cpm calculus chapter 08 solutions

Download CPM Calculus Chapter 08 Solutions

If you can't read please download the document

Upload: jennifer-huh

Post on 12-Jul-2016

1.308 views

Category:

Documents


294 download

DESCRIPTION

Solutions

TRANSCRIPT

  • Chapter 8 Solutions Calculus

    Chapter 8 Solutions 1. a. A thin cylinder. b. Answers vary. c. It should be a semicircle. 2. a. The thickness times the area gives the volume of each slice if they are modeled as

    cylinders, and the summation notations add up the volumes of n slices.

    b. By integration: A(x)dxL

    R

    ! , from the left side of the line to the right, where A(x) is the area of each cross-sections, which takes the limit of estimates with smaller and smaller slices.

    3. a. ! 11.8

    2( )

    2

    + 14.32

    ( )2

    + 16.52

    ( )2

    + 182

    ( )2

    + 192

    ( )2

    + 18.12

    ( )2

    + 15.32

    ( )2

    + 112

    ( )2

    + 8.42

    ( )2

    + 72

    ( )2( ) " 5

    # 8259.404cm3

    b. It would be more accurate. c. Integrate the areas, which takes the limit of using thinner and thinner sections of the

    vase. 4. a. dx represents an infinitesimal change in x. b. It represents the area of an infinitesimally thin rectangle. 5. See graph at right. a. height = x , width = !x = i

    n(9 " 5)

    in a Riemann sum or dx in an integral.

    b. x dx = x3 232

    4

    9

    !9

    4=23(27 " 8) = 38

    3

  • Chapter 8 Solutions Calculus

    6. a. = 13(5x2 !17x)!2 3(10x !17)

    b. = (12x2 + 2)(8 ! 7x3) + (4x3 + 2x2 ! 5)(!21x2 )= 96x2 ! 84x5 +16 !14x3 ! 84x5 ! 42x3 +105x2

    = !168x5 ! 56x3 + 201x2 +16

    c. = cos(sin t) !cos t d. ln(cos2 x) sin x ! 7 ln(49x2 ) 7. = ! (4x4 " 8x2 + 4 " (x4 " 2x2 +1))dx

    "1

    1

    # = ! (3x4 " 6x2 + 3)dx"11

    #

    = ! ( 35x5 " 2x3 + 3x)

    1

    "1= ! 1 3

    5" ("1 3

    5)( ) = 16!5

    8. a. = e3x sin(5x) + C b. = 1

    4e4x+2

    3

    5=1

    4e22!1

    4e14

    c. = sec x tan xdx!1 =" sec x + C d. U = sin2 x, dU = 2 sin x cos xdx = sin(2x)dx; sin(2x)2sin2x dx!

    = 2U dU = 11n2

    2U + C =! 11n2 "2sin2x

    + C

    e. = (16x3 !16x2 + 4x)dx = 4x4 ! 163x3+ 2x2

    2

    0=

    0

    2

    " 4 #16 ! 163 #8 + 8 = 72 !1283

    = 29 13

    9. a. 250 !1.1211 = $869.64 b. 1

    11250 !1.12x dx

    0

    11

    " = 111 !250 !1

    1n1.12!1.12x

    11

    0=250(1.1211#1)11 ln 1.12

    $ $497.06 10. a. At x = 2 there is a hole. b. At x = !4 and 1 there is no limit, and at x = 2 g is undefined. c. At x = !4,1 , and 2, because it is not continuous, and at x = !2 there is a cusp. 11. a. 3 b. 2 c. 2 d. Does not exist.

  • Chapter 8 Solutions Calculus

    12. a. !x by f (x) = x b. The slice is a thin cylinder with depth !x and radius f (x) , and its volume is

    V = !x "# f (x)2 = !x "# ( x )2 .

    c. dx !" f (x)2 =0

    8

    # " ( x )2dx08

    # = " ! xdx08

    # = " x2

    2

    8

    0= 32"

    13. a. Again, each slice is a thin cylinder, with thickness !x (or dx). b. !x "# f (c)2

    c. ! f (x)2dxa

    b

    " 14. See graph at right. a. A slice should be a disk with radius x2 and width !x .

    b. ! (x2 )2dx = ! x4dx0

    3

    " =!03

    " ! x5

    5

    3

    0= ! 3

    5

    5=2435

    ! 15. ! ( 6 " x )2

    2

    5

    # dx!+!! (x " 4)258

    # dx =!! (6 " x)25

    # dx!+!! (x2 " 8x +16)58

    # dx =

    ! 6x " 12x2( ) 5

    2+ ! 1

    3x3 " 4x2 +16x( ) 8

    5== 28.5! $ 89.54 !units3

    16. See graph at right. a. See sketch at right. Radius = x; x2 = y or x = y

    b. ! y( )0

    4

    "2

    dy = ! x( )0

    4

    "2

    dx = ! x0

    4

    " dx = 12 ! x24

    0= ! (8 # 0) = 8! !un3

    17. a. ! 1

    2x3 + 3( )

    2

    0

    2

    " dx b. ! 2y " 63( )2

    dy3

    7

    #

    x

    y

  • Chapter 8 Solutions Calculus

    18. a. U = 6x4 ! 3x, dU = 24x3 ! 3 :8x3!1

    6x4 !3xdx =

    13

    (24x3!3)dx

    6x4 !3x=

    13dU

    U""" =13ln U + C = 1

    3ln 6x4 ! 3x + C

    b. = ! (x+1)33

    " 9x#$%&'(5

    2= ! 216

    3" 45( ) " ! 273 "18( ) = 27! " ("9)! = 36!

    c. = 5 ! x22

    " 2x + 5 ln x + 3 + C

    d. U = 11x2 ! 3,!dU = 22xdx : 2" x sin(11x2 ! 3)dx = 111 sin(11x2 ! 3) ! 22xdx"=111

    sinU dU = ! 111cosU + C = ! 1

    11cos(11x2 ! 3) + C"

    e. U = x + 2, x =U ! 2, dU = dx :2xx+2

    dx =!1

    0

    "2(U!2)U

    du =!1

    0

    " 2 ! 4U( ) du = 2U ! 4 ln U!10

    "0

    !1

    = 2(x + 2) ! 4 ln x + 20

    !1= (4 ! 4 ln 2) ! (2 ! 4 ln1) = 2 ! 4 ln 2

    f. U = 3x, dU = 3dx : 31!9x2

    dx =du

    1!U2= sin!1" U + C =" sin!1(3x) + C

    19. It will look like a cone with a ridge. See diagram at right. 20. a. = lim

    x!2( 12"x

    +x"12"x) = lim

    x!2

    1+(x"1)

    2"x= limx!2

    x

    2"x Does not exist.

    b. = 018!18+1

    =0

    1= 0

    c. = !"

    d. limx!4

    (2" x )

    2" x= limx!4

    2 + x = 2 + 2 = 4

    e. limx!

    1"5

    x2+8

    x3

    24

    x2+54

    x3

    = #

    f. = limx!2

    (x"2)(2x"1)

    (x"2)(5x+3)= limx!2

    2x"15x+3

    =313

    21. !R2 " ! r2 22. B: The middle integral computes a different area, but I and III compute the area of the same

    region.

  • Chapter 8 Solutions Calculus

    23. C. If you take the derivatives of I and II you get (ln x)3x

    . 24. a. 10 inches b. 0.5 inches c. ! (radius)2(thickness) " ! (radius of hole)2(thickness) d. ! (10 " 0.5i)2 (2) " ! (0.5)2(2)

    e. ! 10 " 0.5i( )2 " ! 0.5( )2( )i=0

    9

    # $2 = 2! 10 " 0.5( )2" 0.25( )

    i=0

    9

    #

    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!or 2! 5 + 0.5i( )2" 0.25( )

    i=1

    10

    #

    f. 1237.5! = 3887.721!in.3 25. a. A cylinder with a cone cut our of it: V = 4 !" ! 42 # 1

    3! 4 !" ! 42 = 64" #

    64

    3" =

    128"

    3un3

    b. ! x ! ("R2 # " r2 ) where R is the bigger radius and r is the smaller radius: ! x ! (" ! 42 # " ! x2 ) = ! x(16" # x2" )

    c. (16! " x2! )dx = 16! x " x33!4

    0= 64! " 64

    3! = 128!

    30

    4

    # un3 26. a. See graph above right. ! (" y + 3)2

    0

    4

    # dy " ! (y " 3)234

    # dy

    b. See graph below right. ! (x + 3)2

    0

    1

    " dx + ! (x # 3)413

    " dx 27. a. They will be washers. The shape is egg-

    like with a spherical hole. They are perpendicular to the x-axis.

    b. ! x ! (" (#2x2 + 2)2 # " (#x2 +1)2 )

    c. (! ("2x2 + 2)2 " ! ("x2 +1)2"1

    1

    # )dx

    d. 2 (! ("2x2 + 2)2 " ! ("x2 +1)2 )0

    1

    # dx

    x

    y

    x

    y

  • Chapter 8 Solutions Calculus

    28. a. Vertical rectangles: A = ( x ! (!x))dx = x

    3 2

    32

    1

    4

    " + x2

    2

    4

    1= 8

    3 2+8( ) ! 23 + 12( ) = 163 + 243 ! 76 = 806 ! 76 = 736 un2

    b. Horizontal rectangles. Intersections are (0, 2) and (3, 1):

    A = ((!y2 + 4

    !1

    2

    " ) ! (2 ! y))dy = (!y2 + y + 2)dy = !y3

    3+y2

    2+ 2y

    2

    !1!1

    2

    "

    = !83+ 2 + 4 ! 1

    3+ 12! 2( ) = 103 ! !

