Tests with Cap (0.6-0.8 g PO) versus Pouch (0.6-0.9 g PO + 0.3-0.5 g EG) in 200 mL Motor Oil, Turbulent Water ............................................................................................................... 38

Figure 4-9. Water Tank 5-Second Drip Fuel Capture Tests with Cap (1.0-1.3 g PO) versus Pouch (0.8-1.0 g PO + 0.4 g EG) in 200 mL 50-50 Gasoline and Diesel Fuel Mix, Fully Turbulent Water ............................................................................................. 39

Figure 4-10. Total Fuel Capture Graph for Water Tank 5-Second Drip Tests with Cap (1.0-1.3 g PO) versus Pouch (0.8-1.0 g PO + 0.4 g EG) in 200 mL 50-50 Gasoline and Diesel Fuel Mix, Fully Turbulent Water ................................................................... 39

Figure 4-11. Water Tank 40-Second Drip Fuel Capture Tests with Cap (1.0-1.3 g PO) versus Pouch (0.8-1.0 g PO + 0.4 g EG) in 200 mL 50-50 Gasoline and Diesel Fuel Mix, Fully Turbulent Water ............................................................................................. 40

Figure 4-12. Total Fuel Capture Graph for Water Tank 40-Second Drip Tests with Cap (1.0-1.3 g PO) versus Pouch (0.8-1.0 g PO + 0.4 g EG) in 200 mL 50-50 Gasoline and Diesel Fuel Mix, Fully Turbulent Water ................................................................... 40

Figure 4-13. Water Tank 5-Second Drip Fuel Capture Tests with Cap (1.1-1.3 g PO) versus Pouch (0.8-1.0 g PO + 0.3 g EG) in 200 mL 50-50 Gasoline and Diesel Fuel Mix, Turbulent Water ...................................................................................................... 41

Figure 4-14. Total Fuel Capture Graph for Water Tank 5-Second Drip Tests with Cap (1.1-1.3 g PO) versus Pouch (0.8-1.0 g PO + 0.3 g EG) in 200 mL 50-50 Gasoline and Diesel Fuel Mix, Turbulent Water ............................................................................ 42

Figure 4-15. Water Tank 40-Second Drip Fuel Capture Tests with Cap (1.1-1.3 g PO) versus Pouch (0.8-1.0 g PO + 0.3 g EG) in 200 mL 50-50 Gasoline and Diesel Fuel Mix, Turbulent Water ...................................................................................................... 43

Figure 4-16. Total Fuel Capture Graph for Water Tank 40-Second Drip Tests with Cap (1.1-1.3 g PO) versus Pouch (0.8-1.0 g PO + 0.3 g EG) in 200 mL 50-50 Gasoline and Diesel Fuel Mix, Turbulent Water ............................................................................ 43

Figure 4-17. Water Tank 5-Second Drip Crude Oil Capture Tests with Cap (1.4 g PO) versus Pouch (1.0 g PO + 0.5 g EG) in 200 mL Texas Crude Oil, Fully Turbulent Water (Oil Only, Fixed According to Water Capturing Values from Cycles 21-25)....... 44

Figure 4-18. Total Crude Oil Capture Graph for Water Tank 5-Second Drip Tests with Cap (1.4 g PO) versus Pouch (1.0 g PO + 0.5 g EG) in 200 mL Texas Crude Oil, Fully Turbulent Water ...................................................................................................... 44

Figure 4-19. Water Tank 40-Second Drip Crude Oil Capture Tests with Cap (1.4 g PO) versus Pouch (1.0 g PO + 0.5 g EG) in 200 mL Texas Crude Oil, Fully Turbulent Water (Oil Only, Fixed According to Water Capturing Values from Cycles 21-25)....... 45

Page 8: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

viii

Figure 4-20. Total Crude Oil Capture Graph for Water Tank 5-Second Drip Tests with Cap (1.4 g PO) versus Pouch (1.0 g PO + 0.5 g EG) in 200 mL Texas Crude Oil, Fully Turbulent Water ...................................................................................................... 46

Figure 4-21. Water Tank 5-Second Drip Fuel Capture Tests with Cap (1.0 g PO) versus Confined Pouch (0.5 g PO + 0.5 g EG) in 200 mL 50-50 Gasoline and Diesel Fuel Mix, Fully Turbulent Water ............................................................................................. 46

Figure 4-22. Water Tank 40-Second Drip Fuel Capture Tests with Cap (1.0 g PO) versus Confined Pouch (0.5 g PO + 0.5 g EG) in 200 mL 50-50 Gasoline and Diesel Fuel Mix, Fully Turbulent Water ............................................................................................. 47

Figure 4-23. Water Tank 5-Second Drip Oil Capture Tests with Cap (1.0 g PO) versus Confined Pouch (0.5 g PO + 0.5 g EG) in 200 mL Motor Oil, Fully Turbulent Water ... 48

Figure 4-24. Water Tank 40-Second Drip Oil Capture Tests with Cap (1.0 g PO) versus Confined Pouch (0.5 g PO + 0.5 g EG) in 200 mL Motor Oil, Fully Turbulent Water ... 48

Figure 4-25. Tests for Determining Water Capturing Percentages .......................................... 51

Figure 4-26. Polyolefin Oil Capturing Tests for 2 Hours in 10 mL of Motor Oil on 100 mL of Water ..................................................................................................................... 59

Figure 4-27. Polyolefin Oil capturing Tests in 10 mL of 50-50 Gasoline and Diesel Fuel Mixture on 100 mL of Water ........................................................................................... 60

Figure 4-28. Pouch Materials: a) Tulle b) Fiberglass c) Silk Screen d) Ribbon ...................... 62

Figure 4-29. Spun Polyolefin Oil capturing Test for 5 Minutes in 20 mL of 50-50 Gasoline and Diesel Fuel Mixture on 100 mL of Water .................................................. 63

Figure 4-30. Spun Polyolefin Oil capturing Test for 5 Minutes in 20 mL of Motor Oil on 100 mL of Water .............................................................................................................. 63

Figure 4-31. Spun Polyolefin Pouch Oil Capturing Tests Run for 3 Minutes in 10 mL of 50-50 Gasoline and Diesel Fuel Mixture on 100 mL of Water ........................................ 64

Figure 4-32. Spun Polyolefin (Previously Dipped in Soapy Water) Pouch Oil Capturing Test for 3 Minutes in 40 mL of 50-50 Gasoline and Diesel Fuel Mixture on 100 mL of Water............................................................................................................................ 65

Figure 4-33. Exfoliated-Graphite-800 Only Oil Capturing Tests in 20 mL of 50-50 Gasoline and Diesel Fuel Mixture and Motor Oil on 100 mL of Water .......................... 66

Figure 4-34. Exfoliated-Graphite-800 Only Oil capturing Test in 50-50 Gasoline and Diesel Fuel Mixture on 100 mL of Water for 5 Minutes by Grid Filter Protocol ............ 67

Page 9: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

ix

LIST OF TABLES

Table 1-1. World Maritime Operational and Accidental Sources of Crude Oil Entering Water Bodies (Ketkar and Chair, 2005) ........................................................................... 2

Table 1-2. Quantity of Oil Spilled (Statistics by ITOPF) ........................................................ 3

Table 2-1. Appearance Properties of Oil Slicks (ASTM F 2534-12) ...................................... 8

Table 3-1. Artificial Sea Water Composition (ASTM D 1141-98) ......................................... 30

Table 4-1. Water Capturing Percentage Values for Confined Pouch Tests ............................. 49

Table 4-2. Water Capturing Percentage Values for Texas Crude Oil Tests - Cycles 21-25 .... 49

Table 4-3. The Least Significant Difference (LSD) Comparison Chart .................................. 50

Table 4-4. Average Oil Capturing and Average Efficiency for the Whole Test Set ................ 51

Table 4-5. Exfoliated Graphite Hydrocarbon Capturing Tests ................................................ 53

Table 4-6. Pouch Material and Polyolefin Hydrocarbon Capturing Tests ............................... 57

Table 4-7. Water and Oil Product Oil and Water Capturing Test Results Run for 10 Minutes for Envelope Materials on 100 mL of Water Only for Water Capturing Test and 100 mL of Water and 10 mL of Oil Product in Oil Capturing Tests ......................... 61

Page 10: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

x

ACKNOWLEDGEMENTS

This thesis and my study program were sponsored and supported by Ministry of National

Education of Turkey and Turkish Petroleum Corporation (TPAO). I would like to thank and

present my regards to both parties.

My supervisor Dr. Fred S. Cannon and the Cannon group members were very helpful

during my study period.

The last but not the least, I would like to thank my friends and my family for their

continuous support.

Page 11: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

1

Chapter 1

Introduction

Extraction of crude oil does not always occur where it is consumed the most, in fact,

crude oil travels around the world to its final destination. There are various ways of transport for

crude oil, such as, pipelines, tankers, motorway carriage, and railway carriage. Ketkar and Chair

mention about crude oil transportation methods in Water Encyclopedia and they suggest that due

to its relative cheapness and heavy carriage capacity tankers are preferred for the transport of

crude oil. Use of oil tankers as a means of transportation only became in the second half of the

19th century. The event that took place in December 1861 changed the general course of transport

on the seas: The Elizabeth Watts vessel carried kerosene from Philadelphia to London across the

Atlantic (Akaki, 2011). As more tankers made their way on the seas, a new source of pollution

was bred. During filling up the tankers, while navigating on the seas or while emptying the crude

oil that is being carried generate pollution.

The sort of pollution occurring is a result of anthropogenic actions as the liquid form of

petroleum is discharged into the environment, this kind of pollution chiefly affects the seas.

Marine crude oil spills can happen in open seas or in coastal waters. Accidental or intentional

discharge of crude oil from tankers, offshore platforms, oil rigs, oil wells, ships, or from waste

waters are the general sources of crude oil pollution. Run off from polluted areas also cause

marine crude oil pollution. In the beginning, crude oil pollution will meet ponds, rivers, lakes or

other small water bodies but as time passes these pollutants will make their way to the oceans.

Additionally, there are natural ways of crude oil pollution like oil seepages from natural deposits

(Ketkar and Chair, 2005).

Page 12: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

2

The term oil includes hydrocarbons which are crude oil, fuel oil, gasoline, heating oil,

diesel fuel, jet fuel, and other refinery products. Oil may make its way straight into waters and

may seep into and found in ground waters. Water bodies have a natural ability to clean and treat

themselves by biological, physical and chemical ways (microorganism, wind, sun light, etc.

contribute to natural oil cleaning up); however, when these natural ways are not sufficient then oil

pollution becomes a problem. Oil tanker accidents and pipeline disasters are the ways that attract

most responsiveness by the public and hence the media, this is due to the fact that a large amount

of oil enters the water body in a very short period of time. More than 26.5 million liters of crude

oil was spilt after the accident of the Exxon Valdez in Alaska in the year 1989 (Leacock, 2005).

The ocean protection foundation Oceana states that the vast majority of crude oil

reaching the seas comes from inland operations (80%), and this share is made up of 44% of direct

discharge, 33% transportation in atmospherically paths, and 20% of accidental and intentional

discharge from ships and marine amenities (Ketkar and Chair, 2005).

Table 1-1. World Maritime Operational and Accidental Sources of Crude Oil Entering Water Bodies (Ketkar and Chair, 2005)

Source Crude Oil Entering Water Bodies (million tons/year)

1990 1981-1985 1973-1975

Bilge and fuel oil 0.25 0.31 n/a

Tanker operational losses 0.16 0.71 1.08

Tanker accidents 0.11 0.41 0.20

Non-tanker accidents 0.01 n/a 0.10

Marine terminal operations 0.03 0.04 0.50

Dry-docking 0.01 n/a n/a

It is known that the effect of oil spills depends on some factors - kind of oil, spilled

volume, climate, location and the season; and the combat against oil spills has proven that

Page 13: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

3

majority of countries are not equipped sufficiently for such a response (Heubeck et al., 2003).

Small and medium scale spills are more common. The International Tanker Owners Pollution

Federation (ITOPF) states that 81% of oil spills are minor spills, which are less than 50 US

barrels. Furthermore, ITOPF lists the quantity of oil spilled as follows. In the table below, it can

be clearly seen that quantity of oil spilled by tankers becomes less over the decades.

Technological advancements and with the growing environmental sensitivity this improvement

happened (itopf.com).

Table 1-2. Quantity of Oil Spilled (Statistics by ITOPF)

Years Oil Spilled (tons)

1970 - 1979 3,218,000

1980 - 1989 1,176,000

1990 - 1999 1,135,000

2000 - 2009 212,000

2010 - 2012 14,000

There are chemical, biological and physical methods, or a combination of these methods,

for cleaning up the crude oil spills. From these oil spills, harbors are affected by what the vessels

are using as their fuel and lubricants for moving parts of their machinery. As it can be seen in

various news stories diesel fuel spills, such as in New Bedford, Massachusetts (The Boston

Globe, August 29, 2013), and Ventura Harbor, California (United States Coast Guard News

Release, Nov. 19, 2013), happen in harbor areas. Additionally, where vessels berth are also prone

to motor oil spills, for example, as in Oak Bluffs, Massachusetts (Vineyard Gazette, November

20, 2013), and bilge water problems which brought up environmental concerns in Monterey Bay,

California (saveourshores.org). Whereas the larger and catastrophic spills like the Deepwater

Horizon incident take place in open waters.

Page 14: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

4

Oil pollution occurred before, is occurring at the moment and will occur in the future.

Alternative methods of combating against oil spills have been proposed. The method suggested in

this paper will be a physical clean up method by using Exfoliated Graphite enveloped in Spun

Polyolefin. Oil can get in Exfoliated Graphite and the material expands. Exfoliated Graphite can

sorb much oil and Spun Polyolefin participates in oil and fuel capturing. The objectives of the

study are developing a product which can be used in oil spill areas and make tests in the water

tank with turbulence to mimic conditions that would be faced in the real life applications.

Exfoliated Graphite works so well because space between layers expands further as oil

gets in, the capillary action within Exfoliated Graphite pulls oil even further and the weak forces

between Exfoliated Graphite layers makes the further expansion possible.

Enveloped Exfoliated Graphite would be more practical to use than being applied on its

own because it is lightweight and in a windy condition it would be drifted away, enveloping it

would make the handling easier. The good signs for an envelope material is it being sturdy,

having a small mesh size to keep Exfoliated Graphite inside the pouch formed, also help oil

capturing, and being flexible so it does not crush Exfoliated Graphite and let it expand and not

limit it and we hypothesize that we can find an envelope material for Exfoliated Graphite

showing these favorable properties.

Page 15: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

Chapter 2

Literature Review

Environmental Effects of Oil Spills

Obviously, crude oil pollution has its effects in the environment. Animals are affected as

they are covered by the crude oil, hence losing their aviation capability or eye sight, having

internal organ damages especially in their kidneys and livers. Marine living beings are affected

from the floatation of crude oil as it cuts the oxygen contact and sunlight penetration into the

water. Also, coast lines suffer from the pollution as they are covered and the natural balance is

being altered.

As Reis (1996) mentions, there is a natural way of degradation of crude oil, with respect

to the amount and kind of oil spilled, the natural conditions, temperature, depth and other

properties of the water body, leaving the spillage on its own may be preferred.

