cristian pisano - institute for nuclear theory · mulders, rodrigues, prd 63 (2001) bu ng,...

35
Gluon TMDs and Opportunities at EIC Cristian Pisano INT-18-3 Workshop Transverse Spin and TMDs October 8 - 12 2018 Seattle (USA)

Upload: others

Post on 21-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

Gluon TMDs and Opportunities at EICCristian Pisano

INT-18-3 WorkshopTransverse Spin and TMDs

October 8 - 12 2018Seattle (USA)

Page 2: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

TMD factorization and color gauge invariance

2/35

Page 3: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

TMD factorization

Two scale processes Q2 p2T

Factorization proven

3/35

Page 4: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

TMD factorization

Gauge invariant definition of Φ (not unique)

Φ[U ] ∝⟨P, S

∣∣∣ψ(0)UC[0,ξ] ψ(ξ)∣∣∣ P, S⟩

SIDISPh Ph

k

p p

k

Φ

q

P P

q

Ph Ph

p11

p−p p

k

P P

kq q

Ph Ph

p1 1

p−pp

P P

kqk

Ph Ph

p11

p−p−p2

k

P P

q

pp2

q

Belitsky, Ji, Yuan, NPB 656 (2003)Boer, Mulders, Pijlman, NPB 667 (2003)

ξ −

ξ T

ξ −

ξ T

≡ U [+][0,ξ]

Possible effects in transverse momentum observables (ξT is conjugate to kT )

4/35

Page 5: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

TMD factorizationProcess dependence of gauge links

SIDIS Drell-Yan

Ph Ph

k

p p

k

Φ

q

P P

q

PB

PA

PB

PA

Φ

p

k

Φ

q q

p

k

ξ −

ξ T

ξ −

ξ T

U [+][0,ξ] U [−]

[0,ξ]

Belitsky, Ji, Yuan, NPB 656 (2003)Boer, Mulders, Pijlman, NPB 667 (2003)

Boer, talk at RBRC Synergies workshop (2017)

ξ −

ξ T∫dkT −→ ξT = 0 −→ the same in both cases

5/35

Page 6: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

TMD factorizationThe quark Sivers function

Fundamental test of TMD theory

f⊥ [DY ]

1T (x , k2⊥) = −f ⊥ [SIDIS]

1T (x , k2⊥) h

⊥ [DY ]1 (x , k2

⊥) = −h⊥ [SIDIS]1 (x , k2

⊥)

Collins, PLB 536 (2002)

FSI in SIDIS ISI in DY

ξ −

ξ T

ξ −

ξ T

= −

ISI/FSI lead to process dependence of TMDs, could even break factorizationCollins, Qiu, PRD 75 (2007)

Collins, PRD 77 (2007)Rogers, Mulders, PRD 81 (2010)

6/35

Page 7: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

Process dependence of gluon TMDs

7/35

Page 8: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

Gluon TMDsThe gluon correlator

Γ αβ(p;P,S)

P P

p p

Gauge invariant definition of Γµν

Γ[U,U′]µν ∝ 〈P,S |Trc[F+ν(0)UC[0,ξ] F

+µ(ξ)UC′

[ξ,0]

]|P,S〉

Mulders, Rodrigues, PRD 63 (2001)Buffing, Mukherjee, Mulders, PRD 88 (2013)

Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP 1610 (2016)

The gluon correlator depends on two path-dependent gauge links

ep → e′QQX , ep → e′ jet jetX probe gluon TMDs with [++] gauge links

pp → γγX (and/or other CS final state) probes gluon TMDs with [−−] gauge links

pp → γ jetX probes an entirely independent gluon TMD: [+−] links (dipole)

8/35

Page 9: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

The gluon Sivers functionsSign change test

Related Processes

ep↑ → e′QQX , ep↑ → e′ jet jetX probe GSF with [++] gauge links (WW)

p↑p → γγX (and/or other CS final state) probe GSF with [−−] gauge links

Analogue of the sign change of f ⊥ q1T between SIDIS and DY (true also for hg1 and h⊥ g