    76( ) =

    206+ 76! 276= 92= 4.5 un2

    29. y = 3 1! x2

    4 and x goes from 2 to 2: A = 2 ! 3 1" x2

    4"2

    2

    # dx = 3"22

    # 4 " x2dx $ 18.850 un2 or 6! using a calculator or noticing that it is a semicircle.

    30. y = 3 1! x2

    4: the horizontal cross-sections are disks with radius 3 1! x2

    4 so

    V = !"2

    2

    # 3 1" x2

    4

    $%&

    '()2

    dx = 9! x " 9!4

    * x3

    4x3

    2

    "2"2

    2

    #= (18! " 6! ) " ("18! + 6! ) = 12! " ("12! ) = 24! un3

    31. a. lim

    x!3

    x2"x"6x"3

    = limx!3

    (x"3)(x+2)

    x"3= limx!3

    (x + 2) = 5 , so f (3) must be 5, h = 5 .

    b. Except h = 1 does not work, notice we squared the original equation, which left room for !3+ h and 3+ h to be opposites, so h = 6 .

    c. a: When graphed, the function looks like the line x + 2. h = 5, fills in the hole at

    (3, 5). Therefore the function is differentiable for all x. b: !f ( x + 6) = 1

    2 x+6=

    1

    2 3+6=16

    at x = 3. !f ("x + 6) = "1 at x = 3. Therefore the function is not differentiable at x = 3.

    !3+ h = 3+ h

    (!3+ h)2 = 3+ h

    9 ! 6h + h2 = 3+ h

    h2! 7h + 6 = 0

    (h ! 6)(h !1) = 0!!"!!h = 1 or 6

  • Chapter 8 Solutions Calculus

    32. a. Use the reverse Chain Rule. U = ex , dU = exdx : ex(2!ex )20

    1

    " dx = dU(2!U )21

    x=0x=0

    1

    "

    =1

    2!ex

    1

    0=

    12!e

    ! 12!1

    =12!e

    !1 =1!(2!e)2!e

    =e!12!e

    b. Use the Chain Rule with g(x) = f (x)dx4

    x

    ! and h(x) = x2 :

    ddx

    f (x)dx = h1(x) ! g1(h(x)) = 2x ! f (x2 )4

    x2

    "

    c. U = sec x, dU = sec x tan xdx : sec x tan x1+sec2 x! dx =

    dU

    1+U2! = tan"1U + C = tan"1(sec x) + C

    d. U = x2, dU = 2xdx : x1!x4

    " = 12" #2xdx

    1!x4=12

    dU

    1!U2" = 12 sin!1U + C =

    12sin!1(x2 ) + C

    e. = sin x 2cos x 2

    dx,0

    !2" U # cos x2 , dU = #

    12sin( x

    2)dx :

    sin x 2

    cos x 20

    !2" dx = #2dUUx=0

    !2"

    = #2 ln U! /2

    x=0= #2 ln(cos x

    2)

    ! /2

    x=0= #2 ln(cos !

    4) + 2 ln(cos 0)

    = #2 ln( 22) + 0 = #2 ln(2#1 2 ) = (# 1

    2) $ (#2) ln 2 = ln 2 % 0.693

    33. !f (x) = (x"3)("1)"(1)(1"x)

    (x"3)2=3"x"1+x

    (x"3)2=

    2

    (x"3)2, f 11(x) = "2 # 2

    (x"3)3=

    "4

    (x"3)3, which is positive

    when x < 3 : in (!", 3) . 34. Intersections are when

    3 = x = 25 ! y2 , 9 = 25 ! y2, y2 = 16, y = 4; (3, 4)

    V = (" ( 25 ! y2 )2 ! " (3)2 )dy!4

    4

    # = " (25 ! y2 ! 9)dy!44

    # = " (16 ! y2 )dy!44

    #

    35. Yes (Rolles Theorem) or !f (x) = 2x "1 ; !f 1

    2( ) = 0 36. a. Horizontally, washers. b. Horizontally, prisms. c. Vertically, disks.

  • Chapter 8 Solutions Calculus

    37. a. A disk (thin cylinder), with thickness !y or dy . b. y c. ! ( y )2dy = ! ydy = ! " y2

    2

    10

    00

    10

    #010

    # = 50! un3

    d. The inverse functions is y = x : ! ( x )2dx = ! " x22

    10

    00

    10

    # "50! un3 38. a. Since most of the region is closer to the y-axis than the x-axis, one should suspect the

    volume of the rotation about the x-axis to have greater volume b. Each figure is the shape of a mostly hollow cone. For rotation about the x-axis, the inner

    and outer radii are x2 and 2x and the width is !x :U = (" (2x)20

    2

    # $ " (x2 )2 )dx

    = ! (4x2 " x4 )dx = ! # 43x3 " ! x

    5

    50

    2

    $2

    0=32!3

    " 32!5

    =64!15

    % 13.404 un3 .

    For rotation about the y-axis, the inner and outer radii are y2

    and y and the width is

    !y = V = ((" ( y )2 # " (y

    2)2

    0

    4

    $ )dy = " (y #y2

    4)dy = "

    y2

    2# "

    y3

    12

    4

    00

    4

    $!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!= 8" # 16

    3" = 8

    3" % 8.378 un3

    c. Most of the region is closer to the y-axis and further from the x-axis. So even though the 2nd integral is twice as long (0 to 4), the radii are about 1

    2 the size of the radii of

    the 1st integral, and within the integral the radii are squared. 39. These are washers with inner and outer radii of 2 ! x and 4 ! x2

    and width !x :V = (" (4 # x2 )2 # " (2 # x)2 )dx#1

    2

    $

    = " (16 # 8x2 + x4 # 4 # 4x # x2 )dx#1

    2

    $

    = " (x4 # 9x2 + 4x +12)dx#1

    2

    $

    = " ( x5

    5# 9x

    3

    2+4x2

    2+12x)

    2

    #1

    = " (14.4 # (#7.2)) = 21.6" % 67.858 un3

  • Chapter 8 Solutions Calculus

    40. a. ! (x3 +1)2dx"1

    1

    # = ! (x6 + 2x3 +1"11

    # )dx = ! ( x7

    7+ 2 $ x

    4

    4+ x) 1

    "1

    = ! ( 17+12+1) " ! (" 1

    7+12"1) = ! $ 23

    14+ ! $ 9

    14=3214

    ! = 167! % 7.181un3

    b. A washer. c. The inner radius is 1 (the distance between y = !1 and the x-axis) and the outer

    radius is x3 +1! (!1) = x3 + 2 (the distance between y = !1 and f (x) ).

    d. (! (x3 + 2)2 " ! #12 )dx = ! x6"1

    1

    $"11

    $ + 4x3 + 4 "1)dx = ! ( x7

    7+ x

    4+ 3x)

    1

    "1

    = ! ( 17+1+ 3) " ! (" 1

    7+1" 3) = 29

    7! + 15

    7! = 44

    7! % 19.747 un3

    e. Basically the integral is the same and gives the same answer: (! (x3 + 2)2 " ! #12 )dx =

    "1

    1

    $ 44!7 % 19.747 un3 41. For a disk, it is as if it were a washer with an inner radius of 0. 42. a. U = 9 ! 2x, dU = !2dx : 1

    9!2xdx

    2

    4

    " = ! 121UdU = ! 1

    2ln U

    4

    x=2x=2

    4

    "

    = ! 12ln 9 ! 2x

    4

    x=2= ! 1

    2# (0) + 1

    2# ln 5 = 1

    2ln 5

    b. = 2 ! x66+ 3 ! x

    3

    3+ x

    3

    "3=

    x6

    3+ x

    3+ x

    3

    "3= 243+ 27 + 3" (243" 27 " 3) = 60

    c. = (x!1)(x+1)x!1

    dx = ! (x +1)dx2

    3

    "32

    " = ! x2

    2+ x( ) 32 = ! 92 + 3( ) + (2 + 2) = ! 72

    d. = 4x3 2dx1

    4

    ! = 4 " x5 2

    5/2

    4

    1=85" x5 2

    4

    1=85" (32 #1) = 8"31

    5=2485

    e. U = sin x, dU = cos xdx : sin3 x cos xdx! 4

    ! 2

    " = U 3dUx=! 4! 2

    "

    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!=U4

    4

    ! /2

    x=! /4=sin4 x4

    ! /2

    ! /4=14#( 2 2)4

    4=14# 116

    =316

  • Chapter 8 Solutions Calculus

    43. a. = (3x+1)!6"3!(6x"2)(3x+1)2

    =18x+6"18x+6

    (3x+1)2=

    12

    (3x+1)2

    b. = sec(5 ln x) tan(5 ln x) ! 5x

    c. x32 cos(2x)!3x2 sin(2x)x6

    =2x cos(2x)!3 sin(2x)

    x4

    d. = 2k !93k"1 + k2 ! (ln 9) !93k"1 ! 3 = 2k !93k"1 + (3 ln 9)k293k"1 e. = (2 sin x cos x) cos x + sin2 x(! sin x) = 2 sin x cos2 x ! sin3 x

    or 2 sin x(1! sin2 x) ! sin3 x = 2 sin x ! 3sin3 x 44. a. s(0) = 136 ft b. !s (t) = "32t +120 , so initial velocity is !s (0) = 120 ft/s, which is just the t term. c. !s (t) = "32t +120 = 0,120 = 32t, t = 120

    32=308=154= 3 3

    4sec

    d. s(154) = !16(15

    4)2 +120(15

    4) +136 = !225 + 450 +136 = 361 ft

    e. 0 = s(t) = !16t2 +120t +136, 0 = !2t2 +15t +17 = (!2t +17)(t +1),t =

    172

    : "s (172

    ) = !32(172

    ) +120 = !272 +120 = !152 m/s: it will explode.

