cris luengo – 1td398 – fall 2011 – [email protected] measurement › edu › course › homepage...

57
Cris Luengo – 1TD398 – fall 2011 – [email protected] Measurement Intensity measurements Geometric measurements size (area in 2D, volume in 3D) boundary (perimeter in 2D, area in 3D) number (counting) bounding boxes ... Stereology volume, area, perimeter object counting

Upload: others

Post on 28-Jun-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Measurement● Intensity measurements

● Geometric measurements– size (area in 2D, volume in 3D)– boundary (perimeter in 2D, area in 3D)– number (counting)– bounding boxes– ...

● Stereology– volume, area, perimeter– object counting

Page 2: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Measurement issues● Sampling invariance

– rotation invariance– scale invariance

● Accuracy (bias)● Precision● Preprocessing !?

Page 3: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Accuracy vs. precision

Pre

cisi

on

Accuracy

56.4563456423(very precise!)

bias = lack ofaccuracy

systematicerror

stochasticerror

Page 4: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Intensity measurement● In X-ray imaging: intensity ~ X-ray density● In fluorescence imaging: intensity ~ fluorophore

density (which, hopefully, ~ protein density)● But, in general, intensity is not directly related to any

single quantity

Page 5: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Intensity measurement● Imaging equipment calibration

– Leads to a known relationship between image grey-value and physical property

● Noise– Average pixel intensities in a uniform region

(unbiased estimate of mean intensity)

● Imaging artefacts– CT: rings, scattering, etc.– Avoid including artefacts in measurement

● Interface regions– Avoid including interface regions in measurement

Page 6: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Intensity at interface

threshold

measurement includesblurred edges

better measurement

Page 7: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Geometric measurements● Area in 2D images / volume in 3D images● Perimeter in 2D images / surface area in 3D images● Length● Common derived measures:

– Size of bounding box– Feret diameters– Moments: centre of gravity, main object axis, etc.– Ratios

Page 8: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Stereology● “Stereo” = “solid” – the study of solids

– In particular, measuring volumetric quantities from 2D sections

– But also useful to estimate quantities in volumetric images– Emphasis on unbiasedness and freedom of assumptions– Main concept: geometrical probability

● Buffon’s needle problem● The Delesse principle● Probe-based measurement

– Design of probes for unbiased measures

Page 9: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Buffon’s needle problem● Georges-Louis Leclerc, Comte de Buffon (1733):

– What is the chance that a needle randomly tossed into the air will fall across the lines on a parquet floor?

– His solution: The needle will intersect with a probability that is directly proportional to the length of the needle and inversely proportional to the distance between the lines on the floor.

– Full solution: P = (2/π) length / distance

● By tossing a needle of known lenght 200 times, you can estimate the distance between lines– distance = (2/π) 4 cm / (50/200) = 0.63 ∙ 4 ∙ 4 cm = 10 cm

● By tossing a needle 200 times on a parquet with known dimensions, you can estimate the length of the needle

Page 10: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Buffon’s needle problem

P P = P + P P = P + P P = P

● The interesting bits:– This relation holds whether you toss 1 needle 200 times, or

200 needles 1 time.– This relation makes no assumption about the shape of the

needle or the parquet lines

Page 11: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Buffon’s needle problem● Thus: this relation can be used to estimate the

perimeter of any object– # of intersections = (2/π) total boundary length / distance

between probe lines

● Randomness is important for the method to be unbiased– probe orientation needs to be random

(from a uniform orientation distributed)

● As we’ll see later, we can also use a needle as the probe

Page 12: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

The Delesse principle● A.E. Delesse showed that the area fraction of one

phase in a 2D cross-section of rock is equal to the volume fraction of that phase in the volume (1843)– A

phase / A

ref = V

phase / V

ref

– Allows studying volume properties in 2D cross-sections

● He also showed that the number of objects in a 2D cross section is unrelated to the number in 3D

● The Delesse principle also scales to 1D:– L

phase / L

ref = A

phase / A

ref = V

phase / V

ref

Page 13: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Probe-based measurement

2D:● 0D probe (point)

– area

● 1D probe (line)– length

● 2D probe (shape)– number (count)

● probe dimensions + feature dimensions = 2

3D:● 0D probe (point)