1T )

f⊥ g [e p↑→e′ QQ X ]

1T = −f ⊥ g [p↑ p→γ γ X ]1T

= −

Boer, Mulders, CP, Zhou (2016)

Motivation to study gluon Sivers effects at both RHIC and the EIC

9/35

Page 10: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

The gluon Sivers functionsThe dipole GSF

Complementary Processes

ep↑ → e′QQX probes a GSF with [++] gauge links (WW)

p↑p → γ jetX (gq → γq) probes a gluon TMD with : [+−] links (DP)

= −

At small-x the WW Sivers function appears to be suppressed by a factor of xcompared to the unpolarized gluon function, unlike the dipole one

The DP gluon Sivers function at small-x is the spin dependent odderon (singlespin asymmetries from a single Wilson loop matrix element)

Boer, Echevarria, Mulders, Zhou, PRL 116 (2016)Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP 1610 (2016)

10/35

Page 11: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

Gluon TMDs

Angeles-Martinez et al., Acta Phys, Pol. B46 (2015)Mulders, Rodrigues, PRD 63 (2001)

Meissner, Metz, Goeke, PRD 76 (2007)

I h⊥ g1 : T -even distribution of linearly polarized gluons inside an unp. hadron

I hg1T , h⊥ g1T : helicity flip distributions like hq1T , h⊥ q

1T , but T -odd, chiral even!

I hg1 ≡ hg1T +p2T

2M2ph⊥ g

1T does not survive under pT integration, unlike transversity

In contrast to quark TMDs, gluon TMDs are almost unknown

11/35

Page 12: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

The distribution of linearly polarized gluons

inside an unpolarized proton: h⊥ g1

12/35

Page 13: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

Linear polarization of gluons

Gluons inside an unpolarized hadron can be linearly polarized

It requires nonzero transverse momentum

±1

±1

∓1

±1

h⊥ g1

f g1

±1 ∓1

±1 ∓1

h⊥ g1

Interference between ±1 gluon helicity states

It does not need ISI/FSI to be nonzero, unlike the Sivers function. However it isaffected by them =⇒ process dependence

13/35

Page 14: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

Gluon polarization and the Higgs bosonp p → H X at the LHC

Higgs boson production happens mainly via gg → H

Pol. gluons affect the Higgs transverse spectrum at NNLO pQCDCatani, Grazzini, NPB 845 (2011)

The nonperturbative distribution can be present at tree level and wouldcontribute to Higgs production at low qT

Sun, Xiao, Yuan, PRD 84 (2011)Boer, den Dunnen, CP, Schlegel, Vogelsang, PRL 108 (2012)

14/35

Page 15: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

Gluon polarization and the Higgs bosonp p → H X at the LHC

qT -distribution of the Higgs boson

1

σ

dq2T

∝ 1 + R(q2T ) R =

h⊥ g1 ⊗ h⊥ g

1

f g1 ⊗ f g1|h⊥ g

1 (x , p2T )| ≤

2M2p

p2T

f g1 (x , p2T )

Gaussian Model TMD evolution

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8 10

qT

σ-1dσ/dqT2

[GeV]

[GeV-2]

lin. pol. > 0 r = 2/3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8 10

qT

σ-1dσ/dqT2

[GeV]

[GeV-2]

lin. pol. > 0 r = 1/3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8 10

qT

σ-1dσ/dqT2

[GeV]

[GeV-2]

lin. pol. > 0lin. pol. = 0

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

qT

R0

[GeV]

r = 2/3

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

qT

R0

[GeV]

r=1/3

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

qT

R0

[GeV]

0 5 10 15 200.00

0.01

0.02

0.03

0.04

0.05

0.06

QT [GeV]

R(QT )

mH = 126 GeV

Echevarria, Kasemets, Mulders, CP, JHEP 1507 (2015) 158

Study of H → γγ and interference with gg → γγ

Boer, den Dunnen, CP, Schlegel, PRL 111 (2013)