Crude oil floats on water and with the movement of water and with the wind it will travel

very rapidly; therefore, it must be contained by booms and engulfed as soon as possible. The

lighter the oil product the faster it will travel, i.e. gasoline would travel faster than crude oil

(Mohan et al., 2005). Accordingly, collecting the stack of oil, preventing further damages to the

environment and keeping waste production in minimum are the purposes of cleaning up practices

while making use of existing conditions and assets safely, efficiently and effectively (General Oil

Spill Response Plan by ESSO).

In addition, booms age and become useless in crude oil pollution combating. The boom

skirt deformation reduces the boom draft; hence it reduces its effectiveness (Lee, 1997). This

Page 16: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

6

physical method of enveloping crude oil needs to be supported by a sorbent material in order to

remove crude oil from water.

Bayat et al. (2005) also mention about an alternative way of treatment which is called

bioremediation. Enzymes of some microorganisms found in seawater have the ability to break

down oil products. This kind of treatment is executed by introducing these living organisms to the

polluted area or by stimulating the ones that live in the polluted area already. Since living beings

require many nutrients and ideal conditions to live (temperature, wind, sunlight, wave currents,

oxygen, etc) and to operate, the process is slow and oxygen amount is often a limiting regent in

bioremediation (Bayat et al., 2005).

There are many factors to be considered when an oil spill occurs. For example, Alaska

North Slope crude oil's weathering was lethal to the fish in their larvae stage. However, with the

short northern day, the sun light made the lethality of the oil up to almost 50 times worse (Barron

et al., 2003). Furthermore, an oil spill affects many species of animals and plants. As Burger

suggests, this results in a halt in the healthy performance of the ecosystem, although not all

ecosystems act the same. A simple ecosystem's suffering in the long run might be greater than an

intricate ecosystem (Oil Spills, pp. 87-88).

In the year 1993, oil wells and storage tanks were destroyed during the armed conflict

during the First Gulf War. This attack led to nearly 1 billion liters of crude oil (when comparing it

to the Exxon Valdez incident, it can be seen that this latter event is catastrophic, standing at

almost 38 times more release of hydrocarbons to the environment) to be released into the Persian

Gulf (Bayat et al., 2005). Saddam Hussein's, former president of Iraq, attacks caused more than

700 wells in Kuwait to be damaged and the oil well fires consumed an estimated amount of 1.5

million barrels and perhaps as high as high 4 million barrels a day (Riva, 1991). Other observers

claim the Persian Gulf was only polluted by 2 to 4 million barrels and not by more than 10

million barrels unlike in earlier estimates (Khordagui and Al-Ajmi, 1993).

Page 17: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

7

These attacks were done on purpose to damage the economy of Kuwait. The vast amount

of crude oil covered the waters for a long time virtually destroying the habitat around, therefore, it

can be concluded that the environmental effects of these attacks were much worse than their

economical effects. The winds carried particles caused by fires and this deteriorated the air

quality along Bahrain's and Saudi Arabia's shores on the Persian Gulf. Inhalable particulate

concentrations in the air (340 µg/m3 once in a year is the standard limit set by the local the

Meteorology and Environmental Protection Administration) was measured to be as high as 3,294

µg/m3 in one station (Husain and Amin, 1994).

More recently, The Deepwater Horizon oil spill which started on April 20, 2010 and

continued till July 15 in the same year (On Scene Coordinator Report Deepwater Horizon Oil

Spill) drew attention to major oil spill incidents in the US and worldwide. The Deepwater

Horizon oil spill affected the health of common bottlenose dolphins. The study compared the

dolphins in Barataria Bay, Louisiana, where the area was heavily affected by the catastrophic oil

spill and in Sarasota Bay, Florida, where the spill did not reach. Nearly half the dolphins

examined in Barataria Bay were expected to have worse health in the future and about one-sixth

of them were expected to die (Schwacke et al., 2014).

In order to combat an oil spill, it is necessary to estimate how much oil is spilled. This

estimation step is needed to predict the amount of sorbent material to be used. ASTM Standard

for Visually Estimating Oil Spill Thickness on Water (ASTM F2534-12) gives the values for

estimating the thickness of film and hence the volume of the spill by multiplying the surface area

of the spill by the thickness of the film.

Page 18: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

8

Table 2-1. Appearance Properties of Oil Slicks (ASTM F 2534-12)

Visibility Characteristics

Values Minimum

Observable Thickness (µm)

Minimum Onset Thickness (µm)

Silvery Rainbow Dark

Rainbow Dark

Typical 0.08 0.1 0.5 3 > 3

Range 0.05 - 0.2 0.1 - 0.3 0.2 - 3 > 3

Using Sorbent Materials for Cleaning Up Crude Oil Spills

Sorbent materials can be added while fighting against crude oil spills. The addition of

sorbents transforms liquid phase crude oil to a semi-solid form and the procedure of removal gets

easier. The hydrophobic and oleophilic features of sorbents are the specialties of these materials

that make them work efficiently. Other noteworthy points are the recoverability of crude oil from

the sorbent, whether the sorbent is biodegradable and if the sorbent can be used again (Teas et al.,

2001).

A survey was undertaken and explained in “Investigation of the effectiveness of sorbent

materials in oil spills clean-up” in which sorbents were used to capture oil from artificial

seawater. This artificial seawater was prepared according to ASTM D-1141 standard. Samples of

sorbent were experimented by adding into a water and oil body. The body was mobile by making

98 cycles in a minute. The weight of the sorbent-water-and-oil was read on the scale and then the

weight of water and the weight of the sorbent were reduced from the reading, and this gave a ratio

of sorbent per oil captured; and these procedures were completed according to ASTM D-95

standard. The findings of this study suggest that more viscous crude oil can be captured more

easily; however, as oil’s viscosity increases the rate of oil capturing is limited and the rate of oil

capturing within pores and capillaries of the sorbent material is lessened (Teas et al., 2001).

Page 19: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

9

Next, the effectiveness of sorbents also depend on various matters: economic viability

(being relatively cheaper to make it, low application costs), engineering features (availability of

being mass produced, operation ability), achievement issues (superior oil capturing rates, not

sinking on water, reclaiming of oil from the sorbent, elongated use), environmental friendliness,

other concerns (chemical and magnetic properties, response to natural decay, etc.) (Mahajan,

2011).

With the advancements in nanotechnology, there are more sorbent options to be used in

oil spills. In Nanotech Insights some of these carbon nanostructures (Exfoliated Graphite, carbon

nanotube sponge, vertically aligned carbon nanotubes, graphene worms and nano-accordions,

RECAM (reactive carbon material) technology, high reactivity carbon mixtures) are listed. Also

cotton absorbents are included in the list, yet, these are hydrophilic materials that capture water as

well as water. Magnetic materials (magnetic carbon composites, magnetic nanocomposites,

hydrophobic magnetic nanoparticles, magnetic polymer nanocomposites, organoclays with

magnetic nanoparticles, magnetic liquid foams) are in the list as well, magnetic properties are

added to these materials to make the collecting from the surface of oil spill easier, however, their

oil capturing efficiency is not enhanced (Mahajan, 2011).

It is also known that there are naturally occurring and organic materials that can be used

for oil spill cleanup purposes, such as straw, corncob, wood fibers, cotton fibers, kapok fibers,

kenaf fibers, milkweed floss, peat moss (Adebajo et al., 2003). Additionally, raw jute is also used

in the same sense. Raw jute was seen to have a oil capturing rate of about 2.6 g of machine oil per

gram of raw jute, however, when it was modified under the process of acetylation its sorbance

capacity increased by more than 8 times, also, the liquid captured was recovered by squeezing

manually and with machinery (Teli and Valia, 2013). Woodchips, eucalyptus, wheat straw

(hydrophilic substances), polypropylene (not hydrophilic) were suggested to be used in oil spill

cleanup processes as these materials were abundant in agricultural areas, these materials

Page 20: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

10

performed differently in different kinds of oils used, yet polypropylene gave best oil capturing

rate results (Teas et al., September 2001).

Another material used in this problem is biochars. Biochars that are made up of wood are

also used as sorbents in oil spill cleanup combating. A study used these products in salty water.

Although the salty water aided oil capturing rate of biochars weathering of oil decreased the

efficiency of oil capturing (Nguyen and Pignatello, 2013). Similar conditions are applied on the

materials used in this study in order to find how these problems would affect the performances.

In addition, mineral based products are also used for similar purposes. For example,

expanded perlite was used in oil spill cleanup with aid of emulsifiers (Roulia et al., 2003). Also,

experiments were conducted in solvents like xylene, pentane and toluene with zeolite socony

mobil-5, mordenite and faujasite zeolites by making use of their hydrophobic behavior

(Meininghaus and Prins, 2000).

An additional attempt for oil spill cleanup was producing magnetic polymers. A

biopolymer was treated where maghemite was available. The result was an oil capturing rate of 8

times the mass of the polymer (Gomes de Souza et al., 2010).

Furthermore, it is also suggested that using some of the sorbents together gives a more

viable operation option. Such as, use of activated carbon and organoclays together is

recommended by researchers (Adebajo et al., 2003). The same research also mentions that

polypropylene and polyurethane are commonly used in oil spill cleanup and these materials'

capturing capacity can be increased by further studies of adding additional natural materials to

them, yet, polypropylene and polyurethane are not biodegradable and this brings problems

(Adebajo et al., 2003).

The last but not the least, people with their well meaning, after seeing the oil spill

accidents or catching the news about them, tried to be a part of the solution. The Exxon Valdez

oil spill even brought ideas like using feathers, popcorn, towels and cheese to cleanup oil (Times

Page 21: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

11

Daily). A hairdresser gathered human hair (Hair-raising idea) after seeing a sea mammal's fur

soaked with oil, moreover, some groomers collected cat and dog hair to be used in this event

(McClatchy - Tribune Business News). The human hair usage idea was also implemented in the

Philippines where prisoners donated their hair in 2006 to help an oil spill response

(nbcnews.com). Yet, once again, after the Deepwater Horizon catastrophe human hair, pet hair

clippings and sheep wool were used aiming to stop oil from reaching the shores (bbc.co.uk).

Chemical Dispersant Usage in Oil Spill Clean Up

Chemical dispersants have polar features and these chemicals are manufactured to help

lubricating fluids in moving parts of the engines (Seddon et al., 2010). Another use of dispersants

is in the process of oil spill cleanup.

In the year 1989, it was suggested by the National Research Council in the US that

chemical dispersants could be used in oil spill combating (Kearney, 2005). As a quick response,

in some occasions, chemical dispersants are applied to water bodies after oil spills. Nearly 3

million liters of chemical dispersants were applied after the Deepwater Horizon oil spill. This

application took place in deep water, however, there were no uses of deep water applications of

chemical dispersants before this incident (Kujawinski et al., 2014). On the other hand, another

author claims nearly 7.5 million liters of these chemicals might have been used after the accident

happened (Biello, 2010). The study of Kujawinski et al. (2014) showed that the dispersant used in

the surface and in deep waters did not react, besides, the deep water application did not seem to

be going under biodegradation or only in minor speeds.

After the Deepwater Horizon oil spill, the dispersant industry conducted tests to show the

effects of dispersant use. Later, EPA contributed to the discussion and came up with similar

Page 22: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

12

results as the industry that the chemicals affected some fish and shrimp species but did not

distress the endocrine systems of the organisms around to a great extent (Biello, 2010). However,

the same author's report states that Sergio A. Villalobos, the manufacturer of one of the

dispersants used in the Mexican Gulf, said that the upshot of toxic results appear when the

dispersant and oil get blended (Biello, 2010).

A study covering the oil spill response in Europe between years 1995 and 2005 shows

that in majority of the oil spills chemical dispersants were not applied. This lack of usage is

claimed to be due to conditions that would lower the efficiency of dispersants. The study also

notes that more research on the effects of dispersants is sought by some countries and approach of

some countries change as Net Environmental Benefit Analysis results come to the surface

(Chapman et al., 2007).

In a study conducted in Alaska, it was observed that oil and dispersant mixture had the

same lethality rate as oil alone. However, under sunlight the mixture of dispersant and oil became

a lot more toxic. Polycyclic aromatic hydrocarbons became more soluble by the dispersant. Also,

the rate of this transition actually became speedier (Barron et al., 2003). Moreover, in a warmer

climate, a study on coral reefs showed that dispersants had lethal effects on these organisms when

they were applied according to the manufacturer's manual (i.e. the suggested concentration level)

after a 1-day contact; the same group also reported that dispersants and dispersant-treated crude

oil were more toxic than the water soluble parts of crude oil (Shafir et al., 2007). Their latter

finding is also supported by the publishing of Toxic Effects of Some Oil Dispersants (Riepsaite

and Stankevicius, 2005) as the authors suggested toxicity of dispersants is less than the toxic

effects of crude oil, yet, when they are together their overall damage is even greater.

On the contrary, some scientists claim the use of dispersants actually made the impact of

oil spills to the nature smaller. Recent uses of dispersants which have smaller toxic effects are

Page 23: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

13

more beneficial than not using them in oil spill response. They also help handling oils which were

not able to be dispersed by chemicals previously used (Lessard and DeMarco, 2000).

As the debate on chemical dispersants continue, this study will not be including them and

focus on physical and mechanical techniques in order to clean up oil spills from water bodies.

Using Exfoliated Graphite in Crude Oil Spills

Exfoliated Graphite is a material made from carbon as nanoparticles of graphite. This

material is a promising substance to be used in oil spill cleaning up. The maximum crude oil

capturing capacity reaches up to 82 kg crude oil per kg sorbent (Moustafa, 2009). In laboratory

Exfoliated Graphite works with a high efficiency, on the other hand, Exfoliated Graphite cannot

be applied onto the oil spill on its own since that would cause another uncontrolled pollution case.

When Exfoliated Graphite is packed into a fiberglass cover, crude oil capturing capacity of the

new package reached up to 68 kg crude oil per kg sorbent (Moustafa, 2009).

Since crude oil is currently one of the most consumed fossil fuels, it is extracted in oil

fields throughout the planet and crude oil is then transported to where it is refined and finally

consumed. During these extraction and transportation procedures, leakages, seepages, and

accidents occur which cause from minor to catastrophic amounts of crude oil to be spilled onto

the ground or water. With most of the crude oil being transported on sea routes, every single day

crude oil spills happen on the routes which affect the spill location and the surrounding area.

Type of oil product, volume of spill, distance from shores, hydro-geographical properties of the

sea, weather conditions, oceanographic properties, season of the year, emergency response

opportunities and the experience of the staff are all points affecting the severity of the oil spill

which may range from a minor incident to a worldwide catastrophe.

Page 24: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

14

Exfoliated Graphite was applied on heavy oils in various studies, different results came

from them. However, all of these results are promising. It was found that Exfoliated Graphite was

sorbing heavy oil (specific gravity of 864 g/cm3 and viscosity of 0.4 kg.m-1.s-1 at room

temperature) at a rate of 83 times of its weight (Toyoda and Inagaki, 2003) also the same study

showed that oils with a lower viscosity were captured at a higher rate and in a shorter period of

time. The same paper also mentions that 70% of captured oil was regained by lowered pressure

filtration. This research team's earlier paper suggested a capturing rate of 86 times for heavy oil

and 76 times for crude oil of Exfoliated Graphite (Toyoda and Inagaki, 2000). Furthermore, even

an earlier study by Toyoda and his team suggested that the Exfoliated Graphite used in the study

reached a maximum sorbing capacity of more than 80 times of its weight. Not only that

Exfoliated Graphite can sorb the heavy oil, the oil was easily recovered by up to 80% only by

compressing the Exfoliated Graphite. The experiment was carried out in a laboratory but the

authors claim that this method can be used in open seas as well. Different oil types were poured

over distilled water and the combination was then shaken, as soon as the shaking finished, the oil

floated on water, and it was noticed that the distinctive brown color had also disappeared (Toyoda

et al., 1998).