– volume

● 1D probe (line)– surface area

● 2D probe (plane)– length

● 3D probe (shape)– number (count)

● probe dimensions + feature dimensions = 3

Page 14: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

0D probes: area / volume● The probability that a random point within the

reference volume hits the object is equal to the volume of the object divided by the reference volume– P = V

obj / V

ref

● Throw many points at the volume, count the number of points that hit the object

– 317/1000 = Vobj

/ 1000 μm3

Vobj

= 317/1000 ∙ 1000 μm3 =

317 μm3

Page 15: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Isotropic-uniform-random probes● Points need to be placed randomly within volume● But: we can assume that the probability of a point B

hitting the object is independent of a point A hitting the object, even if they are a fixed distance apart– This could fail under certain circumstances...

● This leads to sampling grids,paced randomly over image

● This can be very difficult inclassical imaging modalities,but must be easy in a CTimage!?

Page 16: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

0D probes: area / volume● This is equivalent to counting pixels inside an object● Thus:

– Pixel counting is anunbiased estimate ofarea/volume

– we assume pointsampling to generatebinary image

– The object must beplaced randomly w.r.t.sampling grid

Page 17: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

1D probes: length / surface area

● We use the concept of surface density: S / Vref

● Translate the parquet lines from Buffon’s problem:– Lines of width of reference area, distance D apart– Reference area is W x H in size– H / D lines of length W give L

total = W H / D total length

– LA = 1 / D is the perimeter density of the parquet

– A similar concept is the surface density SV = S / V

ref

● We count number of intersections with line probe of length L

probe

● We compute: SV = 2 N

intersections / L

probe(3D)

SA = (π/2) N

intersections / L

probe(2D)

Page 18: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

1D probes: length / surface area● Example:

– CT image of 1 mm across: Vref

= 109 μm3

– Line probe of length 25 μm– 1000 random probe throws yield 125 surface intersections– S

V = 2 N

intersections / L

probe = 2 ∙ 125 / (1000 ∙ 25) = 0.01 μm-1

– S = SV V

ref = 0.01 ∙ 109 = 10 ∙ 106 μm2

● To digitally find surface/probe intersections, walk along the probe and count number of phase changes

● Advantage of this method is that it can be used interactively, without needing to segment the image

Page 19: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

2D probes in 3D: length● In a very similar fashion, surface probes can be used

to estimate “line density”● The surface can be flat, but does not need to be● For example, spheres are convenient because they

are isotropic – no random rotation required– Randomly throw a sphere in the volume– Count number of intersections of the lines with the sphere– Line density is directly proportional to number of inter-

sections, and inversely proportional to sphere surface area

● This is convenient for interactive measurement– Tracking e.g. a wood fibre in a 3D image is hard!– Drawing a sphere and counting intersections is not

Page 20: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Volume probes (2D/3D)● Any 2D shape in a 2D image,

any 3D shape in a 3D image:– used for counting objects– placement must be such that

any part of the sample hasequal probability of beingsampled

● How to count objects partiallyinside the probe?– needs counting frame for

unbiased counting

Page 21: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Counting objects● After successful labelling, counting is trivial● But: careful with bias!● A counting frame is needed for unbiased object count● Principle extends easily to 3D

Page 22: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Counting objects● After successful labelling, counting is trivial● But: careful with bias!● A counting frame is needed for unbiased object count● Principle extends easily to 3D

Biased count Unbiased count

Page 23: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Euler number● Euler number

– In 2D: # of objects − # of holes– In 3D: # of objects − # of tunnels + # of cavities

● Gray’s algorithm– Computes Euler number based on 2x2 image regions– E = ( C

1 − C

2 − 2C

3 ) / 4

– C1 = # of 2x2 regions with only 1 pixel set– C2 = # of 2x2 regions with 3 pixels set– C3 = # of 2x2 regions 2 pixels set in a diagonal

1

0 1

0

1

0 0

0

0

1 1

1

E = 1 E = 0

Page 24: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

1. Label image2. Count labels3. N

obj = 44

Counting objects

E = 44 E = -43

E = -43

Page 25: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Geometric measurements● Area in 2D images / volume in 3D images● Perimeter in 2D images / surface area in 3D images● Length● Common derived measures:

– Size of bounding box– Feret diameters– Moments: centre of gravity, main object axis, etc.– Ratios

Page 26: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

2D area / 3D volume● The volume of an object is given by the number of

pixels● This is an unbiased estimate, assuming point-sampling

– (as discussed earlier in Stereology)

Page 27: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

2D area / 3D volume● The object boundary is not exactly known in a binary

image

Page 28: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

2D area / 3D volume

radius (px) radius (px)

Absolute error Relative error

(digitally generated disks of given radius, with random shift w.r.t. sampling grid)

Page 29: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

2D area / 3D volume● Image filtering can distort the volume measure!