15/35

Page 16: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

C = +1 quarkonium production

qT -distribution of ηQ and χQJ (Q = c, b) in the kinematic region qT 2MQ

1

σ(ηQ)

dσ(ηQ)

dq2T

∝ f g1 ⊗ f g1 [1− R(q2T )] [pseudoscalar]

1

σ(χQ0)

dσ(χQ0)

dq2T

∝ f g1 ⊗ f g1 [1 + R(q2T )] [scalar]

1

σ(χQ2)

dσ(χQ2)

dq2T

∝ f g1 ⊗ f g1

Boer, CP, PRD 86 (2012) 094007

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3

qT

σ-1dσ / d (GeV-2)

⟨ pT2 ⟩ = 1 GeV2

qT2

(GeV)

h1⊥ g = 0)(

χ0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3

qT

σ-1dσ / d (GeV-2)

⟨ pT2 ⟩ = 1 GeV2

qT2

(GeV)

h1⊥ g = 0)( χ2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3

qT

σ-1dσ / d (GeV-2)

⟨ pT2 ⟩ = 1 GeV2

qT2

(GeV)

h1⊥ g = 0)(

ηQ

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4

qT

σ-1dσ / d (GeV-2)

⟨ pT2 ⟩ = 0.25 GeV2

qT2

(GeV)

h1⊥ g = 0)(

χ0

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4

qT

σ-1dσ / d (GeV-2)

⟨ pT2 ⟩ = 0.25 GeV2

qT2

(GeV)

h1⊥ g = 0)( χ2

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4

qT

σ-1dσ / d (GeV-2)

⟨ pT2 ⟩ = 0.25 GeV2

qT2

(GeV)

h1⊥ g = 0)(

ηQ

Proof of factorization at NLO for p p → ηQ X in the Color Singlet Model (CSM)Ma, Wang, Zhao, PRD 88 (2013), 014027; PLB 737 (2014) 103

16/35

Page 17: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

J/ψ-pair production at the LHC

17/35

Page 18: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

J/ψ-pair production at the LHC

J/ψ’s are relatively easy to detect. Accessible at the LHC: already studied byLHCb, CMS & ATLAS LHCb PLB 707 (2012)

CMS JHEP 1409 (2014)ATLAS EPJC 77 (2017)

gg fusion dominant, negligible qq contributions even at AFTER@LHC energiesLansberg, Shao, NPB 900 (2015)

µ ν

P2

PQ,2x1P1 + k1T

x2P2 + k2T

P1Φµνg (x1, k1T , ζ1, µ)

Φρσg (x2, k2T , ζ2, µ)

ρ σ

PQ,1

No final state gluon needed for the Born contribution in the Color Singlet Model.Pure colorless final state, hence simple color structure because one has only ISI

Lansberg, Shao, PRL 111 (2013)

Negligible Color Octet contributions, in particular at low PΨΨT

18/35

Page 19: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

J/ψ-pair productionStructure of the cross section

dQdY d2qTdΩ≈ A f g1 ⊗ f g1 + B f g1 ⊗ h⊥g

1 cos(2φCS) + C h⊥g1 ⊗ h⊥g

1 cos(4φCS)

Lansberg, CP, Scarpa, Schlegel, PLB 784 (2018)

I valid up to corrections O (qT /Q)

I Y : rapidity of the J/ψ-pair, along the beam in the hadronic c.m. frame

I dΩ = d cos θCS dφCS : solid angle for J/ψ-pair in the Collins-Soper frame

Analysis similar to the one for pp → γγX , pp → Jψ γ(∗) X , pp → H jetXQiu, Schlegel, Vogelsang, PRL 107 (2011)

den Dunnen, Lansberg, CP, Schlegel, PRL 112 (2014)Lansberg, CP, Schlegel, NPB 920 (2017)

Boer, CP, PRD 91 (2015)