    45. Let x be the total price deduction, so the charge is 159 ! x , the occupancy is 265 + 2x , and

    the revenue is (159 ! x)(265 + 2x) .

    0 = d

    dx((159 ! x)265 + 2x)) = d

    dx(159 "265 ! 265x + 318x ! 2x2 )

    =d

    dx(159 "265 + 53x ! 2x2 ) = 53! 4x, x = 53

    4= $13 1

    4

    So they should charge 159 !13 14= $145.75 .

    46. a. k = 1

    2 (by symmetry) b. k = 1

    c. k = !1 d. k = 1

  • Chapter 8 Solutions Calculus

    47. a. y = x ! x3 , "y = 12(x ! x3)!1 2 # (1! 3x2 ) = 1!3x

    2

    2 x!x3 or 1!3x2

    2y

    b. When the denominator from part (a) is 0. and y = 0 at each of these points.

    c. x = 0,1, !1 48. The vertex is (0, 0): the distance is d(t) = (y ! 0)2 + (x ! 0)2 = (x2 )2 + x2 = x4 + x2 , so

    d

    dtd(t) = d

    dtx4+ x

    2 , !d (t) = 12(x4 + x2 )"1 2 # (4x3 + 2x) # x1 (by the extended Chain Rule.

    !d ("3) = 12

    (81+ 9)"1 2 # ("4 #27 " 6) # (0.5) = 12 90

    # ("114) # 12=

    "57

    2 90=

    "57

    6 10$ "3.004 units/s

    or 3.004 units is also appropriate. 49. a. The shape is a cylinder with a whirlwind cut out of it. A slice is a washer with inner

    and outer radii of x2 and 4 and width !x .

    V = (! " 42 # ! (x2 )2 )dx

    0

    2

    $ = (16 # x4 )dx = ! (16x # x5

    5)2

    00

    2

    $

    = ! (32 # 325) = 128!

    5% 80.425 un3

    b. The shape is like a bowl. A slice is a disk with radius y and width !y . V = ! ( y )2dy = ! ydy

    0

    4

    "04

    " = ! #y2

    2

    4

    0= 8! $ 25.133un3

    c. The shape is almost like a quarter of a donut and will be hard to draw. A slice is a washer with inner and outer radii of 1+ x2 and 5 and width !x .

    V = (! "52 # ! (1+ x2 )2 )dx = ! (25 #1# 2x2 # x4 )dx

    0

    2

    $02

    $ = ! (24x # 2 " x3

    3# x

    5

    5)2

    0

    = ! (48 # 163# 325) = ! (544

    15) = 544!

    15% 113.935 un3

    d. Again this is like a quarter donut. A slice is a washer with inner radius r ! y and outer radius 3 and width ! y .

    V = (! " 32 # ! (3# y )2 )dy

    0

    4

    $ = ! (9 # 9 + 6 y # y)dy04

    $ = ! (6 y # y)dy04

    $

    = ! (6 "y3 2

    3 2#y2

    2)4

    0= ! (4 " y3 2 #

    y2

    2)4

    0= ! (32 # 8) # 0 = 24! % 75.398 un3

    0 = 2 x ! x3

    0 = x ! x3

    0 = x(1! x2 )

    0 = x(1! x)(1+ x)

    x = 0,1, !1

  • Chapter 8 Solutions Calculus

    50. a. The radius of the outside cylinder is 5. The radii of the inside disks are y = 2x +1 . ! 52

    0

    2

    " dx # ! (2x +1)202

    " dx = ! (25 # 22x # 2 $2x #1)02

    " dx = ! (24 # 22x # 2x+1)dx02

    "

    = ! 24x # 22x

    2 ln 2# 2

    x+1

    ln 2( ) 20 = ! (48 # 162 ln 2 # 8ln 2 ) # (0 # 12 ln 2 # 2ln 2( )= ! 48 # 27

    2 ln 2( ) % 28.524 un3

    b. The radius is x, but y = 2x +1 or x = ln(y!1)ln 2

    .

    ! x22

    5

    " dy = !ln(y#1)ln 2( )2

    5

    "2

    dy $ 17 un3

    c. ! (52 " (5 " (2x +1))20

    2

    # )dx = ! (25 " (16 " 8 $2x + 22x )02

    # )dx = ! (9 + 8 $2x " 22x02

    # )dx

    = ! 9x + 8$2x

    ln 2" 2

    2x

    2 ln 2( ) 20 % 41.804! % 131.333un3

    d. The radius is x + 1, but y = 2x +1 or x = ln(y!1)ln 2

    .

    ! (x +1)2 "12( )2

    5

    # dy = ! ln(y"1)ln 2 +1( )2

    "12$%&

    '()2

    5

    # dy * 15.75! * 40 un3

    e. The radius of the outside cylinder is 7. The radii of the inside disks are y + 2 = 2x + 3 . ! 72

    0

    2

    " dx # ! (2x + 3)202

    " dx $ 135.75 un3 51. a. This is a sideways bowl. A slice is a disk with radius x and width ! x . V = ! ( x )2dx = ! xdx = ! " x2

    20

    4

    #04

    #4

    0= 8! $ 25.133un3 .

    b. This is a cylinder with a whirlwind cut out. A slice is a washer with inner and outer radii of y2 and 4 and width dy.

    V = (! " r2 # ! (y2 )2 )dy

    0

    2

    $ = ! (16 # y4 )02

    $ dy = ! (16y #y5

    5)2

    0= ! (32 # 32

    5) = 128!

    5

    % 80.425 un3

    c. It is like a quarter donut. A slice is a washer with inner and outer radii of 2 + y2 and 6 and width ! y .

    V = (! "62 # ! (2 + y2 )2 )dy

    0

    2

    $ = ! (36 # 4 # 4y2 # y4 )dy02

    $ = ! (32y # 4 #y3

    3#y5

    5)2

    0

    = ! (64 # 323# 325) = 704!

    15% 147.445 un3

    d. It is like a quarter donut. A slice is a washer with inner and outer radii of 5 ! x and 5 and width ! x .

    V = (! "52 # ! (5 # x )2 )dx

    0

    4

    $ = ! (25 # 25 +10 x # x)dx04

    $= ! (10 x # x)dx

    0

    4

    $ = ! " (10 " x3/2

    3 2# x

    2

    2)4

    0! (20

    3"8 # 8) = 136!

    3% 142.419 un3

  • Chapter 8 Solutions Calculus

    52. a. ! (3x +1)2dx0

    2

    " # 166.421un3

    b. The outer radius is 2, the inner radius is x. Since y = 3x +1 , x = ln(y!1)ln 3

    . The outside cylinder is solid from y = 0 to y = 2, so we only need to subtract out the inside from y = 2 to y = 10.

    ! 22dx0

    10

    " # !ln(y#1)ln 3( )

    2

    dy2

    10

    " $ 40! #16.5! = 23.5! $ 73.827 un3

    c. The outer radius is (3x +1) +1 = 3x + 2 , the inner radius is 1. ! (3x + 2)2dx

    0

    2

    " # ! (1)2dx02

    " $ 73.54! # 2! $ 224.74 un3

    d. This would give an unwanted middle term as well as the limits of integration would be incorrect.

    53. This is the inside half of a donut (half torus). It will have a cylindrical exterior and a

    donuts interior. A slice is a washer with inner and outer radii of 2 ! 1! x2 and 2 and width ! x . V = (! "22 # ! (2 # 1# x2 )2 )

    #1

    1

    $ dx = ! (4 # 4 + 4 1# x2 # (1# x2 ))dx#11

    $

    = ! (4 1# x2 #1+ x2 )dx#1

    1

    $ % ! " 4.950 % 15.550!un3

    54. a. Vertical slices: disks with radius f (x) and width dx. V = ! ( f (x))2dx

    "1

    2

    # .

    b. Vertical slices: washers with inner and outer radii of 1 and 1+ f (x) and width dx. V = (! (1+ f (x))2 " ! (1)2

    "1

    2

    # )dx or ! (2 f (x) + f (x)2 )dx"12

    # .

    c. Horizontal slices: disks with radius g(y) and width dy. V = ! (g(y))2dy1

    3

    " .

    d. Horizontal slices: washers with inner and outer radii of 5 ! g(y) and 5 and width dy. V = (! "52 # ! (5 # g(y))2 )dy

    1

    3

    $ or ! (10g(y) " g(y)2 )dy13

    # . 55. a. A typical slice is a horizontal disk with radius 6

    y!