Extremely serious oil tanker accidents occur on the seas, the point worsening the calamity

is that they carry and accidentally discharge heavy crude oil. The other thing is that the locations

where the accidents occur have windy and wavy conditions. In order to have an easier way of

collecting the Exfoliated Graphite applied on oil spills, some researchers developed magnetic

forms of Exfoliated Graphite. With this product prepared by adding cobalt ferrite, Exfoliated

Graphite's capturing capacity changed - better results for motor and crude oils, and worse results

for diesel fuel and gasoline (Wang et al., 2010).

In the study of Toyoda et al. (1998), it is suggested to focus on the following points for

further research: further studies on different grades of heavy crude oil; an easier way of handling

Page 25: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

15

and using Exfoliated Graphite as it takes a very large volume although being very light; further

analysis of specialties of Exfoliated Graphite to have a better understanding for better oil product

capturing practices; introducing more efficient and easy to practice methods to recover oil

products from Exfoliated Graphite and recycling the sorbent.

Figure 2-1. (a) Lattice Layers of Graphite Flakes (b) Exfoliated Graphite (Moustafa, 2009)

In the above figure, the author shows how graphite structure is like before and after

expansion. This exfoliation was achieved by using sulfuric acid in an exothermic reaction in

which the heat made the flakes pop and form huge and many spaces between the formations

(Moustafa, 2009). In the figure below, it can be seen that the temperature of formation is very

effective in the volume gain for Exfoliated Graphite.

Page 26: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

16

Figure 2-2. Normalized Expansion Volume versus Temperature of Formation (Moustafa, 2009)

Moustafa (2009) conducted experiments by putting Exfoliated Graphite into fiberglass

and polypropylene pouches. Later, this crude oil and water were poured onto the pouches, and

then these pouches were weighed, their initial masses were subtracted and the amount of crude oil

captured was found for each trial.

Page 27: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

17

Figure 2-3. Mass Gain of Exfoliated Graphite by Temperature It Was Formed (Moustafa, 2009)

In the above figure Moustafa (2009) shows that the formation temperature significantly

affects the oil capturing capacity. As the temperature of formation increases the volume of the

Exfoliated Graphite increases thus resulting in more pore volume and a higher capturing capacity.

Moustafa (2009) achieved 71 g/g in the 60-second experiment and 73 g/g in the 120-second

experiment as the maximum average capturing ratios. He used a spoon to collect the sorbents

from the surface of the experiment.

Figure 2-4. Average Mass Gain versus Normalized Expansion Volume

The figure above was constructed by using the data available in Figure 2 and Figure 3 to

show the relationship between average mass gain and normalized expansion volume. It can be

seen that 120-second formation rises up constantly while the 60-second formation tends to be less

uniform.

0

10

20

30

40

50

60

70

80

0 40 80 120 160

Ave

rage

Ma

ss G

ain

Normalized Expansion Volume

Average Mass Gain vs Normalized Expansion Volume

60 sec 120 sec

Page 28: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

18

Using Polyolefins in Crude Oil Spills

Polyolefins have a relatively high molecular weight among hydrocarbons. These

materials are known for their durability and resistance to breaking. Polyolefins are also non-toxic

and non-contaminating; they also have a less density value than water. All polyolefins are prone

to being damaged when they are exposed to light for a long time (polyprocessing.com). In the

search for finding a suitable packaging material for Exfoliated Graphite, a form of polymer,

polyolefin is experimented. This paper will aim to evaluate properties of Exfoliated Graphite and

polyolefin and compare how well these materials act in the oil spill cleaning up activities.

Polyethylene is a material which shows a higher stability performance than α-polyolefins,

polyethylene forms new bonds and its molecular weight escalates when a melting procedure is

carried, when the temperature is around 290°C the substance disintegrates (White, 2005). When

the thermal properties of crude oil is considered, after the spill is collected and transported to a

refinery this material will degrade at a relatively low temperature and mix into the rest of the

crude oil.

Since polyolefins are hydrocarbons like heavy oil, they can be treated at the same facility

as the captured heavy oil. After being used in oil pollution cleaning up, the swelled structure is

transferred to a refinery where it is refined. When polyolefin is added to the polluted area, the

polyolefin heads towards the oil slick and forms a gel that floats on water, moreover, this gel

contains little to no water (Methods and Compositions for Sorbent for Hydrocarbon Recovery).

As the crude oil prices go up and the natural deposits deplete the issue of reclaiming spilt

crude oil becomes crucially important. Polyolefins are easy to handle when it comes to reclaim

crude oil. When polyolefins are used for crude oil spill clean-up, these materials reduce the waste

Page 29: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

19

product amount as they are already treatable in a refinery (Methods and Compositions for Sorbent

for Hydrocarbon Recovery).

Next point is the feasibility of using polyolefins in crude oil spill cleaning up, it is

suggested that with a high production capacity in the industry it would be possible to manufacture

this material at a cost of $4.50 per kg (Methods and Compositions for Sorbent for Hydrocarbon

Recovery). This material is claimed to be able to sorb up to 40 times of its weight, so 1 kg of

polyolefin can capture as much as 0.42 barrels of crude oil.

Figure 2-5. Left – Polyolefin, Right – Polyolefin Gel (Methods and Compositions for Absorbent

for Hydrocarbon Recovery)

Polyolefins have fibrous structure acting like a skeleton. There are many spacing between

these structures. When crude oil is attracted to the polyolefin, these spaces fill up with crude oil

and the structure turns into a gel. Chung and Yuan (Methods and Compositions for Absorbent for

Hydrocarbon Recovery) explain this process in the drawing above.

As Jinyaou et al. (2012) state that for a sorbent material to work at optimum rate it should

carry some specialties: oleophilicity, hydrophobicity, high sorbance ability and speed, and being

buoyant. Natural products such as wool, cotton, kapok and others have low sorbance capacities or

low hydrophobic features (Jinyaou et al.), hence, when these materials are applied in situ they

Page 30: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

20

will collect water as well as crude oil, this will be a big disadvantage, when the sorbent material is

tried to be retrieved from the polluted area, the weight of it will be immense with the additional

weight of water that needs to be transported. Besides, this contained water will leak along the way

to the recovery facility and this leakage will carry crude oil with it and generate another kind of

pollution and the handler would need to take further precautions while trying to fix the initial

problem. The handling of the used sorbents is highly problematic.

With pores being clear still, Exfoliated Graphite is covered with polyolefins to achieve a

method of using both materials’ properties. When the carbon is exfoliated many pores form

within its body, as the chemical process generates a sudden increase in temperature the body of

carbon pops. The coating of polyolefins gives the structure a smooth surface and an ease to

collect it from water after being used for crude oil clean up (Mohan et al., 2005).

In the study of Xiao et al. (2001) a composite material made up of Exfoliated Graphite

and polystyrene was produced. As more Exfoliated Graphite was introduced into the

manufacturing the molecular weight of the polystyrene increased and an expansion in the

molecular weight distribution occurred. Also the temperature of decomposition was raised by

more than 28ºC; on the other hand, there was not a significant change in the thermal stability

(Xiao et al., 2001).

De C. Fim et al. (2009) made a research on in situ polymerization of graphite and

polyethylene. Their polymerization technique yielded a maximum graphite ratio of 5.6% by

weight; their results showed that graphite went under extra exfoliation generating additional

layers of graphene. In their conclusion section, the authors added that they are still working on the

properties of this new material and they will write a new paper about it in the future (De C. Fin, et

al., 2009).

The two papers mentioned above show that the area of using Exfoliated Graphite and

polyolefins together is new and still developing. With the thermal behavior changes in the new

Page 31: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

21

products, the author of this paper hopes to work in crude oil pollution areas more efficiently.

Graphite made the polyolefins stronger in structure so this may be beneficial in harsh conditions

in the nature and may improve working circumstances by presenting longer lasting materials.

1-octene/styrene/divinylbenzene terpolymer is the polyolefin used in the following

experiments. It is a patented product manufactured by Chung and Yuan (US 20120046419 A1).

In the same patent under What Is Claimed Is chapter, the authors suggest their product would

capture hydrocarbons of 10 times or more of the weight of polyolefin used.

Page 32: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

22

Chapter 3

Materials and Methods

Product Design and Water Tank Tests

Experimentation results showed that Exfoliated Graphite and Spun Polyolefin can be

used together and a product working successfully to collect the oil spilled from the surface of

water. This product is aiming to help minor oil spills (less than 50 US barrels); therefore,

addressing similar volumes of spills. For our tests, Exfoliated-Graphite-600 which was the

Exfoliated Graphite sample produced at 600ºC by applying sulfuric acid (Asbury Graphite Mills,

Inc., Grade: 3772, Lot: 3626-2) and Exfoliated-Graphite-800 which was the Exfoliated Graphite

sample produced at 800ºC by applying sulfuric acid (Asbury Graphite Mills, Inc., Grade: 3772,

Lot: 3626-2) were considered. For the product, Exfoliated-Graphite-800 was preferred as a result

of its higher oil capturing capacity. As the enveloping material the commercially available

bouffant cap which is made up of Spun Polyolefin (sold by CareMates) was chosen. This material

will be referred to as "Spun Polyolefin" in the text and as "cap" or as "PO" in the tables and

graphs.

The figure below shows how the Exfoliated Graphite is placed inside the Spun Polyolefin

material. A layer of Spun Polyolefin underneath and another layer on top of the Exfoliated

Graphite is placed. Then, in order to avoid squeezing under its own weight, the pockets are

separated by stitches.

Page 33: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

23

Figure 3-1. Preparation of the Product, Spun Polyolefin and Exfoliated-Graphite-800

As it is shown in the figure above, a series of pouches is being produced. This product is

built by getting a long layer of Spun Polyolefin and folding it in two and then pouring Exfoliated-

Graphite-800 into each compartment. Then the layer above is folded and stapled. The idea behind

dividing Exfoliated-Graphite-800 into different compartments is so that the material would not

crush itself by its own mass. Also, by dividing Exfoliated-Graphite-800 it is assured that when the

product is held in operation Exfoliated-Graphite-800 will not just collect in one area in the

product; and distributing the efficiency around the product.

In order to test the packets of Exfoliated-Graphite-800 enveloped by Spun Polyolefin and

Spun Polyolefin alone, a glass water tank with 20 cm x 40 cm x 25 cm (width x length x depth)

dimensions which is filled up to 20 cm depth to contain 16 L of water was used. The surface of

the water in the water tank was disturbed by water pumps. These pumps were propellers

submerged in water which were used to push water and agitate the water surface and produce

waves and currents in the water tank experiments. Calm water with a light surface agitation tests

were 1-pump experiments that used Seio Prop Super Flow Pump 320 gallons/hour (maximum

wave amplitude of 5 mm). Turbulent water tests were 2-pump experiments that used Seio Prop

Page 34: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

24

Super Flow Pump 320 gallons/hour and Aqueon Circulation Pump 1250 gallons/hour (maximum

wave amplitude of 14 mm). Fully turbulent water tests were 3-pump experiments that used

Aqueon Circulation Pump 1250 gallons/hour, Aqueon Circulation Pump 950 gallons/hour, and

Aqueon Circulation Pump 700 gallons/hour (maximum wave amplitude of 21 mm).

5 mm

14 mm

21 mm

P

P

P P

P 14 mm

P

Figure 3-2. Water Tank Surface Diagrams with Maximum Wave Amplitudes, from Left to Right: 1-Pump, 2-Pump, and 3-Pump Test Plans

* Grey Represents Vortex Areas, Dark Grey Represents Quiescent Areas ** "P" Represents Pump Locations

For water tank experiments, into the water tank, 16 L of fresh water was added. For the

capturing experiment, 200 mL of oil was poured on top of the water and pouches of Spun

Polyolefin and Exfoliated-Graphite-800 were dropped onto the surface. After 10 minutes, with

the help of a spoon, the pouch was removed from the water tank and let it for dripping for 5

seconds. After the pouch was weighed, it was left to drip till 40 seconds. After this mass was

recorded, the pouch was squeezed (Figure 3-3) and weighed once again. How much oil was

removed from the surface of water was recorded and then the same amount of oil was added back

into the system and the next pouch was applied. After the oil was collected in a dish, water

droplets were removed with the help of a pipette and mass difference was recorded in order to see

how much water was captured during the oil capturing test.

Page 35: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

25

Figure 3-3. Oil Recovery by Mechanical Means (Pouch Squeezing)

For these water tank tests, motor oil of 10W-40 grade, gasoline and diesel fuel mixture

(equal amounts of gasoline (unleaded 87-octane grade) and diesel fuel (on-road diesel) were

added in a container making it a 50-50 by volume mixture, both oils bought from C. S. Myers and

Son), Texas crude oil (unrefined Texas crude oil, bought from Texas Raw Crude with properties

of flash point: 82ºC, fire point: 117ºC, gravity: API 29.9 at 60ºF [15.6ºC], hydrogen sulfide < 1.0

ppm, asphaltenes 0.62% by weight) were used.

Pouch Dip Tests

The envelope material is cut, prepared and weighed, then Exfoliated Graphite is weighed

and put in the envelope material. Next, the envelope material is folded on itself to cover the

Exfoliated Graphite, the resulting product is called a pouch. Finally, staples are used to enclose

and turn the envelope into a pouch.

Page 36: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

26

100 mL of water is poured in a 150-mL beaker (unless stated otherwise), then the amount

of motor oil of 10W-40 grade, 50-50 gasoline and diesel fuel mixture, Texas crude oil or

Pennsylvania Crude Oil (unrefined Pennsylvania crude oil, bought from Baar Products, product

details are stated as proprietary) to be used in that specific test is added on top of water. Later, the

pouch is dipped into the mixture and is let stay in the beaker as long as the test is intended to last.

The dipped pouch is removed from the beaker by a spoon and is weighed after the drippings

finish.

Envelope Material Tests

In order to determine which material would be used as an enveloping material for

Exfoliated Graphite Spun Polyolefin, tulle (nylon product, 100%, bought from Michaels Stores,

Inc.), ribbon (nylon product, 100%, bought from Michaels Stores, Inc.), silk screen (artificial silk

cloth), and fiberglass (fiberglass mat, bought from Bondo Corporation) were tested. Envelope

materials were tested for their hydrophilic property by pouring 100 mL of water in a 150-mL

beaker and then by putting the envelope materials on water. The dry and wet weight values for

the materials were recorded. Oil and fuel capturing capacity of envelope materials was tested. 100

mL of water was poured into a 150-mL beaker and then for every test one of motor oil, 50-50 by

volume gasoline and diesel fuel mixture, Pennsylvania crude oil, and Texas crude oil were poured

on top of water. The tests were run for 10 minutes.