The three contributions can be disentangled by defining the transverse moments

〈cos nφCS 〉 ≡

∫ 2π0 dφCS cos(n φCS ) dσ

dQdYd2qT dΩ∫ 2π0 dφCS

dσdQdYd2qT dΩ

(n = 2, 4)

∫dφCS dσ =⇒ f g1 ⊗ f g1

〈cos 2φCS〉 =⇒ f g1 ⊗ h⊥g1

〈cos 4φCS〉 =⇒ h⊥g1 ⊗ h⊥g

1

19/35

Page 20: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

J/ψ-pair productionExtraction of f g1 at

√s = 13 TeV

We consider qT = PΨΨT ≤ MΨΨ/2 in order to have two different scales

/dP

ψψ

T/ ∫

0<M

ψψ>

/2 d

σ/d

ψT [

Ge

V-1

]

PψψT [GeV]

(b)

Gaussian f1g, <kT

2> fit

over [0 ;<Mψψ>/2]

LHCb data without DPS

0

0.1

0.2

0.3

0.4

0 2 4 6 8 10 12

<kT2> = 3.3 ± 0.8 GeV

2

<Mψψ> = 8 GeV

reduced χ2 = 0.36

Lansberg, CP, Scarpa, Schlegel, PLB 784 (2018)LHCb Coll., JHEP 06 (2017)

Gaussian model: f g1 (x , k2T ) =

f g1 (x)

π〈k2T 〉

exp

(−

k2T

〈k2T 〉

)20/35

Page 21: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

Heavy quark pair production at an EIC

21/35

Page 22: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

Heavy quark pair production in DISProposal for the EIC

Gluon TMDs probed directly in e(`) + p(P,S) → e(`′) +Q(K1) +Q(K2) +X

Boer, Mulders, CP, Zhou, JHEP 1608 (2016)

I the QQ pair is almost back to back in the plane ⊥ to q and P

I q ≡ `− `′: four-momentum of the exchanged virtual photon γ∗

q

P

K1

K2

K1⊥

K2⊥

φ1φ2

δφ

qT ≡ K1⊥ + K2⊥

K⊥ ≡ (K1⊥ −K2⊥)/2

P

S

=⇒ Correlation limit: |qT | |K⊥|, |K⊥| ≈ |K1⊥| ≈ |K2⊥|

♠q

22/35

Page 23: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

Heavy quark pair production in DISAngular structure of the cross section

±1

±1

∓1

±1

h⊥ g1

f g1

±1 ∓1

±1 ∓1

h⊥ g1

φT , φ⊥, φS azimuthal angles of qT ,K⊥, ST

At LO in pQCD: only γ∗g → QQ contributes

dσ(φS , φT , φ⊥) = dσU(φT , φ⊥) + dσT (φS , φT , φ⊥)

Angular structure of the unpolarized cross section for ep → e′QQX , |qT | |K⊥|

dσU

d2qT d2K⊥∝AU

0 + AU1 cosφ⊥ + AU

2 cos 2φ⊥

fg

1 (x, q2T ) +

q2T

M2p

h⊥ g1 (x, q2

T )

×BU

0 cos 2φT + BU1 cos(2φT − φ⊥) + BU

2 cos 2(φT − φ⊥) + BU3 cos(2φT − 3φ⊥) + BU

4 cos 2(φT − 2φ⊥)

The different contributions can be isolated by defining

〈W (φ⊥, φT )〉 =

∫dφ⊥dφT W (φ⊥, φT ) dσ∫

dφ⊥dφT dσ, W = cos 2φT , cos 2(φ⊥ − φT ) , ...