    5

    y2 and width dy.

    V = !1

    13

    " (6y #5

    y2)2dy = ! (36y#2 # 60y#3 + 25y#4 )dy

    1

    13

    "

    = ! (36 $y#1

    #1# 60 $

    y#2

    #2+ 25 $

    y#3

    #3

    13

    1= ! (#36

    y+

    30

    y2# 25

    3y3)

    13

    1% 36.875 in.3

    b. Height is 12: V = ! r2h = ! r2 "12 = 36.875, r2 = 36.87512!

    , r = 36.87512!

    # 0.989 in.

  • Chapter 8 Solutions Calculus

    56. a. y = h ! hrx (slope is 0!h

    r!h=

    !h

    r) or hx + ry = rh or x = r ! r

    hy .

    b. Using x = r ! rhy as the radius of a disk, V = ! (r " r

    hy)2dy

    0

    h

    # .

    c. Yes: V = ! (r " rhy)2dy

    0

    h

    # = ! (r2 " 2 r2

    hy + r

    2

    h2y2

    0

    h

    # )dy = ! r2 (1" 2y

    h+y2

    h2)dy

    0

    h

    #

    = ! r2(y "y2

    h+

    y3

    3h2)h

    0= ! r2(h " h

    2

    h+

    h3

    3h2) = ! r2(h

    3) = ! r

    2h3

    57. Now we have washers with inner and outer radii of 1 and 1+ 6

    y!

    5

    y2

    V = (! (1+ 6y" 5y2

    )21

    13

    # " ! $12dy = ! (1+ 36y2113

    # + 25y4 +12y" 10y2

    " 60y3

    "1)dy

    = ! (12y"1 + 26y"2 " 60y"3 + 25y"4 )dy1

    13

    # = ! (12 ln y + 26"1 y"1 " 60 $y"2

    "2+ 25 $

    y"3

    "3)

    13

    1

    = ! (12 ln y " 26y"1 + 30y"2 " 253

    )13

    1% 104.572 in.3

    58. a. The graph of x ! 4 is symmetric about x = 4 , so

    x ! 4 dx0

    8

    " = 2 (x ! 4)dx = 2( x2

    2! 4x)

    8

    44

    8

    " = 2 # (32 ! 32 ! (8 !16)) = 2 #8 = 16 (This is easily found as the area of two triangles.)

    b. = (w3 ! 2)dw = w44

    ! w2

    2+ C"

    c. = ! !7dx!5

    !1

    " = 7dx = 4 # 7 = 28!5!1

    " , area of a rectangle.

    d. This is a quarter circle: ! "524

    =25!

    4.

    59. Each doll is like a slice of the largest doll, so that when you add up all their volumes,

    ideally you will get the full volume of the largest doll. 60. sum = 2! xdx = 2! " x2

    2

    r

    0= ! x2

    0

    r

    #r

    0= ! r2 = area of a circle.

    61. Rotating y = r2 ! x2 about the x-axis yields disk slices with radius r2 ! x2 and width dx:

    V = ! ( r2 " x2 )2dx ="r

    r

    # (r2 " x2 )dx = ! (r2 $ x " x3

    3)

    r

    "r"r

    r

    # = ! ((r3 " r3

    3) " ("r3 + r

    3

    3))

    = ! (2r3 " 23r3) = ! $ 4

    3r3 =

    43! r3

  • Chapter 8 Solutions Calculus

    62. a. Use washers, but with 2 sections (2 integrals). b. y = 0.5x2, 2y = x V = (! (3)2 " ! (1)2 )dy

    0

    0.5

    # + (! (3)20.54.5

    # " ! ( 2y )2 )dy

    = 8! y0.5

    0+ ! (9 " 2y)

    0.5

    4.5

    # dy

    = 4! + (! (9y " y2 )4.5

    0.5)

    = 4! + ! (812" 814) " ! (9

    2" 14)

    = 4! + 814! " 17

    4! = 4! + 64!

    4= 20! un3

    63. a. Positive slope, concave up: b b. Negative slope, concave down: d c. Positive slope, concave down: c d. Negative slope, concave up: a, e 64. a. Doll shells b. Circumference strips c. He used the circumference of a strip and dx as the rectangles length and width. 65. Note: These are the actual volumes using the shell method. 2! x " f (x)dx

    a

    b

    #

    1A. 2! x(x " 2)2dx0

    2

    # = 2! (x3 " 4x2 + 4x)dx02

    # = 2! 14 x4 "43x3 + 2x2( ) 2

    0= 83! !un3

    1B. In this case the radius is 2 ! x . 2! (2 " x)(x " 2)2dx

    0

    2

    # = 2! ("x3 + 6x2 "12x + 8)dx02

    # =

    2! " 14x4 + 2x3 " 6x2 + 8x( ) 2

    0= 8! !un3

    1C. In this case the radius is x +1 .

    2! (x +1)(x " 2)2dx

    0

    2

    # = 2! (x3 " 3x2 + 4)dx02

    # = 2! 14 x4 " x3 + 4x( )2

    0=

    2! (4 " 8 + 8) = 8! !un3

    2A. 2! x(4 " x)0

    4

    # dx = 2! (4x " x2 )04

    # dx = 2! 2x2 " 13 x3( )4

    0= 64

    3! !un3

    Solution continues on next page.

  • Chapter 8 Solutions Calculus

    65. Solution continued from previous page. 2B. In this case the radius is 4 ! x .

    2! (4 " x)(4 " x)dx0

    4

    # = 2! (16 " 8x + x2 )04

    # dx = 2! 16x " 4x2 + 13 x3( )4

    0=

    2! 64 " 64 + 643( ) =

    1283

    ! !un3

    2C. In this case the radius is 2 + x . 2! (2 + x)(4 " x)

    0

    4

    # dx = 2! (8 + 2x " x2 )04

    # dx = 2! 8x + x2 " 13 x3( )4

    0= 160

    3! !un3

    3A. 2!0

    4

    " x2dx = 2! 13 x3( )4

    0= 128

    3! !un3

    3B. In this case the radius is 1+ x . 2! (1+ x)(x)

    0

    4

    " dx = 2! (x + x2 )04

    " dx = 2! 12 x2 +13x3( ) 4

    0= 176

    3! !un3

    3C. In this case the radius is 4 ! x . 2!

    0

    4

    " (4 # x)(x)dx = 2! (4x # x2 )04

    " dx = 2! 2x2 # 13 x3( )4

    0= 64

    3! !un3

    4A. 2!0

    4

    " x xdx = 2! x3/204

    " dx = 2! 25 x5/2( )4

    0= 128

    5! !un3

    4B. In this case the radius is 4 ! x .

    2! (4 " x) x

    0

    4

    # dx = 2! (4x1/2 " x3/2 )dx04

    # = 2! 83 x3/2 "25x5/2( ) 4

    0=

    2! 643" 645( ) =

    25615

    ! !un3

    4C. In this case the radius is 5 ! x . 2! (5 " x) x

    0

    4

    # dx = 2! (5x1/2 " x3/2 )dx04

    # = 2! 103 x3/2 "25x5/2( ) 4

    0=

    2! 803" 645( ) =

    23615

    ! !un3

    66. a. A thin box with length 2! x , width f (x) , and thickness dx. b. 2! x " f (x)dx

    c. 2! x " f (x)dxa

    b

    #

    d. 2! x(0.5x2 )dx1

    3

    " = ! x3)dx13

    " = ! x4

    4

    3

    1= ! 81

    4# 14( ) = 20! $ 62.832 cm3

  • Chapter 8 Solutions Calculus

    67. a. 2x= 1+

    1

    y

    2

    x!1 =

    1

    y

    2!xx

    =1

    y

    x2!x

    = y

    !y = 1"(2#x)#x(#1)(2#x)2

    =2

    (2#x)2 At (1, 1) it is 2.

    b. x2y ! y3 = 82xy + x2 "y ! 3y2 "y = 0

    2xy = 3y2 "y ! x2 "y

    2xy = "y (3y2 ! x2 )

    2xy

    3y2 !x2= "y

    At (3, 1) it is 1.

    68. a. = 2 ! t3/2

    3

    2

    + t3

    3

    4

    1= 43!8 + 64

    3"

    4

    3+ 13( ) =

    96

    3"5

    3= 91

    3

    b. U = x2 +1,!dU = 2xdx : x

    x2 +1dx! = 12 "

    2xdx

    x2 +1! =12

    dU

    U! =12ln U + C = 1

    2ln(x2 +1) + C (using substitution)

    c. U = cos u,!dU = ! sin du : tan udu!" /4

    " /4

    # = !! sin u ducos u!" /4

    " /4

    # = ! dUU!" /4" /4

    #= ! ln U

    " /4

    !" /4=! ln cos u

    " /4

    !" /4= ! ln 2

    2( ) + ln 22( ) = 0

    The best way to realize it is 0 is by symmetry (tangent is odd). d. ln(e2x )! dx = 2x dx! = x2 + C 69. E: 2x2dx

    1

    2

    ! = 2 " x#1

    #1

    2

    1=

    #2x

    2

    1= #1+ 2 = 1

    70. B: This is ! (2x)2 " ! (2x2 )2( )

    0

    1

    # dx = (4x2 " 4x4 )dx01

    # 71. D: At x = 0, lim

    x!0f (x) = 1 (by graphing of lHopitals rule), so I is false.

