course antenna engineering wir aopert micro strip 01

66
1 Course Antenna Engineering Dirk Heberling 3. Antenna Concepts and Analysis Wire Antennas Aperture Antennas Microstrip Antennas

Upload: jgf31

Post on 29-Nov-2014

477 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Course Antenna Engineering Wir Aopert Micro Strip 01

1Course Antenna Engineering

Dirk Heberling

3. Antenna Concepts and Analysis

• Wire Antennas• Aperture Antennas• Microstrip Antennas

Page 2: Course Antenna Engineering Wir Aopert Micro Strip 01

2Course Antenna Engineering

Dirk Heberling

3.1 Wire Antennas

• Dipole Antennas and Derivates• Antenna Matching and Balancing• Loop Antennas• Yagi-Uda Antennas• Helix Antennas and Broadband

Antennas• Mobile Phone Antennas

Page 3: Course Antenna Engineering Wir Aopert Micro Strip 01

3Course Antenna Engineering

Dirk Heberling

Wire antennas 1

• Oldest antenna form• Most prevalent antenna form• Nearly any imaginable antenna shape

and configuration• Simple concept• Easy construction• Inexpensive

Page 4: Course Antenna Engineering Wir Aopert Micro Strip 01

4Course Antenna Engineering

Dirk Heberling

Wire antennas 2• Many analytical solutions have been

presented• Modern numerical solutions

- Simple concepts, e.g. Method of Moments (MoM)

- Easy application to computers- Usable for many wire configurations

• High accuracy of simple theory

Page 5: Course Antenna Engineering Wir Aopert Micro Strip 01

5Course Antenna Engineering

Dirk Heberling

Example of a wire antennas

Base station antenna for GSM

Page 6: Course Antenna Engineering Wir Aopert Micro Strip 01

6Course Antenna Engineering

Dirk Heberling

Straight Wire Dipole 1

current distribution

( ) sin , z2 2mL LI z I k z⎛ ⎞⎛ ⎞= − ≤⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

for L < λ /2

Maximum current at the terminals:

( )0 sin2mLI z I k⎛ ⎞= = ⎜ ⎟

⎝ ⎠Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

Page 7: Course Antenna Engineering Wir Aopert Micro Strip 01

7Course Antenna Engineering

Dirk Heberling

Straight Wire Dipole 2

current distribution for various centre-fed dipoles

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

Page 8: Course Antenna Engineering Wir Aopert Micro Strip 01

8Course Antenna Engineering

Dirk Heberling

Straight Wire Dipolefarfield pattern 1

The radiation integral: ( ) ( ) ' cos2

2

' 'L

jkzLf I z e dzθθ −

−= ∫

leads to the far-zone electric field:

cos cos cos2 2

2 sin

jkr

m

kL kLeE j I

θη

π θ

−⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

for L = λ/2:

( )cos cos

2sin

F

π θθ

θ

⎛ ⎞⎜ ⎟⎝ ⎠=

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

Page 9: Course Antenna Engineering Wir Aopert Micro Strip 01

9Course Antenna Engineering

Dirk Heberling

for L = λ:

( ) ( )cos cos 12sin

Fπ θ

θθ

+=

for L = 3λ/2:

( )

3cos cos20.7148

sinF

π θθ

θ

⎛ ⎞⎜ ⎟⎝ ⎠=

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

Straight Wire Dipolefarfield pattern 2

Page 10: Course Antenna Engineering Wir Aopert Micro Strip 01

10Course Antenna Engineering

Dirk Heberling

Straight Wire Dipolefarfield pattern 3

Radiation pattern for L = 1.25λSource: C. A. Balanis, Antenna Theory, 2nd Ed. Wiley, New York, 1997

Page 11: Course Antenna Engineering Wir Aopert Micro Strip 01

11Course Antenna Engineering

Dirk Heberling

Straight Wire DipoleInput impedance 1

with the radiated power Pr:

( )