23/35

Page 24: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

h⊥ g1 in ep → e′QQX

Maximal asymmetries

Positivity bound for h⊥ g1 : |h⊥ g

1 (x , p2T )| ≤ 2M2

p

p2T

f g1 (x , p2T )

It can be used to estimate maximal values of the asymmetries

Asymmetries usually larger when Q and Q have same rapidities

Upper bounds on R ≡ |〈cos 2(φT − φ⊥)〉| and R ′ ≡ |〈cos 2φT 〉| at y = 0.01

0

0.05

0.1

0.15

0.2

0.25

0.3

5 10 15 20 25

|K⊥ |

RQ2

Q2

Q2

MQ = Mc

(GeV)

= 100 GeV2

0

0.05

0.1

0.15

0.2

0.25

0.3

5 10 15 20 25

|K⊥ |

RQ2

Q2

Q2

MQ = Mc

(GeV)

= 10 GeV2

0

0.05

0.1

0.15

0.2

0.25

0.3

5 10 15 20 25

|K⊥ |

RQ2

Q2

Q2

MQ = Mc

(GeV)

= 1 GeV2

0

0.05

0.1

0.15

0.2

0.25

0.3

5 10 15 20 25

|K⊥ |

RQ2

Q2

Q2

MQ = Mb

(GeV)

= 100 GeV2

0

0.05

0.1

0.15

0.2

0.25

0.3

5 10 15 20 25

|K⊥ |

RQ2

Q2

Q2

MQ = Mb

(GeV)

= 10 GeV2

0

0.05

0.1

0.15

0.2

0.25

0.3

5 10 15 20 25

|K⊥ |

RQ2

Q2

Q2

MQ = Mb

(GeV)

= 1 GeV2

0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25

|K⊥ |

R’Q2

Q2

Q2

MQ = Mc

(GeV)

= 100 GeV2

0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25

|K⊥ |

R’Q2

Q2

Q2

MQ = Mc

(GeV)

= 10 GeV2

0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25

|K⊥ |

R’Q2

Q2

Q2

MQ = Mc

(GeV)

= 1 GeV2

0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25

|K⊥ |

R’Q2

Q2

Q2

MQ = Mb

(GeV)

= 100 GeV2

0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25

|K⊥ |

R’Q2

Q2

Q2

MQ = Mb

(GeV)

= 10 GeV2

0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25

|K⊥ |

R’Q2

Q2

Q2

MQ = Mb

(GeV)

= 1 GeV2

CP, Boer, Brodsky, Buffing, Mulders, JHEP 1310 (2013)Boer, Brodsky, Mulders, CP, PRL 106 (2011)

24/35

Page 25: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

Spin asymmetries in ep↑ → e′QQX

Angular structure of the single polarized cross section for ep↑ → e′QQX , |qT | |K⊥|

dσT∝ sin(φS − φT )

[AT

0 +AT1 cosφ⊥ + AT

2 cos 2φ⊥

]f⊥ g

1T+ cos(φS − φT )

[BT

0 sin 2φT

+ BT1 sin(2φT − φ⊥) + BT

2 sin 2(φT − φ⊥) + BT3 sin(2φT − 3φ⊥) + BT

4 sin(2φT − 4φ⊥)

]h⊥ g1T

+

[B′ T

0 sin(φS + φT ) + B′ T1 sin(φS + φT − φ⊥) + B′ T

2 sin(φS + φT − 2φ⊥)

+B′ T3 sin(φS + φT − 3φ⊥) + B′ T

4 sin(φS + φT − 4φ⊥)

]hg1T

Boer, Mulders, CP, Zhou, JHEP 1608 (2016)

The φS dependent terms can be singled out by means of azimuthal moments AWN

AW (φS ,φT )N ≡ 2

∫dφT dφ⊥W (φS , φT ) dσT (φS , φT , φ⊥)∫

dφT dφ⊥ dσU(φT , φ⊥)

Asin(φS−φT )N ∝

f ⊥ g1T

f g1A

sin(φS+φT )N ∝ hg

1

f g1A

sin(φS−3φT )N ∝

h⊥ g1T

f g1

Same modulations as in SIDIS for quark TMDs (φT → φh)

Boer, Mulders, PRD D57 (1998)