    As x!",! f (x)! 0 , so II and III are true. 72. D: I is false because !f (b) does not exist. II and III are true.

  • Chapter 8 Solutions Calculus

    73. E: The average is 1e!1

    (ln x2 )dx1

    e

    " # 1.164 Without a calculator if one notes that f is concave down in this interval, with endpoints at

    (1, 0) and (e, 2), then it is apparent that its average value must be above the average of 0 and 2, i.e., greater than 1.

    74. D: (x2 +1)dx0

    c

    ! = (x2 +1)c2

    ! dxx3

    3+ x

    c

    0=

    x3

    3+ x

    2

    c

    c3

    3+ c =

    83+ 2 "

    c3

    3" c

    c3+ 3c = 8 + 6 " c3 " 3c

    2c3 + 6c = 14

    c3+ 3c " 7 = 0!!!!!#!!!!!c $ 1.406!by!using!a!calculator

    75. a. !(x ! 3)2 + 4( ) dx1

    4

    " = (!x2 + 6x ! 5)dx14

    " = ! x3

    3+ 3x2 ! 5x

    4

    1

    = ! 643+ 48 ! 20( ) ! ! 13 + 3! 5( ) = 9 un2

    b. 2! x("(x " 3)2 + 4)dx1

    4

    # = 2! ("x3 + 6x2 " 5x)dx14

    # = 2! " x4

    4+ 6x

    3

    3" 5x

    2

    2( ) 41= 2! ("64 +128 " 40) " " 1

    4+ 2 " 5

    2( )( ) = ! 48 " " 32( )( ) = 99!2 $ 155.509 un3

    76. a. It would have two different parts of f (x) as its bounds (radii). b. Shells would only requite one integral, instead of 2 with washers/discs. c. x ranges from 0 to 3. d. radius = 1 + x, height = f (x) = !x2 + 2x + 3

    e. 2! (1+ x)("x2 + 2x + 3)dx0

    3

    # = 2! ("x3 + x2 + 5x + 3)dx03

    #= 2! " x

    4

    4+ x

    3

    3+ 5x

    2

    2+ 3x( ) 30 = 2! " 814 + 273 + 452 + 9( ) = 81!2 $ 127.235 un3

    77. 2! (x +1)("x2 + 2x + 3" (x +1))dx

    "1

    2

    # = 2! (x +1)("x2 + x + 2)dx"12

    # Note: The height is the difference of the two functions.

  • Chapter 8 Solutions Calculus

    78. a. See graph at right. Graph is scaled by 10s. 5x0.5 ! 0.1x1.5 = 0

    5x0.5 = 0.1x1.5

    5 "x0.5

    x0.5

    = 0.1 "x1.5

    x0.5

    5 = 0.1x

    x = 50 ft

    b. V = ! (5x0.5 " 0.1x1.5 )2dx = ! (25x " x2 + .01x3)dx0

    50

    #050

    # = ! (25 $ x2

    2" x

    3

    3+ .01 $ x

    4

    4)

    50

    0

    = ! (31250 " 1250003

    +15625) = ! $5208 13% 16362.462 ft3

    c. The 120 aliens take up 10% !16362.462 ft3 " 1636.246 ft3 and the average weight is 13.635 ft3 !

    3.5lbs

    ft3" 47.724 lbs.

    79. a. Vavg = total displacementtotal time = 1200m96sec = 12.5 m/sec

    b. d(t) ! 0.000145x4 " 0.0246x3 +1.315x2 "15.808x + 5.582,#d (t) ! 0.000579x3 " 0.0734x2 + 2.629x "15.808

    #d (96) ! 69.952 m/s ! 0.069952 km/s $602s/hr ! 251.829 km/hr

    Which might be too fast. c. See graph at right. It is a cubic. Between 50 and 70

    seconds the competitor does not go far, but then he speeds up again.

    80. a. f (x)dx =

    c

    a

    ! " f (x)dx = "( f (x)dx +ab

    !ac

    ! f (x)dx) = "(2.5 " 5) = 2.5bc

    !

    b. 2 f (x)dx = 2( f (x)dx + f (x)dx)b

    c

    !ab

    !ac

    ! = 2(2.5 " 5) = "5

    c. = ! f (x)dx = !( f (x)dx + f (x)dx + f (x)dxc

    d

    "bc

    "ab

    "ad

    " ) = !(2.5 ! 5 +1.5) = !(!1) = 1

    d. 0 81. B: !f (x) = d

    dx(x3 "10x2 + 21x) = 3x2 " 20x + 21 = 0, x =

    20 400"4(3)#21

    6=20 148

    6,

    max is at x = 20! 1486

    =10! 37

    3 and is about 12.597 .

    t

    v(t)

    20

    20

    40 60 80

    40

  • Chapter 8 Solutions Calculus

    82. C: x2 = 8 + 2xyx2 !82x

    = y

    y = x2!4

    x

    !y = 12" 4 # ("1)x"2 = 1

    2+

    4

    x2

    !y = 12+

    44=

    32

    at x = 2

    83. A: !!!!!!!!! x 1! x2dx

    0

    1

    " !!#!!U = 1! x2, dU = !2xdx

    = ! 12

    (!2x) 1! x2dx0

    1

    " = ! 12 UdUx=01

    "

    = ! 12U3/2

    32

    = ! 13U 3/2 = ! 1

    3(1! x2 )3 2

    1

    0= ! 1

    3(0) + 1

    3$1 = 1

    3

    84. D: !f (x) = "e"x " 3x2 + 6x "10

    !!f (x) = e"x " 6x + 6

    , which is zero and changes sign at about 1.06 .

    85. B (At horizontal tangents the derivative is 0.) 86. a. Shells: V = 2! x(x +1" (x2 " 6x + 7))dx

    1

    6

    #

    or 2! x("x2 + 7x " 6)dx1

    6

    #

    b. Washers: V = (! (3+ x +1)2 " ! (3+ x2 " 6x + 7

    1

    6

    # )2 )dx

    or ! ((x + 4)2 " (x2 " 6x +10)2 )dx1

    6

    #

    Graph is scaled by 2s. c. Washers: V = (! ("y2 + 3)2 " ! (y2 +1)2 )dy

    "1

    1

    #

    or ! ("8y2 + 8)dy"1

    1

    #

    Solution continued on next page.

  • Chapter 8 Solutions Calculus

    86. Solution continued from previous page.

    d. Shells: V = 2! (2 " y)("y2 + 3" (y2 +1))dy"1

    1

    #

    or 2! (2 " y)("2y2 + 2)dy"1

    1

    #

    e. Disks: V = ! (cos x + 2)2dx

    0

    2!

    " f. Shells: V = 2! x(cos x + 2)dx

    0

    2!

    " g. Washers: V = (! (6 " x)2 " ! (2x )2 )dx

    0

    2

    #

    = ! ((6 " x)2 " 4x )dx0

    2

    #

    h. Shells: V = 2! x("x + 6 " 2x )dx

    0

    2

    #

  • Chapter 8 Solutions Calculus

    87. a. g(2) = f (t)dt0

    2

    ! = 2 (triangle), g(4) = 2 ! "#22

    2= 2 ! 2" (semicircle)

    b. No, it is the opposite.

    c. f (x)dx =!2

    2

    " f (t)dt + f (t)dt02

    "!20

    " = !g(!2) + g(2)

    d. Yes, in fact, its derivative is ddx

    f (t)dt = f (x)0

    x

    ! in this interval.

    e. This is where its derivative changes from positive to negative: x = 2 . f. g(4) = 2 ! 2" and g1(4) = f (4) = !2 , so the tangent line is

    y = !2(x ! 4) + 2 ! 2" = !2x +10 = 2" . g. This is where the derivative of f changes sign: x = 0 and 4. 88. a. = yey !ey

    y2, using the Quotient Rule.

    b. = 12(sin x)!1 2 " cos x , using the Chain Rule.

    c. = dd!(5(cos2 ! + sin2 !)) = d

    d!(5) = 0 , by simplifying first.

    89. D: This is d

    dx( x ) = 1

    2x!1 2 .

    90. A: There are twenty terms, all multiplied by 1

    20, which is the width of a rectangle.

    91. C: The intersection is at ex = !x + 3 or ex + x ! 3 = 0, x " 0.792 : A ! ("x + 3" ex )dx

    0

    .792

    # = " x2

    2+ 3x " ex

    0.792

    0! "0.145 " ("1) ! 0.855

    92. C: It is flat at x = 0 and 2.

    93. E: =x12x!1 2( )e x ! 12 x!1 2e x

    x=ex (1!x!1 2 )

    2x=ex (x! x )

    2x2.