2

2 22 2

20 0

cos cos cos1 2 2 sin

2 sin2m

r

kL kLIP r d d

r

π π θη θ θ φ

η θπ

⎧ ⎫⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎪ ⎪⎪ ⎪⎝ ⎠ ⎝ ⎠= ⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

∫ ∫

the radiation resistance Rr gives:

2

2 rr

m

PRI

= for L = λ/2: 73rR = Ω

Page 12: Course Antenna Engineering Wir Aopert Micro Strip 01

12Course Antenna Engineering

Dirk Heberling

Straight Wire DipoleInput impedance 2

for L = λ/2: 73 42.5inZ j= + Ω

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

Page 13: Course Antenna Engineering Wir Aopert Micro Strip 01

13Course Antenna Engineering

Dirk Heberling Source: C. A. Balanis, Antenna Theory, 2nd Ed. Wiley, New York, 1997

Input resistance Rin (Ω)Length L

20π2(L/λ)20<L<λ/4

Input resistance Rin (Ω)Length L

24.7(π L/λ)2.4λ/4<L< λ/220π2(L/λ)20<L<λ/4

Input resistance Rin (Ω)Length L

11.14(π L/λ)4.17λ/2<L< 0.637λ24.7(π L/λ)2.4λ/4<L< λ/2

20π2(L/λ)20<L<λ/4

Straight Wire DipoleInput impedance 3

Approximations for the input impedance:

Page 14: Course Antenna Engineering Wir Aopert Micro Strip 01

14Course Antenna Engineering

Dirk HeberlingSource: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

0.49λ

Resonant length L ShorteningL/2a

2%50000.475λ0.49λ

Resonant length L ShorteningL/2a

5%502%5000

Straight Wire Dipole, shortening by thick wires

0.455λ0.475λ0.49λ

Resonant length L ShorteningL/2a

9%105%502%5000

Page 15: Course Antenna Engineering Wir Aopert Micro Strip 01

15Course Antenna Engineering

Dirk Heberling

Folded Dipole Antenna 1

Transmission line mode

Antenna mode

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

Page 16: Course Antenna Engineering Wir Aopert Micro Strip 01

16Course Antenna Engineering

Dirk Heberling

4in DZ Z=

for L = λ/2

Folded Dipole Antenna 2

212F in FP Z I=

Dipole

212D in DP Z I=

in the antenna mode12F DI I=

280Ω

Folded dipole

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

Page 17: Course Antenna Engineering Wir Aopert Micro Strip 01

17Course Antenna Engineering

Dirk Heberling

Antenna Matching and Feeding

Two primary feeding considerations:

• Matching between transmission line and antenna

• Excitation of the current distribution on the antenna

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

Page 18: Course Antenna Engineering Wir Aopert Micro Strip 01

18Course Antenna Engineering

Dirk Heberling

Antenna Matching 1

Important point:• Good matching not

always necessary• High voltages can arise

on the feeding line with high power applications

Ways of matching:• Discrete matching

network• λ/4-line transformer• Tuning devices like

stubs etc.

Reflected and transmitted power in relation to VSWR

Page 19: Course Antenna Engineering Wir Aopert Micro Strip 01

19Course Antenna Engineering

Dirk Heberling

Antenna Matching 2

sin2in m inLI I zβ⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Change of input impedance:

2

2m

in rmin

IR RI

=

Off-centre feeding of a full wave dipole

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

Page 20: Course Antenna Engineering Wir Aopert Micro Strip 01

20Course Antenna Engineering

Dirk Heberling

Antenna Matching 3

( )21in aZ Zα+

' / 4l λfor

α current division factorbetween the wires

4in aZ Z

for equal radii conductors

The T-Match

Source: C. A. Balanis, Antenna Theory, 2nd Ed. Wiley, New York, 1997

Page 21: Course Antenna Engineering Wir Aopert Micro Strip 01

21Course Antenna Engineering

Dirk Heberling

Antenna Balancing 1

unbalanced currents I1 > I2

Example:Cross section of a coaxial transmission line feeding a

dipole at its centre

balanced currents I1 = I2

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

Page 22: Course Antenna Engineering Wir Aopert Micro Strip 01

22Course Antenna Engineering

Dirk Heberling

BALanced to UNbalancedThe Balun

Coax-fed dipole

Sleeve balun-fed

dipole

Equivalent circuit

Cross section of a sleeve balun

Split coax balun

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

Page 23: Course Antenna Engineering Wir Aopert Micro Strip 01

23Course Antenna Engineering

Dirk Heberling

Wire antennas above imperfect ground

Elevation pattern of a vertical short dipole at the surface of the ground plane

( )cos cossin4

jkrjkh jkh

VIL eE j e e

rθ θ

θ ωμ θπ

−−= + Γ

with 2

2

cos sincos sin

rV

r

ε θ ε θ

ε θ ε θ

′ ′− −Γ =

′ ′+ −

and ro

j σε εωε

′ = −

typical: 15rε =

213 210 3 10m

σ − −Ω

= − ⋅Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

Page 24: Course Antenna Engineering Wir Aopert Micro Strip 01

24Course Antenna Engineering

Dirk Heberling

Loop AntennasThe radiation resistance

of a small loop is

2 2

2

2 31,1713r

kS SR πηλ λ

⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

Increase of the loop resistance by:

Several turns of number n2

231,171rSR n

λ⎛ ⎞⎜ ⎟⎝ ⎠

Introduction of a ferrite core of effective permeability μeff

2

231,171r effSR nμ

λ⎛ ⎞⎜ ⎟⎝ ⎠

Typical μeff: 100 - 10,000

Page 25: Course Antenna Engineering Wir Aopert Micro Strip 01

25Course Antenna Engineering

Dirk Heberling

Square Loop Antennas 1

For the one-wavelength square loop antenna:

( )0ˆ cos x8

I kx λ′ ′= = − ≤1 2I I x

( )0ˆ sin y8

I ky λ′ ′= − = ≤4 3I I y

Page 26: Course Antenna Engineering Wir Aopert Micro Strip 01

26Course Antenna Engineering

Dirk Heberling

yz-plane

xz-plane

Principle plane patterns for one-wavelength square loop antenna

xy-plane

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and

Design, Wiley, New York, 1981

Square Loop Antennas 2

Page 27: Course Antenna Engineering Wir Aopert Micro Strip 01

27Course Antenna Engineering

Dirk Heberling

Square Loop Antenna, Input Impedance

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

Page 28: Course Antenna Engineering Wir Aopert Micro Strip 01

28Course Antenna Engineering

Dirk Heberling

Circular Loop, Equivalent Circuit

( ) ( )in in in r L A iZ R jX R R j X X= + = + + +

Rr = radiation resistanceRL = loss resistance of loop conductor

XA = external inductive reactance = ω LA

Xi = internal high-frequency reactance = ω Li

Source: C. A. Balanis, Antenna Theory, 2nd Ed. Wiley, New York, 1997

Page 29: Course Antenna Engineering Wir Aopert Micro Strip 01

29Course Antenna Engineering

Dirk Heberling

Yagi-Uda Antenna 1

A parasitic linear array of parallel dipoles is called aYagi-Uda antenna

or

Yagi-Uda arrayor

Yagi

First published by Shintaro Uda 1926

Simplification of an antenna array if only a few elements are fed directly.

Up to now,all arrays examined have had all elements active, requiring a direct

connection to each element.

Such an array is referred to as a parasitic array.