Spun Polyolefin was put under alternative tests. Spun Polyolefin was dipped in water for

5 seconds and then applied to gasoline and diesel fuel mixture. Spun Polyolefin was dipped in

soapy water (soapy water prepared by adding Equate brand liquid hand soap) for 5 seconds and

Page 37: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

27

then was dried before being applied to petroleum products. Spun Polyolefin was first soaked with

oil (half-and-half gasoline and diesel fuel mixture) and then used as the envelope.

Grid Filter Protocol

Exfoliated Graphite was poured on to the water and petroleum product mixture and then

the mixture was poured on a vacuum grid filter. After the dripping stopped, the Exfoliated

Graphite was scraped off the grid filter and then put on the scale to read its mass.

Exfoliated Graphite was tested for its oil capturing ability in a three fuel mixture. This

three fuel mixture was prepared by adding equal amounts of 50-50 gasoline and diesel fuel

mixture and motor oil on its own were in a container making it a 50-50 by volume mixture.

Mousse (Emulsion of Water and Oil) Tests

Fresh water, motor oil, and gasoline and diesel fuel mixture were added in a 1-pint jar.

This jar and its ingredients were shaken for 1 minute in order to form a mousse. The first test was

prepared as follows: 300 mL of water, 30 mL of motor oil and 30 mL of 50-50 gasoline and

diesel fuel mixture were used; a series of readings were done by putting a pouch and letting it stay

there for 10 minutes and then removed and weighed after the dripping ended; next, the following

pouch was put into the jar without adding more oil and the experiments were repeated. The

second test was prepared as follows: 200 mL of water, 40 mL of motor oil and 40 mL of 50-50

gasoline and diesel fuel mixture were used; a series of readings were done by putting a pouch and

letting it stay there for 10 minutes and then removed and weighed after the dripping ended; next,

Page 38: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

28

the following pouch was put into the jar without adding more oil and the experiments were

repeated.

An alternative version of the test was done by using sea water instead of fresh water. Sea

water (prepared in the lab), motor oil, and gasoline and diesel fuel mixture were added in a 1-pint

jar. This jar and its ingredients were shaken for 1 minute in order to form a mousse. The first test

was prepared as follows: 300 mL of sea water, 30 mL of motor oil and 30 mL of 50-50 gasoline

and diesel fuel mixture were used; a series of readings were done by putting a pouch and letting it

stay there for 10 minutes and then removed and weighed after the dripping ended; next, the

following pouch was put into the jar without adding more oil and the experiments were repeated.

The second test was prepared as follows: 200 mL of sea water, 40 mL of motor oil and 40 mL of

50-50 gasoline and diesel fuel mixture were used; a series of readings were done by putting a

pouch and letting it stay there for 10 minutes and then removed and weighed after the dripping

ended; next, the following pouch was put into the jar without adding more oil and the

experiments were repeated.

Polyolefin Chunk Tests

Polyolefin Chunk is 1-octene/styrene/divinylbenzene terpolymer produced by Dr. T. C.

Chung and Dr. Xuepei Yuan in the Pennsylvania State University. This material will be referred

to as "polyolefin" in the text.

Polyolefin sorbance tests were executed by adding oil and fuel on 100 mL of water in a

150-mL beaker, unless specified otherwise. Then, polyolefin was added into the beaker after been

weighed. At the end of the waiting time, polyolefin was removed with the help of a spoon and

then put on the scale.

Page 39: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

29

Polyolefin sorbance tests were executed by adding oil and fuel in a 150-mL beaker. Then,

polyolefin was added into the beaker after been weighed. At the end of the waiting time,

polyolefin was removed with the help of a spoon and then put on the scale.

Polyolefin and Exfoliated-Graphite-600 physical mixture preparation was the attempt

which consisted of the step of preparing small pieces of polyolefin with approximately 2 mm in

radius being cut and a layer of these being formed. Then, a layer of Exfoliated-Graphite-600 was

added. Afterwards, another layer of polyolefin was put on top. In the end, a final layer of

Exfoliated Graphite was added. Exfoliated-Graphite-600 consisted 22% and polyolefin made

78% of the mixture's mass.

Figure 3-4. Polyolefin and Exfoliated Graphite Mixture Preparation

Polyolefin softening attempt to mix it with Exfoliated-Graphite-600 was the attempt to

mix these two materials. As polyolefin (3.3399 g) was put in an oven with Exfoliated-Graphite-

Page 40: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

30

600 (0.1111 g) and temperature was raised slowly and continuously up to 340ºC until aborted. It

was seen that this mixture would turn brown at 300ºC and begin smoking at 320ºC. This trial was

unsuccessful.

Polyolefin with Exfoliated-Graphite-600 was placed in fiberglass in order to form a

pouch. All three materials were weighed. Exfoliated-Graphite-600 and polyolefin were put in a

piece of fiberglass envelope. A pouch was formed by stapling the circumference of the folded

fiberglass piece. 100 mL of water and 10 mL motor oil were used in both experiments.

Preparing of Sea Water

The sea water used was prepared by adding 35.5 g of sea salt mix (readily available for

sea water aquariums) to distilled water and completing it to 1 L. ASTM D 1141-98 standard

defines the artificial sea water preparation recipe as follows.

Table 3-1. Artificial Sea Water Composition (ASTM D 1141-98)

Compound Concentration (g/L) Compound Concentration (g/L)

NaCl 24.53 SrCl2 0.025

MgCl2 5.20 NaF 0.003

Na2SO4 4.09 Ba(NO3)2 0.0000994

CaCl2 1.16 Mn(NO2)2 0.0000340

KCl 0.695 Cu(NO3)2 0.0000308

NaHCO3 0.201 Zn(NO3)2 0.0000096

KBr 0.101 Pb(NO3)2 0.0000066

H3BO3 0.027 AgNO3 0.00000049

Page 41: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

31

Chapter 4

Results and Discussion

Motor Oil Tests

The author tested the extent to which oil or fuel could be captured by packets of (a) Spun

Polyolefin alone (cap) or (b) Exfoliated Graphite enveloped by Spun Polyolefin (pouch). These

experiments included 0.6 g to 1.5 g of Spun Polyolefin (from bouffant caps), or 0.6 g to 1.0 g of

Spun Polyolefin enveloping 0.3 g to 0.5 g of Exfoliated Graphite (EG). These experiments

employed 200 mL of 10W-40 grade motor oil, a mixture of 100 mL of diesel fuel and 100 mL of

gasoline, or 200 mL of crude oil. The petroleum product was spilled on the water surface of the

water tank, the packets (pouch or cap) were dropped onto this surface, and then the packet was

extracted every 10 minutes to discern how much mass remained with the packet after 5 seconds,

then 40 seconds of dripping. Later, these packets were hand-squeezed, weighed, and then dropped

back on the water surface for a subsequent cycle of oil (or fuel) capture. These experiments

employed either fully turbulent water surface induced with 3 pumps that incurred 2.4 cm wave

heights across all the water surface or moderate turbulence induced with 2 pumps that induced 1.4

cm wave heights across two thirds of the tank surface. These dip-drip-weight and re-dip

experiments were conducted through 20 cycles; and were conducted in duplicates or triplicates.

When employing fully turbulent mixing and motor oil, the cap retained 36 g oil / g cap in

the first cycle, following 5-second drippings (Figure 4-1). Then during next cycles 2-8, the pooled

average for new oil captured was 28 g oil / g cap. Next, during cycles 9-20, the pooled average

for new oil capture was 17 g oil / g cap. These pooled values are presented as the heavy lines in

Figure 4-1. In comparison, the EG-PO pouch captured 59 g oil / g pouch in the first cycle, 37 g

Page 42: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

32

new oil / g pouch as pooled average during cycles 2-8; and 27 g new oil / g pouch as pooled

average during the cycles 9-20. Both the cap and pouch experiments were conducted in duplicates

with the individual results (for a given cycle) shown as light solid lines; and the averages (for a

given cycle) shown as light dashed lines. The pouch data is presented in blue, and the cap data is

presented in red. Figure 4-1 also presents the least significant difference (LSD) to a 95%

confidence interval as a green bar; for the pooled 2-8 cycle data, and for the pooled 9-20 cycle

data. These least significant differences were 4 and 3 g/g respectively; which was considerably

less than the difference between the pooled averages for the pouches versus caps (9 and 10 g/g

respectively). Thus, these distinctions between the pouches and caps can be construed as

statistically true differences to the 95% confidence interval. Indeed, even at the 99.5% confidence

interval, these two pooled least significant differences are 7 and 4 g/g respectively; and thus, the

distinctions between the pouches and caps are truly different to the 95% confidence interval.

We further analyzed this data set to discern the individual contributions that the Spun

Polyolefin and Exfoliated Graphite offered for capturing the oil. Specifically, if we attribute the

same unit oil capture by the Spun Polyolefin that the cap alone had provided, then by mass

balance, we can attribute the rest of the oil capture to the Exfoliated Graphite. Hence, for Figure

4-1, during pooled cycles 2-8 the cap captured 27 g new oil / g Spun Polyolefin when normalized

to exclude the minimal mass of water sorption that included in Figure 4-1 (see below). So this

means that in the pouch experiments, this Spun Polyolefin could remove [27 g oil / g PO x 0.97 g

PO] 26 g oil. The total oil captured was [35 g oil / g (PO+EG) x 1.4 g (PO+EG)] 49 g oil. So, by

difference we can attribute to Exfoliated Graphite a capture of [(49 - 26) g oil / 0.4 g EG] 58 g

new oil / g EG. Additionally, when we evaluate the cycle 1, Spun Polyolefin could remove [35 g

oil / g PO x 0.97 g PO] 34 g oil, and the total oil captured was [59 g oil / g (PO+EG) x 1.4 g

(PO+EG)] 81 g oil, this difference can be attributed to Exfoliated Graphite a capture of [(81 - 34)

g oil / 0.4 g EG] 115 g oil / g EG. These unit mass capture values are presented in Figure 4-2.

Page 43: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

33

We also appraise the extent to which these packets could rebound in their capacity to

capture oil. To characterize this, we have also identified the unit mass of oil that was retained

within the packets after a preceding cycle, even after the hand-squeezing step. For the cycles 2-8,

for the PO cap alone, this amounted to a rather consistent 35 g oil / g PO; and for the EG-PO

pouch, this amounted to 75 g oil / g (EG+PO). As the difference tells, this meant that EG retained

16 g oil / g EG during these cycles. So then, when comparing the cycle 1 data to the pooled cycle

2-8 data, the cap PO offered 35.4 g oil / g PO in the first cycle, compared to [(27.3 g new oil +

7.2 g non-squeezable oil) / g PO] 34.5 g total oil / g PO. Similarly, for the pouch, the new oil plus

retained oil amounted to 37 g total oil / g (PO+EG). Then, by difference the EG offered 75 g total

oil / g EG. When comparing these cycle 2-8 total oil capturing values to the cycle 1 values, we

note that the PO rebounded with 97% of its first-cycle oil retention capacity, while the EG

rebounded with 65% of its first-cycle oil retention capacity.

This is quite noteworthy and perhaps somewhat unexpected. We note that when the

pristine Exfoliated Graphite (that had not been exposed to petroleum products) was hand-

squeezed to the same pressure, and then immersed in oil, its oil capture capacity dropped to 75 g

total oil / g EG (see below). Thus, the motor oil offered important features in facilitating this

rebounding phenomenon and this is the important feature that renders these PO-EG packets to be

quite commercially useful.

By the end of 20 cycles of oil loading and squeezing, the caps had captured (1,105 g oil

in total) 395 g oil / g PO, while the pouches had captured (1,698 g oil in total) 606 g oil / g

EG+PO. With properly applied sewing of these pouches, we anticipate that the pouches could

have been used through far more cycles while retaining this rebounding propensity.

Page 44: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

34

Figure 4-1. Water Tank 5-Second Drip Oil Capture Tests with Cap (1.3-1.5 g PO) versus Pouch (0.9-1.0 g PO + 0.3-0.4 g EG) in 200 mL Motor Oil, Fully Turbulent Water

Figure 4-2. Total Oil Capture Graph for Water Tank 5-Second Drip Tests with Cap (1.3-1.5 g PO) versus Pouch (0.9-1.0 g PO + 0.3-0.4 g EG) in 200 mL Motor Oil, Fully Turbulent Water

When we compare Figure 4-1 and 4-3, we see that about 1/3 of the captured oil drips by

the end of 40 seconds. There is also a similar trend in pooled averages, where they start going

down after cycle 9. Figure 4-4 illustrates that when comparing cycle 1 to cycles 2-8 total oil

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Ra

tio

of N

ew

Oil

Ca

ptu

red

pe

r P

ocke

t M

ass (

g/g

)

CycleLSD 95% Pouch 1 Pouch 2

Cap 1 Cap 2 Average Pouch

Average Cap Pooled Average Pouch Pooled Average Cap

0

20

40

60

80

100

120

1 1 2-8 2-8 9-20 9-20

Ra

tio

of N

ew

Oil

Ca

ptu

red

pe

r P

ocke

t M

ass (

g/g

)

Cycle

EG Efficiency Cap Efficiency

Retained by EG in Pouch Retained by Cap in Pouch

Page 45: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

35

capturing values to cycle 1 values, we note that the PO rebounded fully of its first-cycle oil

retention capacity, while the EG rebounded with 71% of its first-cycle oil retention capacity.

Figure 4-3. Water Tank 40-Second Drip Oil Capture Tests with Cap (1.3-1.5 g PO) versus Pouch (0.9-1.0 g PO + 0.3-0.4 g EG) in 200 mL Motor Oil, Fully Turbulent Water

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ra

tio

of N

ew

Oil

Ca

ptu

red

pe

r P

ocke

t M

ass

(g/g

)

Cycle

LSD 95% Pouch 1 Pouch 2

Cap 1 Cap 2 Average Pouch

Average Cap Pooled Average Pouch Pooled Average Cap

Page 46: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

36

Figure 4-4. Total Oil Capture Graph for Water Tank 40-Second Drip Tests with Cap (1.3-1.5 g PO) versus Pouch (0.9-1.0 g PO + 0.3-0.4 g EG) in 200 mL Motor Oil, Fully Turbulent Water

Figure 4-5. Water Tank 5-Second Drip Oil Capture Tests with Cap (0.6-0.8 g PO) versus Pouch (0.6-0.9 g PO + 0.3-0.5 g EG) in 200 mL Motor Oil, Turbulent Water

* The first 3 sets for 5-second drip tests for pouches are calculated by considering the ratios of efficiencies in the 40-second drip tests.

0

10

20

30

40

50

60

70

80

1 1 2-9 2-9 10-20 10-20Ra

tio

of N

ew

Oil

Ca

ptu

red

pe

r P

ocke

t M

ass (

g/g

)

Cycle

EG Efficiency Cap Efficiency

Retained by EG in Pouch Retained by Cap in Pouch

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Ra

tio

of N

ew

Oil

Ca

ptu

red

pe

r P

ocke

t M

ass

(g/g

)

CycleLSD 95% Pouch 1 Pouch 2Pouch 3 Cap 1 Cap 2Pouch Average Cap Average Pooled Average PouchPooled Average Cap

Page 47: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

37

Figure 4-6. Total Oil Capture Graph for Water Tank 5-Second Drip Tests with Cap (0.6-0.8 g PO) versus Pouch (0.6-0.9 g PO + 0.3-0.5 g EG) in 200 mL Motor Oil, Turbulent Water

Comparing Figure 4-5 and 4-7 tells us that about 2/5 of the oily water continued dripping

by the end of 40 seconds. There is also a similar trend in pooled averages, PO's pooled average

seems to stagnate in Figure 4-7 and the same thing happens for EG in Figure 4-5. Figure 4-6

illustrates that when comparing cycle 1 to cycles 2-14 for total oil capturing values to cycle 1

values, we note that the PO rebounded with 85% of its first-cycle oil retention capacity, while the

EG rebounded with 56% of its first-cycle oil retention capacity but then recovered its capturing

ability for cycles 15-20.