    94. C: = f (x)dx

    a

    b

    ! + ("3)dx = 2b " a + ("3)(b " a) = 2b " a " 3b + 3a = "b + 2aab

    !

  • Chapter 8 Solutions Calculus

    95. D: I uses cylindrical shells and II uses disks. 96. a. Slice horizontally b. Slice horizontally, but you would get three different similar shapes. c. Slice vertically. d. No convenient way to slice.

    97. b. A(i)!xc=1

    n

    "

    c. With an integral: A(x)dxL

    R

    ! The limit of the sums of volumes as the number of slices !" .

    100. It does not matter when some cards in a deck protrude out of it; the deck maintains its

    volume, as each card has the same height. 101. a. ! (1

    2x cos x + 4)2dx

    0

    5

    " b. 2! x(12 x cos x + 4)dx05

    "

    c. 2! (6 " x)(12x cos x + 4)dx

    0

    2

    # d. (! (12 x cos x +11)2 " ! # 4905

    $ )dx 102. D: = !1

    1!(3x)2" 3 = !3

    1!9x2 by the Chain Rule

    103. B: Vavg = 1! (t + sin t)dt = 1!0

    !

    " ( t2

    2# cos t)

    !

    0=1!(!2

    2# (#1) # (#1)) = !

    2+2!

    . 104. C: !F (5) = 9 " 5 = 2 , but F(!7) is negative on the graph, and !!F (x) = "1

    2 9"x is negative.

  • Chapter 8 Solutions Calculus

    105. D: dPdt

    = 0.02P + 357

    dP

    0.02P+357= dt

    dP0.02P+357! = dt!10.02

    ln(0.02P + 357) = t + C

    ln(0.02P + 357) = 0.02t + C

    0.02P + 357 = e0.02t+C

    0.02P = Ce0.02t

    0.02P = "357 + Ce0.02t

    P = "17850 + Ce0.02t

    !17850 + C = 18000C = 35850

    P(6) = !17850 + 35850e0.02"6

    # 22571

    106. D: xy = x(3x !12) : d

    dx(x(3x !12)) = d

    dx(3x2 !12x) = 6x !12 = 0, x = 2,

    minimum product = 2(6 !12) = !12 . 107. The derivative of g is f: D starts out in a positive direction and is flat at a and b. 109. ln xdx

    a

    b

    ! ; No, Cavalieris theorem. 108. 1(a): 2 ( 9 ! x2 )2

    0

    3

    " dx = 36!un3

    1(b): 2 12( 9 ! x2 )2

    0

    3

    " dx = 18!un3

    1(c): 2 2( 9 ! x2 )20

    3

    " dx = 72!un3

    1(d): 2! 12( ) (

    129 " x2 )2

    0

    3

    # dx = 92 ! !un3

    1(e): 2 12( 9 ! x2 )2

    0

    3

    " dx = 18!un3

    1(f): 2 32( 9 ! x2 )2

    0

    3

    " dx = 18 3 !un3

    1(g): 2 12

    9 ! x2 + 129 ! x2( ) 12 9 ! x2( )0

    3

    " dx = 34 (9 ! x2 )dx03

    " = 272 !un3

    1(h): 2 !4( 9 " x2 )2

    0

    3

    # dx = 9! !un3

    1(i): 2! (129 " x2 )2

    0

    3

    # dx = 9! !un3

    Solution continues on next page.

  • Chapter 8 Solutions Calculus

    108. Solution continued from previous page. Note: For number 2, x2 = 9 ! y2 .

    2(a): (2x)(2x)dy0

    3

    ! = 4 (9 " y2 )03

    ! dy = 72!un3

    2(b): (2x)(x)dy0

    3

    ! = 2 (9 " y2 )03

    ! dy = 36!un3

    2(c): (2x)(4x)dy0

    3

    ! = 8 (9 " y2 )03

    ! dy = 144 !un3

    2(d): !2

    (x)(x)dy0

    3

    " = !2 (9 # y2 )03

    " dy = 9! !un3

    2(e): 12

    (2x)(2x)dy0

    3

    ! = 2 (9 " y2 )03

    ! dy = 36!un3

    2(f): 12(2x)(x 3)dy

    0

    3

    ! = 3 (9 " y2 )03

    ! dy = 18 3 !un3

    2(g): 12(2x + x)(x)dy

    0

    3

    ! = 32 (9 " y2 )03

    ! dy = 27!un3

    2(h): !4

    (2x)2dy0

    3

    " = ! (9 # y2 )03

    " dy = 18! !un3

    2(i): ! (x)(x)dy0

    3

    " = ! (9 # y2 )03

    " dy = 18! !un3

    3(a): 2 (3! y)20

    3

    " dx = 2 (6 ! 2x)203

    " dx = 72!un3

    3(b): 2 12(3! y)2

    0

    3

    " dx = (6 ! 2x)203

    " dx = 36!un3

    3(c): 2 2(3! y)20

    3

    " dx = 4 (6 ! 2x)203

    " dx = 144 !un3

    3(d): !2

    12(3" y)( )

    2

    0

    3

    # dx = !8 (6 " 2x)203

    # dx = 92 ! !un3

    3(e): 12

    (3! y)20

    3

    " dx = 12 (6 ! 2x)203

    " dx = 18!un3

    3(f): 12

    3

    2(3! y)2

    0

    3

    " dx =3

    4(6 ! 2x)2

    0

    3

    " dx = 9 3 !un3

    3(g): 12(3! y) + 1

    2(3! y)( )

    0

    3

    " 12 (3! y)( ) dx =38

    (6 ! 2x)20

    3

    " dx = 272 !un3

    3(h): !4

    (3" y)20

    3

    # dx = !4 (6 " 2x)203

    # dx = 9! !un3

    3(i): ! 12(3" y)( )

    2

    0

    3

    # dx = !4 (6 " 2x)203

    # dx = 9! !un3 Solution continues on next page.

  • Chapter 8 Solutions Calculus

    108. Solution continued from previous page.

    4(a): (x ! (!3))2dx!3

    3

    " = (x + 3)2dx!33

    " = 72!un3

    4(b): 12

    (x + 3)2dx!3

    3

    " = 36!un3

    4(c): 2 (x + 3)2dx!3

    3

    " = 144 !un3

    4(d): !2

    12(x + 3)( )

    2dx

    "3

    3

    # = !8 (x + 3)2dx"33

    # = 9! !un3

    4(e): 12

    (x + 3)2dx!3

    3

    " = 36!un3

    4(f): 12

    3

    2(x + 3)2dx

    !3

    3

    " =3

    4(x + 3)2dx

    !3

    3

    " = 18 3 !un3

    4(g): 12(x + 3) + 1

    2(x + 3)( )

    !3

    3

    " 12 (x + 3)( ) dx =38

    (x + 3)2!3

    3

    " dx = 27!un3

    4(h): !4

    (x + 3)2"3

    3

    # dx = 18! !un3

    4(i): ! 12(x + 3)( )

    2dx

    "3

    3

    # = !4 (x + 3)2dx"33

    # = 18! !un3

    5(a): ( x +1)2dx!1

    3

    " = (x +1)dx!13

    " = 8!un3

    5(b): 12( x +1)( x +1)dx

    !1

    3

    " = 12 (x +1)dx!13

    " = 4 !un3

    5(c): 2( x +1)( x +1)dx!1

    3

    " = 2 (x +1)dx!13

    " = 16!un3

    5(d): !2

    12

    x +1( )2dx

    "1

    3

    # = !8 (x +1)dx"13

    # = ! !un3

    5(e): 12( x +1)( x +1)dx

    !1

    3

    " = 12 (x +1)dx!13

    " = 4 !un3

    5(f): 12( x +1)(

    3

    2x +1)dx

    !1

    3

    " =3

    4(x +1)dx

    !1

    3

    " = 2 3 !un3

    5(g): 12!1

    3

    " x +1 + 12 x +1( ) 12 x +1( ) dx = 38 (x +1)!13

    " dx = 8!un3

    5(h): !4( x +1)2dx

    "1

    3

    # = !4 (x +1)dx"13

    # = 2! !un3

    5(i): ! 12

    x +1( )2dx

    "1

    3

    # = !4 (x +1)dx"13

    # = 2! !un3

    Solution continues on next page.

  • Chapter 8 Solutions Calculus

    108. Solution continued from previous page.

    6(a): 2 (3sin x)2dx0

    3

    ! = 18 (sin x)203

    ! dx " 28.26!un3

    6(b): 2 (3sin x) 32sin x( ) dx

    0

    3

    ! = 9 (sin x)203

    ! dx " 14.13!un3

    6(c): 2 (3sin x)(6 sin x)dx0

    3

    ! = 36 (sin x)203

    ! dx " 56.52!un3

    6(d): 2 !2(3 sin x)2dx

    0

    3

    " = 9! (sin x)203

    " dx # 14.13! !un3

    6(e): 2 12(3 sin x)(3 sin x)dx

    0

    3

    ! = 9 (sin x)203

    ! dx " 14.13!un3

    6(f): 2 12(3 sin x)(

    3 3

    2sin x)dx

    0

    3

    ! =9 3

    2(sin x)2

    0

    3

    ! dx " 12.24 !un3

    6(g): 2 12(3 sin x + 3

    2sin x)( 3

    2sin x)dx

    0

    3

    ! = 274 (sin x)203

    ! dx " 10.60!un3

    6(h): 2 !4(3 sin x)2dx

    0

    3

    " = 92 ! (sin x)203

    " dx # 7.065! !un3

    6(i): 2 ! (3 sin x)2dx0

    3

    " = 18! (sin x)203

    " dx # 28.26! !un3

    Note: For number 7 the radius/length is (3! x) , where x = y2 !1 . Thus r = (4 ! y2 ) .

