cosmological simulations with galactic wind...

43
Cosmological Simulations with Galactic Wind Feedback Paramita Barai (INAF - Osservatorio Astronomico di Trieste) Collaborators : Matteo Viel, Luca Tornatore, Stefano Borgani, Pierluigi Monaco, Giuseppe Murante, Klaus Dolag (univ. Munich) Galactic Winds of Change - Sesto Workshop 20th July, 2012 Trieste Numerical Cosmology Group

Upload: others

Post on 16-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

Cosmological Simulations withGalactic Wind Feedback

Paramita Barai

(INAF - Osservatorio Astronomico di Trieste)

Collaborators : Matteo Viel,Luca Tornatore, Stefano Borgani, Pierluigi Monaco,

Giuseppe Murante,

Klaus Dolag (univ. Munich)

Galactic Winds of Change - Sesto Workshop20th July, 2012

Trieste NumericalCosmology Group

Page 2: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 2

Outline• Introduction to Cosmological Hydrodynamic Simulation

• Galactic Wind subgrid physics in GADGET code

• Simulations

• Preliminary Results– Impact of winds on galaxy properties

• Conclusions

• Question: What (aspects) of galactic winds can bestudied in cosmol sims?

Page 3: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 3

Galaxy Formation Modeling

---

Cosmological Hydrodynamic

Simulations

---

What is done? How?

Page 4: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 4

Large Scale StructureFormation

• Gravitational clumping of matter from these density fluctuations Structures grow

• Main forces driving evolution

– Gravity : affects dark matter and baryons

– Gas dynamics : only baryons

• Quantum fluctuations shortly after theBig Bang Primordial densityperturbations

• Inflation expands the perturbations

Page 5: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

5

The Universe in a Box:Simulations of Large Scale Structures

• Computational box representative volume of theUniverse

• Resolution elements (particles or grid) in box

matter

• Model LSS in terms of massive elements each ofmass 106 - 107 M

• 2 steps:– Generate the initial condition

– Evolve IC using dynamical equations

• Follow the non-linear evolution of density fields numerically

• Goal: get the final distribution consistent withobservations of the Universe

Page 6: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

6

Initial Condition

• Primordial density fluctuations– Gaussian

• Cosmological sim– Start with gaussian at CMB epoch

(0.38 Myr after Big Bang, z~1100)

• Isolated galaxy, or, galaxy mergersim– Start with well formed galaxies

• Cosmological model well constrained byobservations

CMBR (WMAP), SN, Galaxy clusters,Gravitational lensing

CDM model dark energy + cold dark matter, Flat

Page 7: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

P. Barai, INAF-OATS 7

Physics• Dark matter (dissipation-less, collision-less)

– Gravity-only

– Particle N-body method

• Baryon / Gas evolution– Gravity + Hydrodynamics

• Comoving coordinates

• Add source & sink terms / sub-grid physics– Radiative cooling and heating of gas

– Star formation + stellar & SNe feedback

– AGN accretion + feedback

– Galactic Wind

dr v

dt=

2= 4 G

t+

r

r v ( ) = 0

r v

t+

r v

r ( )r v =

r

r P

E

t+

r E + P( )

r v [ ] =

r v

r

=1

1( )

PP = K

H z( ) = H0 + m

1+ z( )3 + r

1+ z( )4

1( )

1+ z( )2

1/ 2

Page 8: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 8

Successful Results

• Hierarchical Structure Formation– Can reproduce the distribution and structure of galaxies in very large

scales as seen in observations

• Distribution of matter in the Universe– Collapse via gravitational forces into filaments. Galaxies form in these

filaments

• Clustering of galaxies at all z (z~0, z~1, z~4-5) observed inlarge scale surveys is well reproduced

• Galaxy cluster scaling relations

• Mass and luminosity functions of galaxies

Page 9: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 9

Large-Scale Filaments

• A (43 Mpc)3 box

• From z = 30 to z = 0

• Frames below showstructure forming fromz = 10 to the present

Page 10: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 10

• Cosmol N-body run

• Box size = 500 h–1 Mpc

• 21603 ~ 1010 particles

• Particle mass = 8.6 x 108

h–1 M

• Comoving softeninglength, = 5 h–1 kpc

• A projected density fieldfor a 15 Mpc/h thick sliceof the z=0 output

• The overlaid panelszoom in by factors of 4 ineach case

Millennium Simulation

Page 11: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 11

Sloan Digital Sky Survey

Galaxy Map

Page 12: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 12

GADGET Code (Springel 2005, MNRAS, 364, 1105)• Gravity : Tree + PM

• Hydro : SPH

– Entropy-conserving formulation (Springel & Hernquist 2002, MNRAS, 333, 649)