– e.g.: linear smoothing filters move edges inwards

Gauss, σ=10 threshold 0.5

count = 4421 count = 4101

Page 30: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

2D perimeter / 3D surface area● In 2D: measuring length – difficult

– Trace object contour, yields a digital line– Length measurement on line– Smoothness assumption of object contour

● In 3D: measuring surface area – much more difficult!– Extract surface pixels– Estimate a 3D surface through these points– Estimate area of 3D surface

● Both measures can be obtained through stereology techniques also

Page 31: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Tracing a 2D object’s contour● Start at a random point, e.g. top left pixel● Next pixel on contour must be to the right, down-right,

down, or down-left● We now iterate:

– take previous direction, change it counter-clockwise by 1– check that position for an object pixel – if not, change

direction clockwise until we find an object pixel– add this pixel to the list, and make it “current pixel”

● Iteration finishes whenwe get to initial pixeland initial direction

Page 32: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Chain codes● When walking along an object’s contour, we do not

need to keep coordinates for each object● The step direction from one pixel to the next is enough

to store the shape information● Together with the coordinates of

the first pixel, yields all informationon object

● (A.K.A. Freeman codes)

0,0,7,0,0,6,4,3,5,4,4,3,1

Page 33: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Chain code length● The length of a chain code is given by the length of

each step taken● Even codes (0, 2, 4, 6) are vertical and horiz. steps● Odd codes (1, 3, 5, 7) are diagonal steps● Step sizes of 1 and √2 overestimate length

Page 34: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Chain code length● The length of a chain code is given by the length of

each step taken● Even codes (0, 2, 4, 6) are vertical and horiz. steps● Odd codes (1, 3, 5, 7) are diagonal steps● Step sizes of 1 and √2 overestimate length● Step sizes of 0.948 and 1.340 yield unbiased measure● Additionally, add “corner count”

– Indicates changes of direction

● More complex length measures are possible, assuming best fit straight lines, smooth curve fits, etc.

Page 35: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Chain code length

Neven

+ √2 Nodd

Npixels

0.948 Neven

+ 1.340 Nodd

0.980 Neven

+ 1.406 Nodd

+ 0.091 N

corner

estim

ated

per

imet

er

angle

Page 36: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Chain code lengthab

solu

te e

rror

(%

of

tota

l per

imet

er)

radius

Neven

+ √2 Nodd

Npixels

0.948 Neven

+ 1.340 Nodd

0.980 Neven

+ 1.406 Nodd

+ 0.091 N

corner

Page 37: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Boundary length● Benoit Mandelbrot

showed why perimeter measurements are scale-dependent(late 1970’s)

“Nature exhibits not simply a higher degree but an altogether different level of complexity. The number of distinct scales of length of natural patterns is for all purposes infinite. That is, the closer one looks, the more biological surface is present.” (Mandelbrot, 1983)

““The infinite coastline of Britain”The infinite coastline of Britain”“fractal dimension,” “fractal length”

Page 38: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

3D surface area● Find all boundary points

– (object points with a background neighbour)

● No chain codes possible– (it’s not possible to order the points on a surface into a line)– But: order of pixels wasn’t important in chain codes to

measure length

● One approach:– Classify neighbourhood type for each surface voxel– Determine optimal weights for each neighbourhood type

● A different approach:– Using marching cubes, obtain a triangulation mesh– Sum surface area of triangles

● Yet another approach: stereology!

Page 39: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Bounding box● Find minimal and

maximal x and y coordinates for each connected component

● Useful for extracting individual objects from an image for further analysis (e.g. texture)

Extends easily to 3D!