    7(a): (3! x)20

    2

    " dy = (4 ! y2 )2dy02

    " = 17 115 =25615

    !un3

    7(b): (4 ! y2 ) 12(4 ! y2 )( ) dy

    0

    2

    " = 12 (4 ! y2 )2dy02

    " = 25630 !un3

    7(c): (4 ! y2 ) 2(4 ! y2 )( ) dy0

    2

    " = 2 (4 ! y2 )2dy02

    " = 51215 !un3

    7(d): !2

    12(4 " y2 )( )

    2dy

    0

    2

    # = !8 (4 " y2 )2dy02

    # = 3215 ! !un3

    7(e): 12(4 ! y2 )(4 ! y2 )dy

    0

    2

    " = 12 (4 ! y2 )2dy02

    " = 25630 !un3

    7(f): 12(4 ! y2 ) 3

    2(4 ! y2 )( ) dy

    0

    2

    " =3

    4(4 ! y2 )2dy

    0

    2

    " =64 3

    15!un3

    7(g): 12(4 ! y2 ) + 1

    2(4 ! y2 )( ) 12 (4 ! y2 )( ) dy0

    2

    " = 38 (4 ! y2 )2dy02

    " = 325 !un3

    7(h): !4(4 " y2 )2dy

    0

    2

    # = !4 (4 " y2 )2dy02

    # = 6415 ! !un3

    7(i): ! 12(4 " y2 )( )

    2dy

    0

    2

    # = !4 (4 " y2 )2dy02

    # = 6415 ! !un3 Solution continues on next page.

  • Chapter 8 Solutions Calculus

    108. Solution continued from previous page.

    8(a): (3! x)2dy!3

    3

    " = (3! y)2dy!33

    " = 72!un3

    8(b): 12

    (3! y)(3! y)dy!3

    3

    " = 36!un3

    8(c): 2 (3! y)2dy!3

    3

    " = 144 !un3

    8(d): !2

    12(3" y)( )

    2dy

    "3

    3

    # = !8 (3" y)2dy"33

    # = 9! !un3

    8(e): 12

    (3! y)2dy!3

    3

    " = 36!un3

    8(f): 12

    3

    2(3! y)2dy

    !3

    3

    " =3

    4(3! y)2dy

    !3

    3

    " = 18 3 !un3

    8(g): 12(3! y) + 1

    2(3! y)( )

    !3

    3

    " 12 (3! y)( ) dy =38

    (3! y)2!3

    3

    " dy = 27!un3

    8(h): !4

    (3" y)2"3

    3

    # dy = 18! !un3

    8(i): ! 12(3" y)( )

    2dy

    "3

    3

    # = !4 (3" y)2dy"33

    # = 18! !un3

    Note: For number 9 the radius/length is 2x = y + 3.

    9(a): (y + 3)2!3

    3

    " dy = 72!un3

    9(b): 12(y + 3)(y + 3)

    !3

    3

    " dy = 36!un3

    9(c): 2(y + 3)(y + 3)!3

    3

    " dy = 144 !un3

    9(d): !2x2

    "3

    3

    # dy = !212(y + 3)( )

    "3

    3

    #2

    dy = !8

    (y + 3)2"3

    3

    # dy = 9! !un3

    9(e): 12(y + 3)(y + 3)

    !3

    3

    " dy = 36!un3

    9(f): 12(y + 3) 3

    2(y + 3)( )!3

    3

    " dy =3

    4(y + 3)2

    !3

    3

    " = 18 3 !un3

    9(g): 12(y + 3) + 1

    2(y + 3)( )

    !3

    3

    " 12 (y + 3)( ) dy =38

    (y + 3)2!3

    3

    " dy = 27!un3

    9(h): !4(y + 3)2dy

    "3

    3

    # = 18! !un3

    9(i): ! x2"3

    3

    # dy = ! 12 (y + 3)( )"33

    #2

    dy = !4

    (y + 3)2"3

    3

    # dy = 18! !un3

  • Chapter 8 Solutions Calculus

    110. The radius is x. x = y ( y )20

    9

    ! dy 111. ( x )2

    0

    4

    ! dx = x04

    ! dx = 12 x24

    0=162

    " 0 = 8 un2 112. 2 (2(4 ! x2 ))2

    0

    2

    " dx 113. dl = 6,!dw = 2,!A = lw,!dA = (dl)w + l(dw) = 6(15) + 30(2) = 90 + 60 = 150 cm2 /sec 114. a. Use integration by parts. Let u = x!!!!!1dx and dv = (2x !1)!1/2dx!!"!!(2x !1)1/2 .

    x(2x !1)1/2 ! (2x !1)1/2dx1

    5

    "

    x(2x !1)1/2 ! 13(2x !1)3/2( ) 5

    1= (15 ! 9) ! 1! 1

    3( ) = 513= 16

    3

    b. Let u = 1! x2 !!" du = !2xdx . If x = 1, u = 0. If x = 0, u = 1. u ! 1

    2du( )

    1

    0

    " = ! u ! 12 du( )01

    " = 122

    3u3/2( ) 1

    0= 13

    c. Let u = x2 +1!!!!!du = 2xdx . If x = 2, u = 5. If x = 0, u = 1. 12u

    !du1

    5

    ! = 12 ln u5

    1=12(ln 5 " ln1) = 1

    2ln 5

    d. Let u = !x2 !!"!!du = !2xdx . If x = 2, u = 4. If x = 0, u = 0. ! 32eu

    0

    !4

    " du = 32 eu!40

    " du = 32 eu0

    !4=3

    2! 32e!4

    115. a. x

    15=42

    60!!!!!x = 10.5 cm3

    b. V = 13! r3 !!"!!dV = ! r2dr 15 = ! (1.7)2dr !!"!!dr = 15

    ! (1.7)2= 1.652 cm/sec

    c. Only if it is chocolate. 116. !g (x) = 1

    !f (g(x))!!"!! !g (3) = 1

    !f (g(3))=

    1!f (1)

    =12

  • Chapter 8 Solutions Calculus

    117. The average rate is the average slope. y(8) = 12(8)2 + 2(8) +1 = 49 ,

    y(0) = 12(0)2 + 2(0) +1 = 1. m = 49!1

    8!0= 6

    The slope is !y (t) = t + 2 . t + 2 = 6!!!!!t = 4 118. a. This is !y at x = 6 if y = ln(x ! 4) . !y = 1

    x"4=

    1

    6"4=1

    2

    b. This is !y at x = 25 if y = 2x !1 . !y = 12 2x"1

    =1

    2 49=1

    14

    c.

    limx!"

    sin2 xx

    = limx!"

    sin xx

    !i! limx!"

    (sin x) = 0 because limx!"

    sin x

    x= 0

    d. 3x > ex since 3 > e . Therefore limx!"

    3x +7x

    ex+10x

    !" . 119. a. y = 4 ! x

    3 (the slope is ! 4

    12= !

    1

    3)

    b. y22

    !dx = (4 " x3)2dx

    c. 12

    (4 ! x3)2dx = 1

    !2(!3)

    (4!x 3)3

    30

    12

    "12

    0= ! 1

    2(4 ! x

    3)3

    12

    0= !0 + 1

    243 = 32 cm3

    120. a. !

    2

    x

    2( )04

    "2

    dx b. 9 ! x2( ) 9!x22"#$

    %&'0

    3

    ( !dx

    c. y2( )2

    dy !y

    2! 4y !16( )

    4

    8

    "04

    "2

    dy 121. a. For a given y, y = 0.05(x + 50)2, 20y = (x + 50)2, 20y = x + 50, x = 20y ! 50 , so

    the length is 2 ! (50 " 20y ) = 100 " 4 5y , so a slice has volume (100 ! 4 5y )2dy . b. (100 ! 4 5y )2dy = (10000 ! 800 5y + 80y)dy

    0

    12

    "012

    "

    = 1000y ! 80 5y3 2

    3 2+ 40y2

    12

    0# 76186 yards3

    c. Full volume is (100 ! 4 5y )2dy = 10000y ! 1600 53

    y3 2 + 40y220

    00

    20

    "

    = 109333 13

    yards3, so there are about 109333 13! 76186 " 33147.5 yards3 left,

    33147.5 yrds3

    60 yrds3 /day= 552.5 days left, 1.514 years left, so no delay.