0

20

40

60

80

100

120

140

160

1 1 2-14 2-14 15-20 15-20

Ra

tio

of N

ew

Oil

Ca

ptu

red

pe

r P

ocke

t M

ass (

g/g

)

Cycle

EG Efficiency Cap Efficiency

Retained by EG in Pouch Retained by Cap in Pouch

Page 48: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

38

Figure 4-7. Water Tank 40-Second Drip Oil Capture Tests with Cap (0.6-0.8 g PO) versus Pouch (0.6-0.9 g PO + 0.3-0.5 g EG) in 200 mL Motor Oil, Turbulent Water

Figure 4-8. Total Oil Capture Graph for Water Tank 40-Second Drip Tests with Cap (0.6-0.8 g PO) versus Pouch (0.6-0.9 g PO + 0.3-0.5 g EG) in 200 mL Motor Oil, Turbulent Water

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Ra

tio

of N

ew

Oil

Ca

ptu

red

pe

r P

ocke

t M

ass (

g/g

)

CycleLSD 95% Pouch 1 Pouch 2Pouch 3 Cap 1 Cap 2Average Pouch Average Cap Pooled Average PouchPooled Average Cap

0

20

40

60

80

100

120

140

1 1 2-7 2-7 8-20 8-20

Ratio o

f N

ew

Oil

Captu

red p

er

Pocket

Mass (

g/g

)

Cycles

EG Efficiency Cap Efficiency

Retained by EG in Pouch Retained by Cap in Pouch

Page 49: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

39

Gasoline and Diesel Fuel Mixture Tests

Figure 4-9. Water Tank 5-Second Drip Fuel Capture Tests with Cap (1.0-1.3 g PO) versus Pouch (0.8-1.0 g PO + 0.4 g EG) in 200 mL 50-50 Gasoline and Diesel Fuel Mix, Fully Turbulent Water

Figure 4-10. Total Fuel Capture Graph for Water Tank 5-Second Drip Tests with Cap (1.0-1.3 g PO) versus Pouch (0.8-1.0 g PO + 0.4 g EG) in 200 mL 50-50 Gasoline and Diesel Fuel Mix, Fully Turbulent Water

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ra

tio

of N

ew

Oil

Ca

ptu

red

pe

r P

ocke

t M

ass

(g/g

)

Cycle

LSD 95% Pouch 1 Pouch 2

Cap 1 Cap 2 Average Pouch

Average Cap Pooled Average Pouch Pooled Average Cap

0

10

20

30

40

50

60

70

1 1 2 2 3-7 3-7 8-20 8-20

Ra

tio

of N

ew

Oil

Ca

ptu

red

pe

r P

ocke

t M

ass (

g/g

)

Cycle

EG Efficiency Cap Efficiency

Retained by EG in Pouch Retained by Cap in Pouch

Page 50: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

40

Figure 4-11. Water Tank 40-Second Drip Fuel Capture Tests with Cap (1.0-1.3 g PO) versus Pouch (0.8-1.0 g PO + 0.4 g EG) in 200 mL 50-50 Gasoline and Diesel Fuel Mix, Fully Turbulent Water

Figure 4-12. Total Fuel Capture Graph for Water Tank 40-Second Drip Tests with Cap (1.0-1.3 g PO) versus Pouch (0.8-1.0 g PO + 0.4 g EG) in 200 mL 50-50 Gasoline and Diesel Fuel Mix, Fully Turbulent Water

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ra

tio

of N

ew

Oil

Ca

ptu

red

pe

r P

ocke

t M

ass (

g/g

)

CycleLSD 95% Pouch 1 Pouch 2

Cap 1 Cap 2 Average Pouch

Average Cap Pooled Average Pouch Pooled Average Cap

0

10

20

30

40

50

1 1 2-6 2-6 7-20 7-20Ra

tio

of N

ew

Oil

So

rbe

d p

er

Po

cke

t M

ass (

g/g

)

Cycle

EG Efficiency Cap Efficiency

Retained by EG in Pouch Retained by Cap in Pouch

Page 51: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

41

Comparing Figure 4-9 and 4-11 tells us that about 1/3 of the oily water continued

dripping by the end of 40 seconds, also in both graphs it is seen that in later cycles the difference

between pooled averages shrank. There is also a similar trend in pooled averages, PO's and EG's

pooled averages seem to stagnate in both figures. In Figure 4-10, PO's rebound rate is 70% for the

second cycle with respect to the first cycle, and then it keeps its fuel capturing efficiency. Figure

4-12 illustrates that when comparing cycle 1 to cycles 2-6 for total fuel capturing values to cycle

1 values, we noted that the PO rebounded with 86% of its first-cycle oil retention capacity, while

the EG rebounded with 75% of its first-cycle oil retention capacity.

Figure 4-13. Water Tank 5-Second Drip Fuel Capture Tests with Cap (1.1-1.3 g PO) versus Pouch (0.8-1.0 g PO + 0.3 g EG) in 200 mL 50-50 Gasoline and Diesel Fuel Mix, Turbulent Water

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ra

tio

of N

ew

Oil

Ca

ptu

red

pe

r P

ocke

t M

ass (

g/g

)

CycleLSD 95% Pouch 1 Pouch 2

Cap 1 Cap 2 Average Pouch

Average Cap Pooled Average Pouch Pooled Average Cap

Page 52: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

42

Figure 4-14. Total Fuel Capture Graph for Water Tank 5-Second Drip Tests with Cap (1.1-1.3 g PO) versus Pouch (0.8-1.0 g PO + 0.3 g EG) in 200 mL 50-50 Gasoline and Diesel Fuel Mix, Turbulent Water

Comparing Figure 4-13 and 4-15 tells us that about 1/3 of the oily water continued

dripping by the end of 40 seconds, also in both graphs it is seen that after the 3rd cycle difference

between pooled averages shrank. There is also a similar trend in pooled averages, PO's and EG's

pooled averages seem to stagnate in both figures. In Figure 4-14, PO's rebound rate is 75% for the

second cycle with respect to the first cycle, and then its fuel capturing efficiency stays constant.

Figure 4-14 and 4-16 show some increase in total fuel capture efficiency for cycle 2 with respect

to cycle 1.

0

10

20

30

40

50

60

70

80

1 1 2 2 3-20 3-20

Ra

tio

of N

ew

Oil

Ca

ptu

red

pe

r P

ocke

t M

ass (

g/g

)

Cycle

EG Efficiency Cap Efficiency

Retained by EG in Pouch Retained by Cap in Pouch

Page 53: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

43

Figure 4-15. Water Tank 40-Second Drip Fuel Capture Tests with Cap (1.1-1.3 g PO) versus Pouch (0.8-1.0 g PO + 0.3 g EG) in 200 mL 50-50 Gasoline and Diesel Fuel Mix, Turbulent Water

Figure 4-16. Total Fuel Capture Graph for Water Tank 40-Second Drip Tests with Cap (1.1-1.3 g PO) versus Pouch (0.8-1.0 g PO + 0.3 g EG) in 200 mL 50-50 Gasoline and Diesel Fuel Mix, Turbulent Water

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Ra

tio

of N

ew

Oil

Ca

ptu

red

pe

r P

ocke

t M

ass (

g/g

)

Cycle

LSD 95% Pouch 1 Pouch 2

Cap 1 Cap 2 Average Pouch

Average Cap Pooled Average Pouch Pooled Average Cap

0

10

20

30

40

50

60

70

1 1 2 2 3-20 3-20Ra

tio

of N

ew

Oil

So

rbe

d p

er

Po

cke

t M

ass (

g/g

)

Cycle

EG Efficiency Cap Efficiency

Retained by EG in Pouch Retained by Cap in Pouch

Page 54: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

44

Texas Crude Oil Tests

Figure 4-17. Water Tank 5-Second Drip Crude Oil Capture Tests with Cap (1.4 g PO) versus Pouch (1.0 g PO + 0.5 g EG) in 200 mL Texas Crude Oil, Fully Turbulent Water (Oil Only, Fixed According to Water Capturing Values from Cycles 21-25)

Figure 4-18. Total Crude Oil Capture Graph for Water Tank 5-Second Drip Tests with Cap (1.4 g PO) versus Pouch (1.0 g PO + 0.5 g EG) in 200 mL Texas Crude Oil, Fully Turbulent Water

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ra

tio

of N

ew

Oil

Ca

ptu

red

pe

r P

ocke

t M

ass (

g/g

)

CycleLSD 95% Pouch CapPouch w/o Water Cap w/o Water Pooled Average Pouch

Pooled Average Cap

0

10

20

30

40

50

60

70

80

1 1 2 2 3-13 3-13 14-20 14-20

Ra

tio

of N

ew

Oil

Ca

ptu

red

pe

r P

ocke

t M

ass (

g/g

)

Cycle

EG Efficiency Cap Efficiency

Retained by EG in Pouch Retained by Cap in Pouch

Page 55: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

45

Comparing Figure 4-17 and 4-19 tells us that about 1/3 of the oily water continued

dripping by the end of 40 seconds, also in both graphs it is seen that after the 3rd cycle there is no

true difference between pooled averages. There is also a similar trend in pooled averages, PO's

and EG's pooled averages seem to stagnate in both figures. In Figure 4-18, after cycle 2, for

pouch, it looks like total crude oil capture efficiency changes slowly after the first rebounding rate

of 51%.

Figure 4-19. Water Tank 40-Second Drip Crude Oil Capture Tests with Cap (1.4 g PO) versus Pouch (1.0 g PO + 0.5 g EG) in 200 mL Texas Crude Oil, Fully Turbulent Water (Oil Only, Fixed According to Water Capturing Values from Cycles 21-25)

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ra

tio

of N

ew

Oil

Ca

ptu

red

pe

r P

ocke

t M

ass (

g/g

)

CycleLSD 95% Pouch Cap

Pouch w/o Water Cap w/o Water Pooled Average PouchPooled Average Cap

Page 56: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

46

Figure 4-20. Total Crude Oil Capture Graph for Water Tank 5-Second Drip Tests with Cap (1.4 g PO) versus Pouch (1.0 g PO + 0.5 g EG) in 200 mL Texas Crude Oil, Fully Turbulent Water

Confined Packet Tests

Figure 4-21. Water Tank 5-Second Drip Fuel Capture Tests with Cap (1.0 g PO) versus Confined Pouch (0.5 g PO + 0.5 g EG) in 200 mL 50-50 Gasoline and Diesel Fuel Mix, Fully Turbulent Water

0

10

20

30

40

50

60

70

1 1 2-13 2-13 14-20 14-20

Ra

tio

of N

ew

Oil

Ca

ptu

red

pe

r P

ocke

t M

ass (

g/g

)

Cycle

EG Efficiency Cap Efficiency

Retained by EG in Pouch Retained by Cap in Pouch

0

5

10

15

20

25

30

35

1 2 3 4 5

Ra

tio

of N

ew

Oil

Ca

ptu

red

pe

r P

ocke

t M

ass (

g/g

)

CycleLSD 95% CapPouch Cap w/o WaterPouch w/o Water Pooled Average Pouch w/o WaterPooled Average Cap w/o Water

Page 57: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

47

Figure 4-22. Water Tank 40-Second Drip Fuel Capture Tests with Cap (1.0 g PO) versus Confined Pouch (0.5 g PO + 0.5 g EG) in 200 mL 50-50 Gasoline and Diesel Fuel Mix, Fully Turbulent Water

Figure 4-22 and 4-22 show that in cycles 1, 4, and 5 Spun Polyolefin captured more water

than in cycles 2 and 3, whereas, it can be seen that the product captured less water in these tests.

This was due to the turbulence in the water tank where the samples got submerged into the water.

Previous graphs show a greater sorbance rate for product; therefore, it can be concluded that

when 0.50 g Spun Polyolefin and 0.50 g Exfoliated-Graphite-800 were used to make a pouch,

there was not enough space for the Exfoliated Graphite to expand.

0

5

10

15

20

25

1 2 3 4 5Ra

tio

of N

ew

Oil

Ca

ptu

red

pe

r P

ocke

t M

ass (

g/g

)

Cycle

LSD 95% Cap

Pouch Cap w/o Water

Pouch w/o Water Pooled Average Pouch w/o Water

Pooled Average Cap w/o Water

Page 58: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

48

Figure 4-23. Water Tank 5-Second Drip Oil Capture Tests with Cap (1.0 g PO) versus Confined Pouch (0.5 g PO + 0.5 g EG) in 200 mL Motor Oil, Fully Turbulent Water

Figure 4-24. Water Tank 40-Second Drip Oil Capture Tests with Cap (1.0 g PO) versus Confined Pouch (0.5 g PO + 0.5 g EG) in 200 mL Motor Oil, Fully Turbulent Water

0

10

20

30

40

50

60

70

1 2 3 4 5

Ra

tio

of N

ew

Oil

Ca

ptu

red

pe

r P

ocke

t M

ass

(g/g

)

CycleLSD 95% CapPouch Cap w/o WaterPouch w/o Water Pooled Average Pouch w/o WaterPooled Average Cap w/o Water

0

10

20

30

40

50

1 2 3 4 5

Ra

tio

of N

ew

Oil

Ca

ptu

red

pe

r P

ocke

t M

ass (

g/g

)

Cycle

LSD 95% CapPouch Cap w/o WaterPouch w/o Water Pooled Average Pouch w/o WaterPooled Average Cap w/o Water

Page 59: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

49

Without any surprises, pouch and cap samples worked more efficiently in motor oil than

they do in gasoline and diesel fuel mixture. In Table 4-1, it is seen that the pouch here did not

work as good as Spun Polyolefin alone due to limited space for expanding.

It was quite challenging separating water droplets from the oily water captured as a

matter of gasoline and diesel fuel mixture have a similar color and motor oil and water tend to

form a mousse when there is turbulence in the system.

Table 4-1. Water Capturing Percentage Values for Confined Pouch Tests

Hydrocarbon Drip Test Efficiency

(g Hydrocarbon / g Packet)

5-sec

Cap

5-sec

Pouch

40-sec

Cap

40-sec

Pouch

Gasoline and Diesel Fuel

Water and Oil 16.9 18.8 11.3 14.2

Oil Only 14.9 17.9 9.1 13.3

Water Content 13% 5% 24% 7%

Motor Oil

Water and Oil 41.1 38.9 22.8 27.3

Oil Only 40.8 38.6 22.6 27.2

Water Content 1% 1% 1% 1%

The table above shows that water content was higher in gasoline and diesel fuel mixture

tests than it was in motor oil tests. Also it should be noted that the product captured less water on

average than by using Spun Polyolefin alone. Additionally, the table below at the end of the 40-

second dripping, the product sorbs less water.