25/35

Page 26: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

Spin asymmetries in ep↑ → e′QQXUpper bounds

Maximal values for |AWN |, W = sin(φS + φT ), sin(φS − 3φT ) (|K⊥| = 1 GeV)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

y

ANW

max

MQ = Mc

Q2 = 100 GeV2

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

y

ANW

max

MQ = Mc

Q2 = 10 GeV2

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

y

ANW

max

MQ = Mc

Q2 = 1 GeV2

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

y

ANW

max

MQ = Mb

Q2 = 100 GeV2

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

y

ANW

max

MQ = Mb

Q2 = 10 GeV2

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

y

ANW

max

MQ = Mb

Q2 = 1 GeV2

26/35

Page 27: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

Spin asymmetries in ep↑ → e′QQXSivers asymmetry

The Sivers asymmetry in open heavy quark production is bounded by 1

Asin(φS−φT ) =|qT |Mp

f ⊥ g1T (x , q2

T )

f g1 (x , q2T )

[rad]kS

φ

0 1 2 3 4 5 6

)k

Sφ(

UT

A

0.08−

0.06−

0.04−

0.02−

0

0.02

0.04

0.06

0.08

10% pos

10% pos

parton level

Lint = 10 fb−1

Zheng, Aschenauer, Lee, Xiao, Yin, PRD 98 (2018)

If f ⊥ g1T is 10% of the positivity bound, then the measurement of A

sin(φS−φT )N is

problematic because of statistics

The situation for dijets is more promising, but theoretically less clean

27/35

Page 28: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

Asymmetries in e p↑ → e′jet jetXUpper bounds

Contribution to the denominator also from γ∗q → gq, negligible at small-x

Asymmetries much smaller than in cc case for Q2 ≤ 10 GeV2

Upper bounds for AWN for K⊥ ≥ 4 GeV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.2 0.4 0.6 0.8 1

y

ANW Q2

Q2

Q2

max = 100 GeV2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.2 0.4 0.6 0.8 1

y

ANW Q2

Q2

Q2

max

= 50 GeV2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.2 0.4 0.6 0.8 1

y

ANW Q2

Q2

Q2

max

= 10 GeV2

28/35

Page 29: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

Asymmetries in e A → e′jet jetXsmall-x framework

Also in a e A collisions polarization shows itself through a cos 2φ distributionDumitru, Lappi, Skokov, PRL 115 (2015)

〈cos 2φ〉 has opposite signs for L and T γ∗-polarization, large effects

0 1 2 3 4 5 60

0.02

0.04

0.06

0.08

0.1

0.12

0.14

−610×

S/B = 11.28 ± 0.16

φ (rad)

dN/d

φ (a

.u.) √s = 90 GeV

4 < Q2 < 12 GeV2 1.25 < q T < 1.75 GeV/c 3.00 < P T < 3.50 GeV/c 1 < η < 2.5

Pythia6 Signal dijets Background dijets

Dumitru, Skokov, Ullrich, arXiv:1809.02615

Monte-Carlo Generator: measurament feasible at the EIC29/35

Page 30: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

Quarkonium production at the EICBacchetta, Boer, CP, Taels, arXiv:1809.02056

30/35

Page 31: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

Quarkonium production at the EICColor Octet production mechanism

e p↑ → e′QX with Q either a J/ψ or a Υ meson, with P2QT M2

Q ∼ Q2

Color octect (CO) production dominates

q

p

PQ

QQ [2S+1L(8)

J]

Theoretically described by Color Evaporation Model or NRQCDGodbole, Misra, Mukherjee, Rawoot, PRD 85 (2012)

Godbole, Kaushik, Misra, Rawoot, PRD 91 (2015)Mukherjee, Rajesh, EPJC 77 (2017)

Rajesh, Kishore, Mukherjee, PRD 98 (2018)

Results depend on the quite uncertain CO 1S0 and 3PJ LDMEs

31/35

Page 32: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

Quarkonium production at the EICUpper bounds of the asymmetries

Upper bounds for 〈cos 2φT 〉 and AWN with W = sin(φS + φT ), sin(φS − 3φT )