Page 40: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Feret diameters

Shortest projection

Length of projection perpendicularto shortest projection

Longest projection

Minimal bounding box

Page 41: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Minimal bounding box● Find angle for minimal

Feret diameter● Get minimal and

maximal coordinates under given rotation

● Useful for extracting individual objects from an image for further analysis (e.g. texture)

Doesn’t extend to 3D

Page 42: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

1st order moments

(μx,μ

y)

● Centre of mass● Useful reference point for other measures

– e.g. mean distance of boundary points to centre of mass

x=1N∑ x

y=1N∑ y

x-coordinate

y-co

ord

inat

e

Page 43: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

2nd order central moments

I yy=1N∑ x−x

2

I xx=1N∑ y−y

2

I xy=−1N∑ x−x y−y

x-coordinate

y-co

ordi

nat

e

I=[I xx I xy

I xy I yy]

(μx,μ

y)

● Eigenvectors of the moment of inertia tensor give main object axes

● Eigenvalues give size of object along these axes

● Can be used to fit an ellipse

(moment of inertia tensor)

Page 44: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Elliptical approximation● Compute centre of

gravity● Compute inertia tensor● Compute Eigenvalue

decomposition of tensor● 2 Eigenvectors are main

ellipse axes● Ellipse diameters are

given by 2*Eigenvalue● 1st Eigenvalue goes with

2nd Eigenvector

Extends easily to 3D!

Page 45: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Ratios● Aspect ratio: S / L

– L = longest side of minimal bounding box– S = shortest side of m.b.b. (= shortest Feret diameter)

● Circularity (compactness): 4π A / P2

– A = area; P = perimeter

● Circularity: A / ( π/4 L2 )● Ellipticity: A / ( π/4 S L )● Squarity: A / ( S L )● Triangularity: A / ( 2 S L )● Elongation: 2 L* / P

– L* = longest Feret diameter

Page 46: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Grey values and geometry

You never know where exactly,between two pixel centres, the

boundary goes

Grey values allow exactlocalization of the boundary

(e.g. interpolation)

Page 47: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Optical image formation● The image is smoothed by a PSF (convolution!) before

sampling● Standard optics’ point-spread function (PSF) can be

approximated by a Gaussian● This smoothing does not change the total amount of

light in the image

Page 48: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

2D area / 3D volume

Expected measure: 1385.442360 px2

Grey-value measure: 1385.442353 ± 0.000001 px2 (std = 0.000006)Binary measure: 1384.8 ± 0.6 px2 (std = 2.958911)

Grey-value measure

Binary measure

Area of 100 disks (r = 21 px) with sub-pixel shifts

Page 49: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Threshold vs. soft clipping

threshold

128 16096

soft clipping

128 16096

Page 50: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Granulometry

input image opening D=11 opening D=20

● Opening removes objects that are smaller than S.E.● Summing pixel values yields weight for objects larger

or equal to S.E.● Comparable to sieving rocks● Note: we’re not counting objects! (volume-weighted)

Page 51: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Granulometry

Page 52: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Granulometry

Per-object measurement,using Feret diameter

Granulometry on binaryimage

Granulometry on grey-value image

Page 53: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

size (px)

A B C D

A: untreated milk gel B: + substrate△ C: + substrate & enzyme◇ D: + substrate & enzyme

Size distribution

Page 54: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

size (μm)

Size distribution

Page 55: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Length distribution

Easy to measure length for each grain

Not so easy...

Page 56: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Length distribution

3 4 5 6 7 8 9 10 110

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Length of rice grains (mm)

Separated, sieve method Touching, sieve method Separated, classical methodTouching, classical method

Page 57: Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Measurement › edu › course › homepage › bild2 › ht... · Cris Luengo – 1TD398 – fall 2011 – cris@cb.uu.se Buffon’s

Cris Luengo – 1TD398 – fall 2011 – [email protected]

Summary● It is important to use unbiased measures● Intensity measurements

– Useful when pixel values are related to physical quantity

● Geometric measurements– Based on binary shapes:

● size (2D area / 3D volume) – stereology● perimeter (2D perimeter / 3D surface area) – stereology● derived measures: bounding box, Feret diameters, moments,

ratios● Object counting – stereology

– Using image grey values to improve measurement– Segmentation-free size distributions using Granulometry