Page 30: Course Antenna Engineering Wir Aopert Micro Strip 01

30Course Antenna Engineering

Dirk Heberling

Example of a Yagi-Antenna

Yagi-Antenna for TV and Radio reception

Page 31: Course Antenna Engineering Wir Aopert Micro Strip 01

31Course Antenna Engineering

Dirk Heberling

Yagi-Uda Antenna 2

Field incident to a parasitic element is:

incident driverE E=

0 incident parasiteE E= +withtangential to the parasite

Consider a driver element that is a half-wave dipole and a parasitic element very close to it

parasite incident driverE E E= − = −then

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

Page 32: Course Antenna Engineering Wir Aopert Micro Strip 01

32Course Antenna Engineering

Dirk Heberling

Yagi-Uda Antenna 3

Driver of length 0.4781λ

Parasite of length 0.49λ

Driver of length 0.4781λ

Parasite of length 0.45λ

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

Page 33: Course Antenna Engineering Wir Aopert Micro Strip 01

33Course Antenna Engineering

Dirk Heberling

Yagi-Uda Antenna 4

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

Three-element Yagi-Uda antenna

- Driver of length 0.4781λ- Reflector of length 0.49λ- Director of length 0.45λ

H-plane

E-plane

Page 34: Course Antenna Engineering Wir Aopert Micro Strip 01

34Course Antenna Engineering

Dirk Heberling

Yagi-Uda Antenna 5

Configuration of a general Yagi-Uda antenna

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

Page 35: Course Antenna Engineering Wir Aopert Micro Strip 01

35Course Antenna Engineering

Dirk Heberling

Yagi-Uda Antenna 6Radiation pattern of a six-element Yagi-Uda antenna for TV Channel 15

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

H-plane E-plane

Page 36: Course Antenna Engineering Wir Aopert Micro Strip 01

36Course Antenna Engineering

Dirk Heberling

Broadband Antennas 1An antenna with wide bandwidth is referred to as a

Broadband antennaThe term „broadband“ is a relative measure of the

bandwidth and varies with the circumstances

With fU and fL the upper and lower frequency of operation and fC the centre frequency

Bandwidth as a percent of the centre frequency 100U L

C

f ff−

× Bandwidth defined as a ratio

U

L

ff

If the impedance and the pattern of an antenna do not change significantly over about an octave (fU/fL=2) or more, we classify it as a

broadband antenna

Page 37: Course Antenna Engineering Wir Aopert Micro Strip 01

37Course Antenna Engineering

Dirk Heberling

Broadband Antennas 2

• Broadband antennas– Helical antennas– Biconical antennas– Discone monopole

• Frequency independent antennas– Spiral antennas– Log-periodic antennas

Page 38: Course Antenna Engineering Wir Aopert Micro Strip 01

38Course Antenna Engineering

Dirk Heberling

Helical Antennas

D = diameter of the helixC = circumference of the helix Dπ=S = spacing between turns

α = pitch angle 1tanS

C−

=

L = total length NS=

L0 = length of one turn 2 2S C= +

Source: C. A. Balanis, Antenna Theory, 2nd Ed. Wiley, New York, 1997

Page 39: Course Antenna Engineering Wir Aopert Micro Strip 01

39Course Antenna Engineering

Dirk Heberling

Helical Antennas, Normal Mode

Radiation patternEquivalent model

for 0NL λFarfield consists of dipole field ED and loop field EL

EAR

φ

=2 2

2SDλ

π=

Circular polarization for 2C Sλ=

Helical antenna

Source: C. A. Balanis, Antenna Theory, 2nd Ed. Wiley, New York, 1997

Page 40: Course Antenna Engineering Wir Aopert Micro Strip 01

40Course Antenna Engineering

Dirk Heberling

Helical Antennas, Axial Mode

with: 3 44 3

< <- Circumference in

the range of

4S λ- Spacing about

12 14α° ≤ ≤ °- Pitch angle usually

Typical farfield pattern

Left-hand sensed helix

Right-hand sensed helix

Axial (endfire) mode of helix

Source: C. A. Balanis, Antenna Theory, 2nd Ed. Wiley, New York, 1997

Page 41: Course Antenna Engineering Wir Aopert Micro Strip 01

41Course Antenna Engineering

Dirk Heberling

Log-Periodic Dipole Array (LPDA)

Construction details of the LPDA

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

A log-periodic antenna is an antenna having a structural geometry such that its impedance and radiation characteristics repeat periodically as the

logarithm of frequency

Page 42: Course Antenna Engineering Wir Aopert Micro Strip 01

42Course Antenna Engineering

Dirk Heberling

Log-Periodic Dipole Array 2A wedge of enclosed angle α bounds the dipole lengths!