Table 4-2. Water Capturing Percentage Values for Texas Crude Oil Tests - Cycles 21-25

Hydrocarbon Drip Test Efficiency

(g Crude Oil / g Packet)

5-sec

Cap

5-sec

Pouch

40-sec

Cap

40-sec

Pouch

Texas Crude Oil

Water and Oil 30.3 21.2 20.2 13.8

Oil Only 29.2 20.3 18.2 12.7

Water Content 4% 5% 11% 8%

Page 60: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

Table 4-3. The Least Significant Difference (LSD) Comparison Chart

Hydrocarbon

Average Efficiency After 5 Second Dripping Average Efficiency After 40 Second Dripping

Cycl

es

Exam

ined

Pou

ch

Cap

Dif

fere

nce

LSD Comparing

Difference to

LSD Cycl

es

Exam

ined

Pou

ch

Cap

Dif

fere

nce

LSD Comparing

Difference

to LSD 95

%

98

%

99.5

%

95

%

98

%

99.5

%

Motor Oil* Turbulent

2-14 48.3 38.4 10.0 2.5 3.1 3.8 > LSD all 2-7 28.7 21.4 7.2 2.2 2.7 3.5 > LSD all

15-20 50.0 33.8 16.2 2.8 3.4 4.5 > LSD all 8-20 24.3 19.6 4.8 1.4 1.7 2.1 > LSD all

Gasoline & Diesel

Turbulent 3-20 17.3 12.0 5.3 0.8 1.0 1.2 > LSD all 3-20 10.0 7.8 2.3 0.8 0.9 1.1 > LSD all

Motor Oil Fully Turbulent

2-8 37.0 27.6 9.3 4.4 5.5 7.0 > LSD all 2-9 27.4 21.2 6.1 3.2 3.9 4.9 > LSD all

9-20 27.0 17.2 9.8 2.8 3.4 4.3 > LSD all 10-20 20.0 14.2 5.8 2.0 2.5 3.1 > LSD all

Gasoline & Diesel Fully Turbulent

3-7 17.0 11.7 5.3 1.8 2.3 3.0 > LSD all 2-6 13.0 9.2 3.7 1.4 1.7 2.3 > LSD all

8-20 11.8 10.7 1.0 0.8 1.0 1.2 > LSD 95% & 98%; < 99.5%

7-20 9.2 7.7 1.4 0.7 0.8 1.0 > LSD all

Texas Crude

Oil**

Fully Turbulent

3-13 33.7 33.7 0.0 2.9 3.5 4.4 No True

Difference 2-13 23.2 23.5 -0.4 1.9 2.3 2.9

No True Difference

14-20 29.0 27.9 1.1 5.1 6.3 8.1 No True

Difference 14-20 19.0 20.0 -1.0 2.8 3.5 4.5

No True Difference

Motor Oil (Confined Pouches)

Fully Turbulent

2-3 40.0 39.5 0.6 6.2 10.0 20.2 No True

Difference 2-3 28.0 22.4 5.6 6.7 10.8 21.9

No True Difference

4-5 29.4 29.8 -0.4 2.1 3.3 6.7 No True

Difference 4-5 18.4 18.3 0.1 3.6 5.8 11.8

No True Difference

Gasoline & Diesel (Confined Pouches)

Fully Turbulent

2-4 16.2 14.3 1.9 2.7 3.7 5.5 No True

Difference 2-4 11.6 9.3 2.3 2.6 3.6 5.3

No True Difference

* The first 3 sets for motor oil in turbulent conditions for 5-second drip tests are calculated by considering the ratios of efficiencies in the 40-second drip tests. ** Fixed According to Water Capturing Values from Cycles 21-25

Page 61: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

Table 4-4. Average Oil Capturing and Average Efficiency for the Whole Test Set

Hydrocarbon

Drip

Time

(sec)

Pouch (EG+PO) Cap Only (PO) Number

of Cycles

(10 min

Each)

Condition Oil

Captured

(g)

Average

Efficiency

(g/g)

Oil

capturing

(g)

Average

Efficiency

(g/g)

Motor Oil* 5 1,006 51.1 532 37.7

20 Turbulent 40 571 28.5 305 15.3

Gasoline & Diesel

5 437 21.9 311 15.6 20 Turbulent

40 261 13.1 198 9.9

Motor Oil 5 849 42.5 553 27.6

20 Fully

Turbulent 40 639 31.9 446 22.3

Gasoline & Diesel

5 376 18.8 271 13.6 20

Fully Turbulent 40 278 13.9 198 9.9

Texas Crude Oil**

5 954 35.1 922 33.7 20

Fully Turbulent 40 665 24.3 686 24.9

* The first 3 sets for motor oil in turbulent conditions for 5-second drip tests are calculated by considering the ratios of efficiencies in the 40-second drip tests. ** First 20 cycles are taken into consideration for comparison reasons and due to staples in the pouches falling after this time.

In the table above, average oil capturing is represented, by total weight and efficiency as

oil captured per pouch mass. Mass of oil captured is given as the total amount of oil captured

divided by the number of pouches used for those sets of experiments.

Figure 4-25. Tests for Determining Water Capturing Percentages

* Left: Texas Crude Oil; Right: Motor Oil ** Lower Dish: 40-second drip tests; Upper Dish: Oil and Water Claimed After Squeezing

Page 62: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

52

Steps That Led to Product Design

Before deciding on the envelope material, how to use Exfoliated Graphite, and which

Exfoliated Graphite to use, the steps mentioned in the following were executed.

Experiments with polyolefin were done. Polyolefin was tried in oil products. Other

experiments were executed to see how polyolefin behaved with Exfoliated-Graphite-600. Another

test was conducted with polyolefin and Exfoliated-Graphite-600 in a fiberglass pouch.

Later, Exfoliated-Graphite-600 and Exfoliated-Graphite-800 were tested in various ways.

These include tests with motor oil, gasoline and diesel fuel mixture, three fuel mixture, Texas

crude oil, Pennsylvania crude oil, sea water, fresh water, calm water with a light surface agitation

(1-pump tests in water tank), sea water mousse, and fresh water mousse.

Also, the application of Exfoliated Graphite was considered and envelope materials were

put under tests to determine the formation of the pouch and then the product. Envelope materials

were tried under different conditions to determine the best companion for Exfoliated Graphite.

Experimental data showed that bouffant cap (made from Spun Polyolefin) was the best choice

among tried materials.

Page 63: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

Table 4-5. Exfoliated Graphite Hydrocarbon Capturing Tests E

G F

orm

ati

on

Tem

per

atu

re

(ºC

)

Coll

ecti

on

Pro

toco

l

Wate

r V

olu

me

(mL

)

Oil

Con

tact

Tim

e (m

in)

Hyd

roca

rbon

Typ

e

Hyd

roca

rbon

Volu

me

(mL

)

En

vel

op

e

Mate

rial

En

vel

op

e

Mass

Ran

ge

(g)

EG

Mass

Ran

ge

(g)

Aver

age

Oil

y

Wate

r

Cap

ture

d (

g)

Aver

age

Cap

turi

ng

Eff

icie

ncy

(g/g

)

Sta

nd

ard

Dev

iati

on

Nu

mb

er o

f

Cycl

es

Nu

mb

er o

f

Pu

mp

s

600 Grid Filter Tap 100 1 Gasoline & Diesel

10 None n/a 0.04-0.09

2.49 36.3 4.5 0 0

600 Grid Filter Tap 100 5 Gasoline & Diesel

20 None n/a 0.05 1.52 30.2 1.7 0 0

600 Grid Filter Tap 100 2 Motor Oil 10 None n/a 0.10-0.13

4.95 45.1 8.5 0 0

600 Grid Filter Tap 100 10 Motor Oil 20 None n/a 0.05 2.30 46.0 3.5 0 0

600 Spoon Pick

Tap 200 3 Motor Oil 20 Fiberglass 2.34 0.17 17.59 7.01 n/a 0 0

600 Spoon Pick

Tap 200 3 Motor Oil 20 Fiberglass 1.58 0.09 8.70 5.21 n/a 0 0

600 Spoon Pick

Tap 100 1 Gasoline & Diesel

20 Oil Soaked Spun Polyolefin

0.35-0.57

0.01-0.12

3.82 7.43 1.5 0 0

600 Spoon Pick

Tap 100 3 Gasoline & Diesel

10 Ribbon 0.14-0.15

0.03-0.04

1.57 8.80 0.8 0 0

600 Spoon Pick

Tap 100 3 Gasoline & Diesel

10 Tulle 0.13-0.16

0.03-0.04

1.67 9.00 0.6 0 0

600 Spoon Pick

Tap 100 3 Gasoline & Diesel

10 Fiberglass 1.20-1.84

0.03 2.63 1.70 0.0 0 0

600 Spoon Pick

Tap 100 3 Gasoline & Diesel

10 Silk Screen 0.31-0.37

0.03-0.04

1.67 4.50 0.8 0 0

600 Spoon Pick

0 10 Motor Oil 20

None with 0.07-0.11 g Polyolefin

n/a 0.02-0.03

3.75 33.5 1.9 0 0

Page 64: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

54

EG

Form

ati

on

Tem

per

atu

re

(ºC

)

Coll

ecti

on

Pro

toco

l

Wate

r V

olu

me

(mL

)

Oil

Con

tact

Tim

e (m

in)

Hyd

roca

rbon

Typ

e

Hyd

roca

rbon

Volu

me

(mL

)

En

vel

op

e

Mate

rial

En

vel

op

e

Mass

Ran

ge

(g)

EG

Mass

Ran

ge

(g)

Aver

age

Oil

y

Wate

r

Cap

ture

d (

g)

Aver

age

Cap

turi

ng

Eff

icie

ncy

(g/g

)

Sta

nd

ard

Dev

iati

on

Nu

mb

er o

f

Cycl

es

Nu

mb

er o

f

Pu

mp

s

600 Spoon Pick

0 3 Motor Oil 20

Fiberglass with 0.24-0.31 g Polyolefin

0.69-0.80

0.02-0.04

4.91 4.7 0.2 0 0

800 Grid Filter Sea 100 1 Gasoline & Diesel

20 None n/a 0.08 3.75 47.5 n/a 0 0

800 Grid Filter Sea 100 5 Gasoline & Diesel

20 None n/a 0.05 2.07 41.2 1.6 0 0

800 Grid Filter Sea 100 10 Motor Oil 20 None n/a 0.05 2.24 44.9 6.1 0 0

800 Grid Filter Tap 100 2 Motor Oil 20 None n/a 0.05-0.15

3.57 38.0 6.0 0 0

800 Grid Filter Tap 100 2 Motor Oil 20 None n/a 0.05 1.76 35.2 7.9 0 0

800 Grid Filter Tap 100 5 Motor Oil 20 None n/a 0.05 2.14 42.6 3.5 0 0

800 Grid Filter Tap 100 10 Motor Oil 7 None n/a 0.05 1.98 39.6 5.3 0 0

800 Grid Filter Tap 100 10 Motor Oil 10 None n/a 0.05 1.92 38.3 7.7 0 0

800 Grid Filter Tap 100 10 Motor Oil 20 None n/a 0.05 1.83 36.5 3.4 0 0

800 Grid Filter Tap 100 10 Motor Oil 40 None n/a 0.05 1.70 33.8 7.9 0 0

800 Grid Filter Tap 100 30 Motor Oil 20 None n/a 0.05 1.92 38.3 3.7 0 0

800 Grid Filter Tap 100 60 Motor Oil 20 None n/a 0.05 1.81 36.2 3.7 0 0

800 Grid Filter Tap 100 720 Motor Oil 20 None n/a 0.05 2.17 43.5 4.8 0 0

800 Grid Filter Tap 100 1440 Motor Oil 20 None n/a 0.05 2.11 42.2 3.9 0 0

800 Grid Filter Tap 100 1 Gasoline & Diesel

10 None n/a 0.04-0.10

4.23 51.2 1.9 0 0

800 Grid Filter Tap 100 1 Gasoline & Diesel

20 None n/a 0.05 2.16 43.2 1.6 0 0

Page 65: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

55

EG

Form

ati

on

Tem

per

atu

re

(ºC

)

Coll

ecti

on

Pro

toco

l

Wate

r V

olu

me

(mL

)

Oil

Con

tact

Tim

e (m

in)

Hyd

roca

rbon

Typ

e

Hyd

roca

rbon

Volu

me

(mL

)

En

vel

op

e

Mate

rial

En

vel

op

e

Mass

Ran

ge

(g)

EG

Mass

Ran

ge

(g)

Aver

age

Oil

y

Wate

r

Cap

ture

d (

g)

Aver

age

Cap

turi

ng

Eff

icie

ncy

(g/g

)

Sta

nd

ard

Dev

iati

on

Nu

mb

er o

f

Cycl

es

Nu

mb

er o

f

Pu

mp

s

800 Grid Filter Tap 100 2 Gasoline & Diesel

20 None n/a 0.05 2.20 44.4 2.2 0 0

800 Grid Filter Tap 100 5 Gasoline & Diesel

2 None n/a 0.05 1.72 34.4 2.5 0 0

800 Grid Filter Tap 100 5 Gasoline & Diesel

5 None n/a 0.05 1.91 38.2 5.3 0 0

800 Grid Filter Tap 100 5 Gasoline & Diesel

10 None n/a 0.05 1.89 37.8 7.6 0 0

800 Grid Filter Tap 100 5 Gasoline & Diesel

20 None n/a 0.05 2.17 43.5 4.7 0 0

800 Grid Filter Tap 100 5 Gasoline & Diesel

40 None n/a 0.05 2.29 45.8 2.2 0 0

800 Grid Filter Tap 100 10 Gasoline & Diesel

20 None n/a 0.05 2.42 48.2 1.1 0 0

800 Grid Filter Tap 100 30 Gasoline & Diesel

20 None n/a 0.05 2.25 45.3 4.4 0 0

800 Grid Filter Tap 100 60 Gasoline & Diesel

20 None n/a 0.05 2.53 50.6 3.3 0 0

800 Grid Filter Tap 100 720 Gasoline & Diesel

20 None n/a 0.05 3.38 67.4 4.0 0 0

800 Grid Filter Tap 100 5 Three Fuel Mixture

20 None n/a 0.05 2.28 45.4 5.3 0 0

800 Spoon Pick

Tap 100 5 Gasoline & Diesel

20 Spun Polyolefin

0.09-0.12

0.05 4.37 27.9 2.0 0 0

800 Spoon Pick

Tap 100 10 Gasoline & Diesel

20 Spun Polyolefin

0.08-0.10

0.05 3.99 28.2 3.2 0 0

800 Spoon Pick

Tap 100 5 Motor Oil 20 Spun Polyolefin

0.06-0.12

0.05 5.25 38.2 5.7 0 0

Page 66: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

56

EG

Form

ati

on

Tem

per

atu

re

(ºC

)

Coll

ecti

on

Pro

toco

l

Wate

r V

olu

me

(mL

)

Oil

Con

tact

Tim

e (m

in)

Hyd

roca

rbon

Typ

e

Hyd

roca

rbon

Volu

me

(mL

)

En

vel

op

e

Mate

rial

En

vel

op

e

Mass

Ran

ge

(g)

EG

Mass

Ran

ge

(g)

Aver

age

Oil

y

Wate

r

Cap

ture

d (

g)