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

|ANW|max(J/ψ)

CMSWZ

SV

y

Q2 = 1 GeV2

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

|ANW|max(J/ψ)

CMSWZ

SV

y

Q2 = 5 GeV2

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

|ANW|max(J/ψ)

CMSWZ

SV

y

Q2 = 10 GeV2

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

|ANW|max(J/ψ)

CMSWZ

SV

y

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

|ANW|max(J/ψ)

CMSWZ

SV

y

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

|ANW|max(J/ψ)

CMSWZ

SV

y

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

|ANW|max(Υ)

SV

y

Q2 = 1 GeV2

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

|ANW|max(Υ)

SV

y

Q2 = 5 GeV2

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

|ANW|max(Υ)

SV

y

Q2 = 10 GeV2

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

|ANW|max(Υ)

SV

y

Q2 = 100 GeV2

〈cos 2φT 〉 still sizeable at small x , using the MV model as a starting input forh⊥g

1 and f g1 at x = 10−2 and evolve them with the JIMWLK equationsBacchetta, Boer, CP, Taels, arXiv:1809.02056

Marquet, Rosnel, Taels, PRD 97 (2018)

32/35

Page 33: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

Quarkonium production at the EICUpper bounds of the asymmetries

The Sivers asymmetry does not depend on the CO NRQCD LDMEs

Asin(φS−φT ) =|qT |Mp

f ⊥ g1T (x , q2

T )

f g1 (x , q2T )

The other asymmetries depend on them, but one can consider ratios ofasymmetries to cancel them out

Acos 2φT

Asin(φS+φT )=

q2T

M2p

h⊥ g1 (x , q2

T )

hg1 (x , q2

T )

Acos 2φT

Asin(φS−3φT )= −1

2

h⊥ g1 (x , q2

T )

h⊥ g1T (x , q2

T )

Asin(φS−3φT )

Asin(φS+φT )= − q2

T

2M2p

h⊥ g1T (x , q2

T )

hg1 (x , q2

T )

Same relations hold for e p → e′Q Q X

33/35

Page 34: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

Quarkonium production at the EICCO NRQCD LDMEs @EIC

One can consider ratios where the TMDs cancel out and one can obtain newexperimental information on the CO NRQCD LDMEs

It requires comparison with e p↑ → e′Q Q X

Rcos 2φ=

∫dφT cos 2φT dσQ(φS , φT )∫

dφT dφ⊥ cos 2φT dσQQ(φS , φT , φ⊥)

R=

∫dφT dσQ(φS , φT )∫

dφT dφ⊥ dσQQ(φS , φT , φ⊥)

Two observables depending on two unknowns: OS8 ≡ 〈0|OQ8 (1S0)|0〉OP

8 ≡ 〈0|OQ8 (3P0)|0〉

Rcos 2φ=27π2

4

1

MQ

[OS

8 −1

M2Q

OP8

]R=

27π2

4

1

MQ

[1 + (1− y)2]OS8 + (10− 10y + 3y 2)OP

8 /M2Q

26− 26y + 9y 2

Plus similar (but different) equations for polarized quarkonium production

34/35

Page 35: Cristian Pisano - Institute for Nuclear Theory · Mulders, Rodrigues, PRD 63 (2001) Bu ng, Mukherjee, Mulders, PRD 88 (2013) Boer, Cotogno, Van Daal, Mulders, Signori, Zhou, JHEP

Conclusions

I Azimuthal asymmetries in heavy quark pair and dijet production in DIScould probe WW-type gluon TMDs (similar to SIDIS for quark TMDs)

I Quarkonia are also good probes for gluon TMDs: first extraction ofunpolarized gluon TMD from LHC data on di-J/Ψ production

I Asymmetries maximally allowed by positivity bounds of gluon TMDs can besizeable in specific kinematic region

I Different behavior of WW and dipole gluon TMDs accessible at RHIC,AFTER@LHC and at EIC, overlap of both spin and small-x programs

35/35