11

1 1

n n N

n n N

L L LLR R R R

+

+

= = = =with

1 1 1n n

n n

R LR L

τ + += = <the scale factor τ is given by:

2n

n

dL

σ =and the spacing factor σ is defined as:

Page 43: Course Antenna Engineering Wir Aopert Micro Strip 01

43Course Antenna Engineering

Dirk Heberling

Example of a

LPDA

Source: W.L. Stutzman, G.A. Thiele: Antenna Theory and Design, Wiley, New York, 1981

Page 44: Course Antenna Engineering Wir Aopert Micro Strip 01

44Course Antenna Engineering

Dirk Heberling

Example of a LPDAFarfield Pattern

Page 45: Course Antenna Engineering Wir Aopert Micro Strip 01

45Course Antenna Engineering

Dirk Heberling

Example of a LPDAFarfield Pattern

Page 46: Course Antenna Engineering Wir Aopert Micro Strip 01

46Course Antenna Engineering

Dirk Heberling

Example of a LPDAFarfield Pattern

Page 47: Course Antenna Engineering Wir Aopert Micro Strip 01

47Course Antenna Engineering

Dirk Heberling

Example of a LPDAFarfield Pattern

Page 48: Course Antenna Engineering Wir Aopert Micro Strip 01

48Course Antenna Engineering

Dirk Heberling

Example of a LPDAFarfield Pattern

Page 49: Course Antenna Engineering Wir Aopert Micro Strip 01

49Course Antenna Engineering

Dirk Heberling

Example of a LPDAFarfield Pattern

Page 50: Course Antenna Engineering Wir Aopert Micro Strip 01

50Course Antenna Engineering

Dirk Heberling

Helical Antenna

Loop Antenna

Inverted-F Antenna

Sleeve-Dipole

Basic antenna types

Antennas for Mobiles 1

Page 51: Course Antenna Engineering Wir Aopert Micro Strip 01

51Course Antenna Engineering

Dirk Heberling

Influence of the human body on the electromagnetic field

Antennas for Mobiles 2

Page 52: Course Antenna Engineering Wir Aopert Micro Strip 01

52Course Antenna Engineering

Dirk Heberling

Example of a printed loop antenna

Realisation forms of loop antennas

Antennas for Mobilesthe loop-antenna

Equivalent circuit and matching circuit

Page 53: Course Antenna Engineering Wir Aopert Micro Strip 01

53Course Antenna Engineering

Dirk Heberling

Principle of a sleeve dipole Current distributionon a cellular phone

Antennas for Mobilesthe sleeve-dipole

Page 54: Course Antenna Engineering Wir Aopert Micro Strip 01

54Course Antenna Engineering

Dirk Heberling

Model of a helical antenna Operational modes

Antennas for Mobilesthe helical antenna

Page 55: Course Antenna Engineering Wir Aopert Micro Strip 01

55Course Antenna Engineering

Dirk Heberling

Examples of Inverted-F Antennas

λ/4-Monopol

InvertedL-Antenne

InvertedF-Antenne (IFA)

PlanareInvertedF-Anenne(PIFA)

λ/4-Monopole

InvertedL-Antenna

InvertedF-Antenna (IFA)

Planar InvertedF-Antenna (PIFA)

Antennas for Mobilesthe inverted-F antenna

Page 56: Course Antenna Engineering Wir Aopert Micro Strip 01

56Course Antenna Engineering

Dirk Heberling

Shortening and loading of antennas

Antennas for MobilesMiniaturization

a) Introduction of an inductance b) Surrounding by dielectric or magnetic materialsc) Introduction of a capacitance

