coupled optoelectronic simulation of organic bulk- heterojunction solar cells: parameter extraction...

30
Coupled optoelectronic simulation of organic bulk- heterojunction solar cells: Parameter extraction and sensitivity analysis R. Häusermann,1,a E. Knapp,1 M. Moos,1 N. A. Reinke,1 T. Flatz,2 and B. Ruhstaller1,2,b 1Institute of Computational Physics, Zurich University of Applied Sciences, Wildbachstrasse 21, 8401 Winterthur, Switzerland 2Fluxim AG, Dorfstrasse 7, 8835 Feusisberg, Switzerland Speaker: Yu-Chih Cheng Advisor: Peichen Yu

Upload: mahola

Post on 25-Feb-2016

59 views

Category:

Documents


6 download

DESCRIPTION

Coupled optoelectronic simulation of organic bulk- heterojunction solar cells: Parameter extraction and sensitivity analysis. Speaker: Yu- Chih Cheng Advisor: Peichen Yu. R. Häusermann,1,a E. Knapp,1 M. Moos,1 N. A. Reinke,1 T. Flatz,2 and B. Ruhstaller1,2,b - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

Coupled optoelectronic simulation of organic bulk-heterojunction solarcells: Parameter extraction and sensitivity analysisR. Häusermann,1,a E. Knapp,1 M. Moos,1 N. A. Reinke,1 T. Flatz,2 and B. Ruhstaller1,2,b1Institute of Computational Physics, Zurich University of Applied Sciences, Wildbachstrasse 21, 8401 Winterthur, Switzerland2Fluxim AG, Dorfstrasse 7, 8835 Feusisberg, Switzerland

Speaker: Yu-Chih ChengAdvisor: Peichen Yu

Page 2: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

Outline• INTRODUCTION• DESCRIPTION OF THE NUMERICAL DEVICE

MODEL• ESTIMATION OF THE DISSOCIATION RATE• SENSITIVITY ANALYSIS• CONCLUSION

Page 3: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

Outline• INTRODUCTION• DESCRIPTION OF THE NUMERICAL DEVICE

MODEL• ESTIMATION OF THE DISSOCIATION RATE• SENSITIVITY ANALYSIS• CONCLUSION

Page 4: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

INTRODUCTION• Organic Photovoltaic advantages• Planar heterojunction devices and bulk-heterojunction BHJ devices

• The incoupling of light into a multilayer structure

• The extraction of charges needs electrical model

Page 5: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

DA

Page 6: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

Outline• INTRODUCTION• DESCRIPTION OF THE NUMERICAL DEVICE

MODEL• ESTIMATION OF THE DISSOCIATION RATE• SENSITIVITY ANALYSIS• CONCLUSION

Page 7: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

A :Optical modeling

AM 1.5 spectrum is used for I0

Page 8: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

Absorbance

k stands for the complex part of the refractive index

Page 9: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

B. Electrical modeling

• Charge-transfer exciton generation and dissociation

• Charge drift and diffusion• Charge extraction at the electrodesThree things need to be considered

Page 10: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

Wannier exciton

(typical of inorganic

semiconductors)

Frenkel exciton

(typical of organic

materials)

Excitons(bound

electron-hole

pairs)

SEMICONDUCTOR PICTURE MOLECULAR PICTURE

treat excitonsas chargeless

particlescapable ofdiffusion,

also viewthem as

excited statesof the

molecule

GROUND STATE WANNIER EXCITON GROUND STATE FRENKEL EXCITON

binding energy ~10meV

radius ~100Å

binding energy ~1eV

radius ~10ÅElectronic Processes in Organic Crystals and Polymers by M. Pope and C.E. Swenberg

Charge Transfer (CT)Exciton

(typical of organicmaterials)

Page 11: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

1. Charge-transfer-exciton dissociation

• S(x):CT-exciton density

• - recombination term of free charge carrier pairs generates a CT exciton.

• - absorption profile• - photon-to-CT-exciton conversion efficiency• - decay of a CT state • - dissociation of a CT state

Page 12: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

Processes for CT-exciton modeling

Page 13: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

Dissociation probability Pby Onsager–Braun theory

• Key point: and the pair binding energy is calculated under the assumption that CT excitons have the same dependence of the binding energy on the separation distance as ion pairs.

Page 14: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

2. Drift-diffusion modeling

( : 1D Poisson’ eq )

current equation for electrons Einstein relation

r(x) stands for the Langevin recombination

Page 15: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

3. Built-in voltage• debate on the nature of the open-circuit

voltage Voc:• E• the energy of the charge transfer

absorption• work function of the electrodes• Light intensity• Temperature

LUMO

HOMO

D

A

∆𝐸

Page 16: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

4. Charge extraction• This model considers the barrier reduction at an

organic-metal interface due to the electric field and the image charge potential and calculates the net injection current.

Page 17: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

5.Validation of the simulator

• Voc increased slightly with and also depends on the mobility, not equal to the Vbi

• Fill factor influence by recombination , mobility and .

• Jsc depends linearly on until recombination losses take over.

• These results correspond to experimental observations.

Page 18: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

Outline• INTRODUCTION• DESCRIPTION OF THE NUMERICAL DEVICE

MODEL• ESTIMATION OF THE DISSOCIATION RATE• SENSITIVITY ANALYSIS• CONCLUSION

Page 19: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

Parameters extraction

• The two mobility measured the constant mobilities of electrons and holes in a P3HT:PCBM BHJ solar cell depending on the annealing temperature.

Page 20: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

Estimation of unknown parameters

• decay rate • the pair separation distance a• the photon-to-CT-exciton conversion efficiency

Page 21: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

Simplify model

• Assumes that absorbed photons directly generate free e-hole pairs .

• Recombining charges are lost and not fed into the continuity eq.Reduced model:

Page 22: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

• varied between 1 and 0.01 to check the influence of electron

• geff=0.66 is consistent with the analysis

• Fig suggests that recombination efficiency reff in the simplified model is 10% or lower.

• (simple model) corresponds to (full model), P must be 90% or higher.

The dissociation probability P

Page 23: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

• a can be determined under the assumption that is set to

• P must be 90% or higher

• The best fit a has been

chosen to be 1.285 nm

Dissociation probability according to the Onsager–Braun theory depending on the electrical field for several initial pair separation distances a

Page 24: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

• The best fit a has been chosen to be 1.285 nm by comparing experimental current-voltage curves with simulated curves for an active layer thickness of 70 nm

Page 25: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis
Page 26: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

Outline• INTRODUCTION• DESCRIPTION OF THE NUMERICAL DEVICE

MODEL• ESTIMATION OF THE DISSOCIATION RATE• SENSITIVITY ANALYSIS• CONCLUSION

Page 27: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

A. Thickness dependent sensitivity

Page 28: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

B. Current-voltage curve sensitivity

Page 29: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

Outline• INTRODUCTION• DESCRIPTION OF THE NUMERICAL DEVICE

MODEL• ESTIMATION OF THE DISSOCIATION RATE• SENSITIVITY ANALYSIS• CONCLUSION

Page 30: Coupled optoelectronic simulation of organic bulk- heterojunction  solar cells: Parameter extraction and sensitivity analysis

• photon to CT-exciton conversion efficiency geff = 66%.

• lower limit for the CT-exciton dissociation efficiency of 90%

• Adding the measured current-voltage curve to the numerical analysis and assuming that is set to

• the influence of the two exciton parameters and the electron mobility are linearly dependent in the current-voltage curve and photocurrent thickness scaling

CONCLUSION