Aver

age

Cap

turi

ng

Eff

icie

ncy

(g/g

)

Sta

nd

ard

Dev

iati

on

Nu

mb

er o

f

Cycl

es

Nu

mb

er o

f

Pu

mp

s

800 Spoon Pick

Tap 100 10 Motor Oil 20 Spun Polyolefin

0.05-0.09

0.05 4.40 36.8 6.0 0 0

800 Spoon Pick

Tap 300 10 Mousse 360 60 Spun Polyolefin

0.06-0.07

0.05 3.17 28.1 2.5 0 0

800 Spoon Pick

Sea 200 10 Mousse 280 80 Spun Polyolefin

0.05-0.07

0.05 3.00 28.2 2.7 0 0

800 Spoon Pick

Sea 300 10 Mousse 360 60 Spun Polyolefin

0.05-0.07

0.05 2.75 31.1 2.5 0 0

800 Spoon Pick

Tap 200 10 Mousse 280 80 Spun Polyolefin

0.06-0.09

0.05 2.29 19.3 n/a 3 0

800 Spoon Pick

Tap 100 10 TX Crude Oil

20 Spun Polyolefin

0.07-0.09

0.05 2.71 20.2 n/a 3 0

800 Spoon Pick

Tap 100 10 PA Crude Oil

20 Spun Polyolefin

0.07-0.13

0.05 2.24 15.4 n/a 3 0

800 Spoon Pick

Tap 16,000

10 Motor Oil 200 Spun Polyolefin

0.06-0.09

0.05 4.31 34.2 3.0 0 1

Page 67: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

57

Table 4-6. Pouch Material and Polyolefin Hydrocarbon Capturing Tests

Material Collection

Protocol

Water

Volume

(mL)

Capturing

Time

(min)

Hydrocarbon

Type

Hydrocarbon

Volume (mL)

Average

Capturing

Efficiency

(g/g)

Standard

Deviation

Number

of

Cycles

Polyolefin Chunk Spoon Pick 0 1440 Motor Oil 20 3.4 1.3 0

Fiberglass Spoon Pick Tap 100 5 Motor Oil 10 5.6 0.9 0

Fiberglass Spoon Pick Tap 100 5 Gasoline & Diesel 10 2.1 0.4 0

Ribbon Spoon Pick Tap 100 5 Motor Oil 10 10.0 1.0 0

Ribbon Spoon Pick Tap 100 5 Gasoline & Diesel 10 2.0 0.3 0

Tulle Spoon Pick Tap 100 5 Motor Oil 10 16.0 3.5 0

Tulle Spoon Pick Tap 100 5 Gasoline & Diesel 10 1.4 0.3 0

Silk Screen Spoon Pick Tap 100 5 Motor Oil 10 7.4 0.5 0

Silk Screen Spoon Pick Tap 100 5 Gasoline & Diesel 10 1.3 0.1 0

Spun Polyolefin (Previously Dipped in Water)

Spoon Pick Tap 100 5 Gasoline & Diesel 20 15 1.6 0

Spun Polyolefin Spoon Pick Tap 100 5 Gasoline & Diesel 10 11.9 1.4 0

Spun Polyolefin Spoon Pick Tap 100 5 Gasoline & Diesel 20 14.8 2.7 0

Spun Polyolefin Spoon Pick Tap 100 10 Gasoline & Diesel 20 16.9 7.1 0

Spun Polyolefin Spoon Pick Tap 100 30 Gasoline & Diesel 20 17 3.6 0

Spun Polyolefin (Previously Dipped in Water)

Spoon Pick Tap 100 5 Motor Oil 20 39.4 7 0

Spun Polyolefin Spoon Pick Tap 100 5 Motor Oil 10 26.8 2.0 0

Spun Polyolefin Spoon Pick Tap 100 5 Motor Oil 20 33.1 4.2 0

Spun Polyolefin Spoon Pick Tap 100 10 Motor Oil 20 44.4 16.6 0

Spun Polyolefin Spoon Pick Tap 100 30 Motor Oil 20 44.2 11.7 0

Spun Polyolefin Spoon Pick Tap 100 5 TX Crude Oil 20 21.4 3.3 0

Spun Polyolefin Spoon Pick Tap 100 10 TX Crude Oil 20 20.4 2.4 0

Page 68: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

58

Material Collection

Protocol

Water

Volume

(mL)

Capturing

Time

(min)

Hydrocarbon

Type

Hydrocarbon

Volume (mL)

Average

Capturing

Efficiency

(g/g)

Standard

Deviation

Number

of

Cycles

Spun Polyolefin Spoon Pick Tap 100 10 PA Crude Oil 20 13.8 1.9 0

Spun Polyolefin Spoon Pick Tap 100 10 PA Crude Oil 20 16.7 2.0 0

Spun Polyolefin Spoon Pick Tap 100 10 TX Crude Oil 20 17.8 n/a 3

Page 69: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

Experiments with Polyolefin

Polyolefin was considered as an aiding material to Exfoliated Graphite. The product of

polyolefin did not prove to be beneficial or efficient in this study. The following figure shows the

results obtained from related experiments.

Figure 4-26. Polyolefin Oil Capturing Tests for 2 Hours in 10 mL of Motor Oil on 100 mL of Water

When polyolefin was tested in 20 mL of motor oil, at the end of 24 hours, it was seen that

it captured 3.4 times of its weight and when it was mixed with Exfoliated-Graphite-600 the oil

capturing rate of mixture happened at 33.5 times of its mass.

The pouches consisting of Exfoliated-Graphite-600 and polyolefin in a fiberglass

envelope were tested and 1:4.7 oil capturing ratio was retrieved as an average.

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.00 0.03 0.06 0.09 0.12 0.15

Moto

r O

il S

orb

ed (

g)

Polyolefin (g)

Page 70: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

60

Figure 4-27. Polyolefin Oil capturing Tests in 10 mL of 50-50 Gasoline and Diesel Fuel Mixture on 100 mL of Water

Exfoliated Graphite, without polyolefin, was found to be working better in oil capturing

tests. Therefore, further tests were run by using Exfoliated Graphite only.

Experiments with Envelope Materials without Exfoliated Graphite

Using Exfoliated Graphite on its own in a real life crisis is extremely difficult since the

accidents happen in harsh weather and sea conditions where wind speeds are high. The density of

Exfoliated Graphite changes according to its preparation methods and forming temperature. In

their study Toyoda and Inagaki give the densities as 6 and 10 kg/m3, and total pore volumes as

2.3x10-2 and 2.0x10-2 m3/kg (Heavy oil capturing using Exfoliated Graphite: New application of

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.00 0.05 0.10 0.15 0.20 0.25

Oil

Sorb

ed (

g)

Polyolefin (g)

Polyolefin Sorption Test in 50-50 Gasoline and Diesel Fuel Mixture

20 Minutes 24 Hours Linear (20 Minutes) Linear (24 Hours)

Page 71: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

61

Exfoliated Graphite to protect heavy oil pollution). As Exfoliated Graphite is a very light

substance, controlling it is virtually impossible; therefore, it is necessary to put it in an

“envelope” and preparing a “pouch” before applying it to the oil spill.

Another goal of the project is finding a commercially available material to be used as an

envelope for Exfoliated Graphite. In this way, the envelope will not be expensive and readily

available for further use. After a market research these materials were used in the experiments:

fiberglass, bouffant cap, ribbon, tulle, and silk screen. Other mesh products such as grape nets and

fruit nets were found to be too wide to keep Exfoliated Graphite inside; therefore, they were

abandoned.

Envelope materials were tested for the hydrophilic property – since this is not desired.

Also, these materials were tested for their oil sorbance capacity in motor oil, and 50-50 gasoline

and diesel fuel mixture; these following results were found.

Table 4-7. Water and Oil Product Oil and Water Capturing Test Results Run for 10 Minutes for Envelope Materials on 100 mL of Water Only for Water Capturing Test and 100 mL of Water and 10 mL of Oil Product in Oil Capturing Tests

Name Material

Mesh

Size

(mm)

Motor Oil

Sorbance /

Material Mass

(g/g)

50-50 Gasoline and

Diesel Fuel Mix

Sorbance / Material

Mass (g/g)

Water

Sorbance /

Material Mass

(g/g)

Fiberglass Fiberglass Mat < 0.1 5.6 ± 0.9 2.1 ± 0.4 2.0

Silk Screen Artificial Silk 0.1 7.4 ± 0.5 1.3 ± 0.1 2.1

Ribbon Nylon 0.5 10.0 ± 1.0 2.0 ± 0.3 2.6

Tulle Nylon 1.0 - 1.5 16.0 ± 3.5 1.4 ± 0.3 6.0

Bouffant Cap

Spun Polyolefin

0.2 - 1.0 26.8 ± 2.0 11.9 ± 1.4 3.0

Page 72: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

62

Figure 4-28. Pouch Materials: a) Tulle b) Fiberglass c) Silk Screen d) Ribbon

Spun Polyolefin was also tried in another way; first, it was dipped in water and then

applied to gasoline and diesel fuel mixture.

Tulle pouch generated problems since the mesh size was too big for Exfoliated Graphite

as it was falling through. Ribbon pouch was easy to produce and the mesh radius was small

enough to keep the Exfoliated Graphite inside and the average oil capturing rate stood at 1:11.3,

which made it second to Spun Polyolefin pouch. The Spun Polyolefin’s material is sturdy, even if

someone pulls it, it does not break. The oil capturing rates were the best with Spun Polyolefin

tests.

Spun Polyolefin stood out as the best envelope material used in this project.

Page 73: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

63

Figure 4-29. Spun Polyolefin Oil capturing Test for 5 Minutes in 20 mL of 50-50 Gasoline and Diesel Fuel Mixture on 100 mL of Water

Figure 4-30. Spun Polyolefin Oil capturing Test for 5 Minutes in 20 mL of Motor Oil on 100 mL of Water

0

5

10

15

20

25

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Gas a

nd D

iesel F

uel M

ixtu

re S

orb

ed (

g)

Cap (g)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.00 0.02 0.04 0.06 0.08 0.10

Moto

r O

il S

orb

ed (

g)

Cap (g)

Page 74: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

64

Experiments with Exfoliated-Graphite-600

Before passing to the envelopes, Exfoliated Graphite was tried on its own. First,

Exfoliated-Graphite-600 was tried in a 50-50 gasoline and diesel fuel mixture. On average,

Exfoliated Graphite captured 36.3 times of its mass.

Figure 4-31. Spun Polyolefin Pouch Oil Capturing Tests Run for 3 Minutes in 10 mL of 50-50 Gasoline and Diesel Fuel Mixture on 100 mL of Water

0

1

2

3

4

5

6

0.00 0.03 0.06 0.09 0.12

Gasolin

e a

nd D

iesel F

uel M

ixtu

re S

orb

ed (

g)

Bouffant Cap and Exfoliated-Graphite-600 Pouch (g)

Page 75: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

65

Figure 4-32. Spun Polyolefin (Previously Dipped in Soapy Water) Pouch Oil Capturing Test for 3 Minutes in 40 mL of 50-50 Gasoline and Diesel Fuel Mixture on 100 mL of Water

For the tests in motor oil, Exfoliated-Graphite-600 showed a oil capturing efficiency of

46 times of its mass in 10 minutes (Table 4-5).

Experiments with Exfoliated-Graphite-800

After many trial-and-error sets, Exfoliated-Graphite-600 was abandoned and

Exfoliated-Graphite-800 was used in the new sets. The reason behind was to gain

experience and make use of the available materials in the best way.

0

1

2

3

4

5

6

0.00 0.02 0.04 0.06 0.08 0.10

Gasolin

e a

nd D

iesel F

uel M

ixtu

re S

orb

ed (

g)

Bouffant Cap (Previously Dipped in Soapy Water) and Exfoliated-Graphite-600 Pouch (g)

Page 76: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

66

After these sets of experiments, an effort of standardizing was undertaken. In order to

compare results, 0.05 g of Exfoliated-Graphite-800 was used in different sets with different

variables.

Exfoliated-Graphite-800 was applied for 10 minutes to motor oil. The highest oil

capturing rate happened in 7 mL of motor oil and sea water tests gave a higher oil capturing rate

(Table 4-5).

For the next set, 20 mL of motor oil was used, and in each set 0.05 g of Exfoliated-

Graphite-800 was applied. The experiments show how Exfoliated-Graphite-800 acts for different

time periods. The highest oil capturing rate occurred at 12-hour tests with 43.5 times the mass of

Exfoliated-Graphite-800.

Another trial was completed by mixing motor oil and gasoline-and-diesel-mixture in

equal volumes. Exfoliated-Graphite-800 was applied on 50-50 gasoline and diesel fuel mixture on

water, grid filter protocol was used to get the results. Different durations and different volumes of

the fuel mixture were tried for these sets of experiments.

Figure 4-33. Exfoliated-Graphite-800 Only Oil Capturing Tests in 20 mL of 50-50 Gasoline and Diesel Fuel Mixture and Motor Oil on 100 mL of Water

0

10

20

30

40

50

60

70

80

1 10 100 1000

Oil

So

rptio

n p

er

Exfo

liate

d G

rap

hite

(g

/g)

Time (min)

Motor Oil Gas & Diesel

Page 77: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

67

To summarize, Exfoliated-Graphite-800 shows the average performances for these

experiments with 20 mL of 50-50 gasoline and diesel fuel mixture on 100 mL of water for

different times as it is shown in the previous table. For waiting time periods of 1 to 30 minutes,

the average oil capturing is 44.9, and the oil capturing performance starts increasing at the 60-

minute run time and increasing even further at the 720-minute run.

In the following figure, it can be seen that average oil capturing increases with the

increase in gasoline and diesel fuel mixture volume. From the 2-mL test to the 40-mL test, there

is a 1/3 increment in the oil capturing efficiency.

Figure 4-34. Exfoliated-Graphite-800 Only Oil capturing Test in 50-50 Gasoline and Diesel Fuel Mixture on 100 mL of Water for 5 Minutes by Grid Filter Protocol

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45

Gas o

line a

nd D

iesel F

uel M

ix S

orp

tion

per

Exfo

liate

d G

raphite M

ass (

g/g

)

Gasoline and Diesel Fuel Mixture (mL)

Page 78: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

68

Application of Exfoliated-Graphite-800 in Spun Polyolefin Pouch

Since the pouches were prepared by attaching the ends of the Spun Polyolefin around

Exfoliated Graphite, during some oil recovery tests they were not usable for the next set of

experiments as they were damaged. In a real product, stitches will take the place of staples hence

the product is believed to be stronger.

In Table 4-5 it is shown that the pouch's oil capturing performance was the highest in

motor oil standing at 38.2 times if its mass. For Pennsylvania crude oil the oil capturing

efficiency was 15.4 and for Texas crude oil it was 20.2 of the pouch's mass. Next, when the

pouch was used in the water tank in motor oil during a calm water with a light surface agitation

test (1-pump test), the oil capturing capacity stood at 34.2 times the mass of the pouch.

Page 79: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

Chapter 5

Conclusions

Exfoliated Graphite has been used to capture spilled oil from the surface of water and

when it was enveloped by Spun Polyolefin. Spun Polyolefin helped Exfoliated Graphite to be

used for a specific location, securing it inside a pouch, and more importantly, this material also

proved itself efficient in oil spill cleaning up (This product has a higher sorbance performance in

motor oil then in gasoline and diesel fuel mixture). The author will be delighted if this product

can be commercialized and made available for people helping the environment.