Page 57: Course Antenna Engineering Wir Aopert Micro Strip 01

57Course Antenna Engineering

Dirk Heberling

X

YZ

X

YZ

CONCEPT-Model of a cellular phone with an

helical antenna

CONCEPT-Modelof a cellular phone at

the user

YZ

Antennas for Mobiles, an Example 1

X

YZ

Calculated radiation patterns at 450 MHz

Page 58: Course Antenna Engineering Wir Aopert Micro Strip 01

58Course Antenna Engineering

Dirk Heberling

CONCEPT-Modelof the mobile phone

Calculated magnetic nearfield at450 MHz (cut plane through the device)

Simulated nearfield behaviour

Antennas for Mobiles, an Example 2

Page 59: Course Antenna Engineering Wir Aopert Micro Strip 01

59Course Antenna Engineering

Dirk Heberling

η = P rad (with user)

P rad (without user)

Overall efficiency

EID-Antenna: • Concentration of the nearfield in the feeding point• Electrical decoupled from the casing

lelektr =λ0/2

Principle of the EID-Antenna

L

Optimised nearfield distribution

Optimised overall efficiency

Optimised Antenna: EID-Antenna

Antennas for Mobiles, an Example 3

Page 60: Course Antenna Engineering Wir Aopert Micro Strip 01

60Course Antenna Engineering

Dirk Heberling

Mobile phone with EID-antenna

Cellular phone withhelical antenna

Calculated magnetic nearfield atf = 450 MHz (cut plane through the device)

CONCEPT: Nearfield Characteristics

Antennas for Mobiles, an Example 4

Page 61: Course Antenna Engineering Wir Aopert Micro Strip 01

61Course Antenna Engineering

Dirk Heberling

X

YZ

η = 38 % η = 84 %

Mobile phone with EID-antenna

with user

X

Y

Z

CONCEPT: Farfield @ 450 MHz

X

YZ

X

YZ

Mobile phone with helical antenna

with user

Antennas for Mobiles, an Example 5

Page 62: Course Antenna Engineering Wir Aopert Micro Strip 01

62Course Antenna Engineering

Dirk Heberling

x

y

φ=270°

φ=180°

φ=90°

φ=0°

Measurement Situation

Measurement: Farfield @ 450 MHz

0

45

90

135

180

225

270

315

-14

-10

-10

-6

-6

-2

-2

2

2

Handy, freistehendHandy mit EID am BenutzerHandy mit Helix am Benutzer

φ in °

x

y

Measured horizontal farfield characteristic

dB

Mobile Phone, without userMobile Phone, with EID and userMobile Phone, with helix and user

Antennas for Mobiles, an Example 6

Page 63: Course Antenna Engineering Wir Aopert Micro Strip 01

63Course Antenna Engineering

Dirk Heberling

Integrated Antennas

Dualband- and Multiband-Antennas

Antenna Interaction

Antennas for MobilesDevelopment Trends

Page 64: Course Antenna Engineering Wir Aopert Micro Strip 01

64Course Antenna Engineering

Dirk Heberling

1. Metallic patch 2. 3D-MID-Antennas 3. Ceramic Antennas

• very popular• good electrical properties• easy fabrication• mech. fixation necessary

• difficult fabrication • flexible antenna design• electric properties depend

on the material

• antenna design difficult• small size• difficult fabrication

Antennas for MobilesIntegrated Antenna Technology

Page 65: Course Antenna Engineering Wir Aopert Micro Strip 01

65Course Antenna Engineering

Dirk Heberling

0,8 1 1,2 1,4 1,6 1,8 2-20

-15

-10

-5

0

free spacetalking position

GHz

dB

S11

f

GSM

DC

S18

00

Return Loss (S11)

Antennas for MobilesDualband Helical Antenna

Double Helical Antenna

Page 66: Course Antenna Engineering Wir Aopert Micro Strip 01

66Course Antenna Engineering

Dirk Heberling

Antennas for MobilesInteraction with the Head