  • Chapter 8 Solutions Calculus

    122. b. y = h ! hb 2

    x = h ! 2hbx or 2h

    bx = h ! y, x = b

    2!

    b2hy

    c. [2(b2! b2hy)]2

    0

    h

    " dy = (b ! bh y)2dy0h

    " = ! hb #13(b ! b

    hy)3

    h

    0= !0 + h

    b# 13#b3 = 1

    3b2h

    123. b. The length and width of the squares is x. x = !2y + 20

    (20 ! 2y)2dy = (400 ! 80y + 4y2 )dy0

    10

    " = 400y ! 40y2 + 43 y310

    0=40003un3

    0

    10

    " 124. !y = "1

    (1+x2 )2#2x = "2x

    (1+x2 )2 by the Chain Rule.

    At x = !1 we have y = 12

    and !y = 12

    so the tangent line is y = 12(x +1) + 1

    2=12x +1 .

    At x = 2 , we have y = 15

    and !y = "425

    , so the tangent line is y = ! 425(x ! 2) + 1

    3.

    Therefore 12x +1 = ! 4

    25(x ! 2) + 1

    5, 25x + 50 = !8x +16 +10, 33x = !24, x = !24

    33,

    y = 12(!2433) +1 = 21

    33: (!2433, 2133) " (!0.727, 0.636)

    125. a. x ! 4dx = (x!4)3 2

    3 2

    8

    44

    8

    " = 43 2

    3 2=163un2

    b. x ! 4dx = x ! 4

    c

    8

    "4c

    " dx,(x!4)3 2

    3 2

    c

    4=(x!4)3 2

    3 2

    8

    c,(c!4)3 2

    3 2! 0 = 16

    3!(c!4)3 2

    3 2,

    43(c ! 4)3 2 = 16

    3, (c ! 4)3 2 = 4, c ! 4 = 43 2, c = 4 + 42 3 # 6.520

    c. ! ( x " 4 )2dx4

    8

    # = ! (x " 4)dx = ! ( x2

    2" 4x)

    8

    44

    8

    # = ! (32 $ 32 " (8 "16)) = 8! un3 using disks.

    d. ! ( x " 4 )2dx = !d

    8

    #4d

    # ( x " 4 )2dx

    ! ( x2

    2" 4x)

    d

    4= ! ( x

    2

    2" 4x)

    8

    d

    ! (d2

    2" 4d " ("8)) = ! (0 " (d

    2

    2" 4d))

    d2

    2" 4d + 8 = " d

    2

    2+ 4d

    d2 " 8d + 8 = 0

    d =8+ 64"4(8

    2= 4 +

    32

    2= 4 +

    4 2

    2= 4 + 2 2 $ 6.828

    126. A: V = ( 4 ! x )2dx

    0

    4

    " = (4 ! x)dx04

    " = (4x ! x2

    2)4

    0= 16 ! 8 = 8

  • Chapter 8 Solutions Calculus

    127. C: ddx(x2 + y2 ) = d

    dx(25)

    2x + 2y !y = 0

    2y !y = "2x

    y ' = "xy

    ddx( !y ) = d

    dx(" x

    y)

    !!y =y("1)" !y ("x)

    y2=

    "y+x !y

    y2=

    "y+x(" x y)

    y2

    ="y2 "x2

    y3=

    "(x2 +y2 )

    y3=

    "25

    y3

    128. For x in (2, 2), !f (x) = 1

    4"x2# ("2x) = "2x

    4"x2.

    For x > 2 or x < !2 , ddxf (x) = d

    dxln(x2 ! 4) = 1

    x2 !4"2x = !2x

    4!x2.

    We get the same answer: D. 129. E: !f (x) = " 1

    x2" 8x + 7, !!f (x) = "("2) # 1

    x3" 8 = 2

    x3" 8 , which is zero when

    2

    x3= 8, 2

    8= x

    3=14, x = (2!2 )1 3 = 2!2 3 , and undefined at x = 0 it is positive for x in the

    interval (0, 2!2 3) . 130. C: 4ydy = (2x ! 3)dx

    4ydy = (2x ! 3)dx""2y2 = x2 ! 3x + C

    y2 = x2

    2! 3xx + C

    y = x2

    2! 32x + C

    2 = 12!32+ C

    4 = !1+ C

    C = 5

    y = x2

    2!32x + 5, f (2) = 2 ! 3+ 5 = 2

    131. E: !y = 4x3 + 9x2, !y (0) = 0 , so the normal line is vertical; x = 0 . 132. The real length is 1+ (2x)2dx ! 33.637

    "4

    4

    # , so hopefully students will get answers between 30 and 35, for example, by using secants.

    133. The more secants that are used, the better they approximate the curve, so that the estimated

    arc length becomes more accurate.

    134. a. (! x)2 + (! yi )2 b. (! x)2 + (! yi )2i=1

    n

    !

  • Chapter 8 Solutions Calculus

    135. a. As ! x! 0 , the secant line approaches a line tangent to f (x) and xi , so the slope of the secant line approaches the slope of f (x) .

    b. dydx

    at xi; !f (xi )

    c. ! yi! x

    ! "f (xi ), ! yi ! ! x # "f (xi ) ! ! x #2xi (since ddx (x2 ) = 2x )

    d. arc length ! ! x2 + (2 ! x " xi )2i=1

    50

    # = ( 850 )2+ [2 " 8

    50" ($4 + 8i

    50)]2

    i=0

    49

    #

    = ( 425

    )2 + ( 825

    )2($4 + 4i25

    )2

    i=0

    49

    # ! 33.646 units

    136. a. limn!"

    ! x2+ (2! x # xi )

    2

    i=1

    n

    $ = limn!"

    (8n)2 + (16

    n# (%4 + 8i

    n))2

    i=0

    n%1

    $

    b. limn!"

    (1+ 4xi2)! x2

    i=1

    n

    # = limn!"

    1+ 4xi2

    i=1

    n

    # ! x = 1+ 4x2$4

    4

    % dx

    c. ! 33.637 , so the approximation was off by a little less than 0.01(! 0.009) .

    137. a. limn!"

    ! x2 + ! yi2

    i=1

    n

    # = limn!"

    1+ (! yi! x)2

    i=1

    n

    # ! x2 = limn!"

    1+ (! yi! x)2

    i=1

    n

    # ! x

    b. 1+ ( !f (x))2a

    b

    " dx 138. a. 1+ cos2 x

    0

    !

    " dx # 3.820 units (by calculator)

    b. 1+ (x !1)1/2( )21

    9

    " dx = 1+ (x !1)19

    " dx = x19

    " dx = 23 x3/29

    1= 54

    3! 23= 52

    3!units

    139. a. !f (x) = ex : 1+ e2x

    "2

    2

    # dx $ 9.010!units (by calculator).

    b. !f (x) = 1x

    x2 +1

    x21

    e

    " # 2.0035!units (by calculator)

  • Chapter 8 Solutions Calculus

    140. ln y = ln ex2 = x2 !!!!!x = ln y,

    V = (2 ln y1

    e

    " )2dy = 4(ln y)dy = 4(y ln y # y)1e

    "e

    1

    = 4(e # e) # 4(0 #1) = 4 !un3

    141. xn+1 = xn ! f (xn )"f (xn ) (xn )

    "f (x) = ! 1(1+x2 )

    #2x = !2x(1+x2 )2

    x2 = 1!1 2

    1 2= 2

    x3 = 3.25, x4 = 5.023,!...

    The values keep getting larger, but the function has no root for Newtons Method to approach; only an asymptote of y = 0 .

    142. a. Use washers: (! (2x +1)2 " ! (x2 +1)2 )dx

    0

    2

    #

    b. Use shells: 2! x(2x +1" (x2 +10

    2

    # ))dx

    c. Use washers: (! (4 " x2 )2 " ! (4 " 2x)2 )dx0

    2

    #

    d. Use shells: 2! (4 " x)(2x +1" (x2 +1))dx0

    2

    # 143. a. f = x, dg = 5x dx, df = dx, g = 1

    ln 5!5x :

    x5x dx = xln 55x " 5

    x

    ln 5dx = x

    ln 5!5x " 5

    x

    (ln 5)2## + C =5x

    ln 5(x " 1

    ln 5) + C

    b. u = ln x +1, du = dxx: ln x+1

    xdx

    1

    e

    ! = udu =x=1e

    ! u2

    2

    e

    x=1=(ln x+1)2

    2

    e

    1= 2 " 1

    2=32

    c. u = x2 ! 4, du = 2xdx : duu=" 12 ln u + C =

    12ln x2 ! 4 + C

    d. u = x2 + 4, du = 2xdx : xx2 +4

    dx =! 12 ln u + C =12ln(x2 + 4) + C

  • Chapter 8 Solutions Calculus

    144. a. Vavg = 120 ( (10000 +100t)dt + 10t dt)1020

    !010

    ! = 120 (10000t + 50t210

    0) + ( 1

    20 ln 1010t

    20

    10)

    = 100250 + 120 ln 10

    (1020 "1010 ) # 2.1710 $1018km/hr

    b. The Mean Value Theorem does not apply because v is not continuous, but v does equal Vavg at 10t = 2.171 !1018, t = log(2.171 !1018 ) " 18.337sec .

    c. aavg = Vfinal!V020seconds = 1020

    !1000020

    " 5 #1018km/hr/sec d. The Mean Value Theorem does not apply, but a = aavg at

    (ln10) !10t = 5 "1018, t = log( 1ln 10

    !5 !1018 ) # 18.337sec .