The tests that compared Exfoliated-Graphite-600 and Exfoliated-Graphite-800 showed

that the higher preparation temperature gave Exfoliated Graphite more efficient hydrocarbon

capturing rates and more expanding made it possible to have a higher surface area and sorb more

hydrocarbons.

Water capturing tests were conducted for the product inside of confined pouches (1-gram

pouch tests). Water content was higher in gasoline and diesel fuel mixture tests than it was in

motor oil tests. Also it should be noted that the product captured less water on average than by

using Spun Polyolefin alone. In Texas crude oil tests 40-second dripping readings showed that the

product sorbs less water.

It was observed that Exfoliated Graphite inside the pouch needs space to expand in order

to reach its potential. However, when equal masses of Spun Polyolefin and Exfoliated Graphite

were used, the pouch's hydrocarbon capturing efficiency was less than Spun Polyolefin alone.

Furthermore, it is beneficial to have the pouch unfolded for it to work more efficiently, since

Spun Polyolefin in it works in a less efficient way when it is folded. Pouches gave the highest

hydrocarbon capturing efficiency in motor oil. Their performance is approximately 1/3 better than

Page 80: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

70

their performance in gasoline and diesel fuel mixture. When there is Exfoliated Graphite in the

packet, it tends to capture less water than when Spun Polyolefin is used alone. The product floats

on water and is easy to collect back. Captured hydrocarbon can easily be gained back just by

squeezing the packet. The first cycle gives the least amount of hydrocarbon back (it does not get

less than 80%), later on, reclamation of new hydrocarbon captured gets to around 100%.

Page 81: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

71

Chapter 6

Future Work

Exfoliated Graphite takes a lot of space and therefore great effort to carry to where it is

needed. Also, storage is another issue. It might be useful to develop a process of preparing EG-

PO pouches in situ for real life applications. Potential users of these pouches could be the harbor

management officials who can have the graphite exfoliated and used after an oil spill in their area.

The author recommends for future researchers to look into this aspect.

All of the experiments were conducted in the lab environment, at room temperature,

without being exposed to sunlight or other outside effects. Effects of the temperature of water and

petroleum products can be investigated. Water tank experiments simulated wavy and turbulent

conditions, however, those tests did not employ windy conditions. If possible, a real life test in an

actual oil spill area would give a bigger insight on the usefulness of EG-PO pouches.

Apart from 10W-40 motor oil, gasoline, diesel fuel, Texas crude oil and Pennsylvania

crude oil, more pollutants can be used in experiments. The pouches already work efficiently in

water tank oil capturing tests and it would be useful to see how the product would work with

different pollutants.

Inspecting the mass ratio of Exfoliated Graphite to Spun Polyolefin in order to find the

optimum amounts (if any) to be used together might be considered.

Page 82: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

References

1. A Reference Guide To Polyolefins, Engineered Resins, and Fluorocarbons,

http://www.polyprocessing.com/pdf/technical/tdpolyolefins.pdf, retrieved on 01/21/2012.

2. ASTM D-1141 Standard Practice for the Preparation of Substitute Ocean Water.

3. ASTM D-95 Standard Test Method for Water in Petroleum Products and Bituminous

Materials by Distillation.

4. ASTM F2534-12, Standard for Visually Estimating Oil Spill Thickness on Water.

5. Clean up of diesel fuel spill in Ventura Harbor continues, United States Coast Guard News

Release Date: Nov. 19, 2013, http://www.uscgnews.com/go/doc/4007/1976430/Clean-up-of-

diesel-fuel-spill-in-Ventura-Harbor-continues, retrieved on 03/03/2014.

6. General Oil Spill Response Plan – Shoreline Cleanup, ESSO, 1998.

7. On Scene Coordinator Report Deepwater Horizon Oil Spill, Submitted to the National

Response Team, September 2011.

8. Statistics, http://www.itopf.com/information-services/data-and-statistics/statistics/index.

html#no, retrieved on 01/02/2014.

9. Warren Lubricants SAE 10W-40 Motor Oil MSDS.

10. Adebajo, M. O., Frost, R. L., Kloprogge, J. T., Carmody, O., and Kokot, S., Porous Materials

for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties, Journal of Porous

Materials 10: 159–170, 2003 Kluwer Academic Publishers, The Netherlands.

11. Akaki, T., The Transportation of Oil By Sea, iUniverse Inc., Bloomington, 2011.

12. Barron, M. G., Carls, M. G., Short, J. W. and Rice, S. D. (2003), Photoenhanced toxicity of

aqueous phase and chemically dispersed weathered Alaska North Slope crude oil to Pacific

herring eggs and larvae. Environmental Toxicology and Chemistry, 22: 650–660. doi:

10.1002/etc.5620220326.

13. Bayat, A., Aghamiri, S. F., Moheb, A., and Vakili-Nezhaad, G. R., Oil Spill Cleanup from

Sea Water by Sorbent Materials, Chemical Engineering Technology Journal 2005, 28, No.

12.

14. Biello, D., Doubts on Dispersants, Scientific American, September 2010, pp 24-25.

15. Burger, J., Oil Spills, Rutgers University Press, New Brunswick, NJ, 1997.

Page 83: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

73

16. Chapman, H., Purnell, K., Law, R. J., Kirby, M. F., The use of chemical dispersants to

combat oil spills at sea: A review of practice and research needs in Europe, Marine Pollution

Bulletin 54 (2007) 827-838.

17. Chung , T. C., Yuan, X. P., Methods and Compositions for Absorbent for Hydrocarbon

Recovery, Draft Patent Application.

18. Chung , T. C., Yuan, X. P., Methods and Materials for Hydrocarbon Recovery, US Patent

Application Publication US 2012/0046419 A1.

19. De C. Fim, F., Guterres, J. M., Basso, N. R. S., Galland, G. B., Polyethylene/Graphite

Nanocomposites Obtained by In Situ Polymerization, Wiley InterScience DOI:

10.1002/pola.23822, 2009.

20. Gomes de Souza, F., Marins, J. A., Rodrigues, C. H. M. and Pinto, J. C. (2010), A Magnetic

Composite for Cleaning of Oil Spills on Water, Macromol. Mater. Eng., 295: 942–948. doi:

10.1002/mame.201000090.

21. Heubeck, M., Camphuysen, K. C. J., Bao, R., Humple, D., Rey, A. S., Cadiou, B., Bräger, S.,

and Thomas, T., Assessing the impact of major oil spills on seabird populations, Marine

Pollution Bulletin 46 (2003) 900-902.

22. Husain, T., Amin, M. B., Kuwaiti oil fires – Particulate monitoring, Atmospheric

Environment, Volume 28, Issue 13, July 1994, Pages 2235–2248.

23. Jinyou, L., Yanwei, S., Bin D., Jianmao Y., Jianyong Y., Salem S. A. D., Nanoporous

polystyrene fibers for oil spill cleanup, Marine Pollution Bulletin 64 (2012) 347–352.

24. Kearney, B., Oil Spill Dispersants, The National Academies in Focus, Summer 2005; 5, 2;

ABI/INFORM Complete, pg. 10.

25. Ketkar, K. W., Chair, R. G., Oil Pollution, Water Encyclopedia – Water Quality and

Resource Development, Edited by: Lehr, J.; Keeley, J.; Lehr, J., John Wiley & Sons, 2005.

26. Khordagui, H., Al-Ajmi, D., Environmental impact of the Gulf War: An integrated

preliminary assessment, Environmental Management, July/August 1993, Volume 17, Issue 4,

pp 557-562.

27. Kujawinski, E. B., Kido Soule, M. C., Valentine, D. L., Boysen, A. K., Longnecker, K.,

Redmond, M. C., 2014, Fate of Dispersants Associated with the Deepwater Horizon Oil

Spill, Environmental Science & Technology (0013-936X), 45 (4), p. 1298.

28. Leacock, E., The Exxon Valdez Oil Spill, Facts on File, 2005.

29. Lee C. M., Kang K. H., 1997. Prediction of oil boom performance in currents and waves.

Spill Science and Technology, 4(4): 257-266.

Page 84: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

74

30. Lessard, R. R., DeMarco, G., The Significance of Oil Spill Dispersants, Spill Science &

Technology Bulletin, Volume 6, Issue 1, 1 February 2000, pp. 59-68.

31. Mahajan, Y. R., Nanotechnology-Based Solutions for Oil Spills, Nanotech Insights, Issue of

January 2011.

32. Meininghaus, C. K. W., and Prins, R., Capturing of volatile organic compounds on

hydrophobic zeolites, Microporous and Mesoporous Materials 35–36 (2000) 349–365.

33. Mohan, D. et al., Granular Activated Carbon, Water Encyclopedia – Water Quality and

Resource Development, Edited by: Lehr, J.; Keeley, J.; Lehr, J., John Wiley & Sons, 2005.

34. Moustafa A., Fabrication, Characterization and Oil Spill Remediation Properties of

Exfoliated Graphite, Master's Thesis, The Pennsylvania State University, 2009.

35. Nguyen H. N., and Pignatello, J. J., Laboratory Tests of Biochars as Absorbents for Use in

Recovery or Containment of Marine Crude Oil Spills, Environmental Engineering Science,

Volume 30, Number 7, 2013, Mary Ann Liebert, Inc., DOI: 10.1089/ees.2012.0411.

36. Reis J. C., Environmental Control in Petroleum Engineering, Gulf Publishing Company,

1996.

37. Riepsaite, M., and Stankevicius, A., Toxic Effects of Some Oil Dispersants, Sustainability

Science Abstracts, 2005, Vol. 1, pp. 27-33, ISSN: 1392-1649.

38. Riva, Jr., J. P., Kuwaiti Oil Fires - Out!, CRS Report for Congress, 91-313 SPR, Revised

November 18, 1991.

39. Roulia, M., Chassapis, K., Fotinopoulos, C., Savvidis, T., and Katakis, D., Dispersion and

Capturing of Oil Spills by Emulsifier-Modified Expanded Perlite, Spill Science &

Technology Bulletin, Volume 8, Issues 5–6, 2003, Pages 425–431.

40. Schwacke, L. H., Smith, C. R., Townsend, F. I., Wells, R. S., Hart, L. B., Balmer, B. C.,

Collier, T. K., De Guise, S., Fry, M. M., Guillette, Jr., L. J., Lamb, S. V., Lane, S. M., McFee,

W. E., Place, N. J., Tumlin, M. C., Ylitalo, G. M., Zolman, E. S., Rowles, T. K., 2014, Health

of Common Bottlenose Dolphins (Tursiops truncatus) in Barataria Bay, Louisiana, Following

the Deepwater Horizon Oil Spill, Environmental Science & Technology (0013-936X), 48 (1),

p. 93.

41. Seddon, E. J., Friend, C. L., and Roski, J. P., Chapter 7 - Detergents and Dispersants,

Mortier, R. M., et al. (eds.), Chemistry and Technology of Lubricants, 3rd edn., DOI

10.1023/b105567_7, Springer Science+Business Media B.V., 2010.

Page 85: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

75

42. Shafir, S., Van Rijn, J., and Rinkevich, B., Short and Long Term Toxicity of Crude Oil and

Oil Dispersants to Two Representative Coral Species, Environmental Science & Technology

2007 41 (15), 5571-5574.

43. Teas, C., Kalligeros, S., Zanikos, F., Stournas, S., Lois, E., Anastopoulos, G., 2001,

Investigation of the effectiveness of absorbent materials in oil spills clean up. Desalination,

140(3): 259-264.

44. Teas, C., Kalligeros, S., Zannikos, F., Stournas, S., Lois, E., Avgerinos, E., and Koukios, E.,

Oil capturing by Natural Organic Materials Derived From Agricultural Byproducts, 7th

International Conference on Environmental Science and Technology, Ermoupolis, Syros

Island, Greece – Sept. 2001.

45. Teli, M. D., and Valia, S. P., Acetylation of Jute Fiber to Improve Oil Absorbency, Fibers and

Polymers, 2013, Vol.14, No.6, 915-919, DOI 10.1007/s12221-013-0915-8.

46. Toyoda, M., Aizawa, J., and Inagaki, M., Capturing and recovery of heavy oils by using

Exfoliated Graphite, Desalination, 115 (1998) 199-201.

47. Toyoda, M., and Inagaki, M., Heavy oil capturing using Exfoliated Graphite New application

of Exfoliated Graphite to protect heavy oil pollution, Carbon 38 (2000) 199-210.

48. Toyoda, M., and Inagaki, M., Capturing and Recovery of Heavy Oils by Using Exfoliated

Graphite, Spill Science & Technology Bulletin, Vol. 8, Nos. 5-6, pp. 467-474, 2003.

49. Wang, G., Sun, Q., Zhang, Y., Fan, J., and Ma, L., Capturing and regeneration of magnetic

Exfoliated Graphite as a new sorbent for oil pollution, Desalination 263 (2010) 183-188.

50. Xiao, P., Xiao, M., Gong, K., Preparation of Exfoliated Graphite/polystyrene composite by

Polymerization-filling Technique, Polymer 42 (2001) 4813-4816.

51. Abel, D., and Craven, J. (August 29, 2013), Diesel fuel spilled into New Bedford harbor, The

Boston Globe, http://www.bostonglobe.com/metro/2013/08/29/diesel-fuel-spilled-into-new-

bedford-harbor-clean-and-investigation-underway/zYjmlMXMZZdhHfjYsKELWN/

story.html, retrieved on 03/23/2014.

52. Elysse, J. (2010, May 15). Dog, cat hair can help clean up oil spill. McClatchy - Tribune

Business News. http://search.proquest.com/docview/288331580?accountid=13158, retrieved

on 03/23/2014.

53. G., J., Hair-Raising Idea, Environment; Jul/Aug 1998; 40, 6; ABI/INFORM Complete, p. 21.

54. Hull, O. (Wednesday, November 20, 2013), Minor Oil Spill From Fishing Vessel Closes Oak

Bluffs Harbor to Shellfishing, Vineyard Gazette,

Page 86: CRUDE OIL AND FUEL SPILL CLEAN UP BY USING EXFOLIATED

76

http://mvgazette.com/news/2013/11/20/minor-oil-spill-fishing-vessel-closes-oak-bluffs-

harbor-shellfishing?k=vg534c9e6caca0e&r=1, retrieved on 03/23/2014.

55. Hairy idea: Clippings used to absorb oil spill, http://www.nbcnews.com/id/14584306/

ns/world_news-world_environment/t/hairy-idea-clippings-used-absorb-oil-

spill/#.UzPX4PldWYA, retrieved on 03/23/2014.

56. How can human hair mop up the oil spill?, http://news.bbc.co.uk/2/hi/uk_news/magazine/

8674539.stm, retrieved on 03/23/2014.

57. Powdered cheese, feathers, popcorn among spill solutions, Times Daily, Sunday, April 30,

1989, p. 2A, http://news.google.com/newspapers?nid=1842&dat=19890430&

id=5V0eAAAAIBAJ&sjid=A8kEAAAAIBAJ&pg=1272,5157652, retrieved on 03/23/2014.

58. The Dockwalker Program, http://www.saveourshores.org/what-we-do/clean-boating-

dockwalkers.php, retrieved on 03/23/2014.