• Adaptive time-stepping for particles

• Heating from UV photoionizing background (Haardt & Madau 1996, ApJ, 461, 20)

• Radiative cooling , zero-metallicity (Katz, Weinberg & Hernquist 1996, ApJS, 105, 19

• Sub-resolution model of SF in multiphase ISM (Springel & Hernquist 2003,MNRAS, 339, 289)

– Hybrid model : each SPH particle has cold + hot phases, hydrodynamics isonly followed for hot-phase

– SN-driven kinetic feedback

• Checmical enrichment from SNII using Salpeter IMF (Salpeter 1955, ApJ, 121

161) with IRA

Page 13: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 13

LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated

• Metal-line cooling (Wiersma et al. 2009, MNRAS, 399, 574)

• Star Formation (Springel & Hernquist 2003, MNRAS, 339, 289)

• Chemical Evolution (Tornatore et al. 2007, MNRAS, 382, 1050)

– Metal (C, O, Fe, Si, Mg, S) release from SN Type-II, Type-Ia, & AGBstars; consider stellar age, mass & yield; different IMF; mass & metalloss from starburst

• Thermal feedback from SN --- inefficient, energy is radiated away

• Kinetic feedback implemented

• Recent work: (Dalla Vecchia & Schaye 2012 arXiv: 1203.5667)

– Min. heating T required for the injected thermal energy to be efficientlyconverted into kinetic energy

Page 14: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 14

Kinetic Feedback from SNe-driven Galactic

Winds in GADGET (Springel & Hernquist 2003)

• Mass-loss rate SFR

• Energy-driven wind :

• Probabilistic method for kicking star-forming gas particles

• New particle velocity

– Along rotation axis

• To enable wind escape from dense, SF phase without directlyaffecting it Wind particle decoupled (briefly) from hydro

dMw

dt=

dM

dt

1

2

dMw

dtvw2= SN

dM

dtvw =

2 SN

p =1 exp

dm

dtt

mpart

vnew = vold + vw

ˆ n

ˆ n

r v

r

= 2

= 0.25

SN = 4 1048erg /Msun ,SF

vw = 224.17 km/s

Page 15: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

15

Existing Models (in GADGET code)

• Energy-driven– Springel & Hernquist 2003, Dalla Vecchia & Schaye 2008, Tornatore

et al. 2004, 2007, 2010

• Momentum-driven– Murray, Quataert & Thompson 2005

• Momentum injection by SN & radiation pressure of photons

– Oppenheimer & Dave 2006

– Tescari et al. 2009, 2011

• Multicomponent & variable velocity outflow– Choi & Nagamine 2011

• Variable energy-driven– Puchwein & Springel 2012

vw, = constant

vw = 3L

Lcrit1

= 0

vw = vesc SFR1/ 3

˙ M

vw, Mhalo

Page 16: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 16

Radially Varying Wind Velocity• Observations by Steidel et al. (2010, ApJ, 717, 289)

– Spectroscopic data fitted by simple model

• Quantities are function of galactocentric distance, r

• Acceleration & Velocity :

a r( ) r = vdv

dr

vw r( ) = vmaxrmin1 r1

rmin1 Reff

1

0.5

Page 17: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 17

Our Modification in GADGET3:Radial Gradient of Outflow Velocity

Page 18: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

Simulations• With LTG3 code + modifications

– Run on cosmos@Cambridge

• NW : no-wind (cooling + SF + chemical evolution)

– Wiersma et al. 2009, Springel & Hernquist 2003, Tornatore et al. 2007

• CW : Energy-driven constant-velocity

Recent implementations in G3 - Outflow with radial velocity gradient,

motivated by observations

• RVWa : Radially varying with fixed parameters (Steidel et al. 2010)

• RVWb : Parameters dependent on halo mass (Martin 2005)

5 h 1 Mpc, N = 2 1283.

25 h 1 Mpc, N = 2 3203.

upto z ~ 2.

vw = 400 km/s

vw r( ) = vmaxrmin1 r1

rmin1 Reff

1

0.5 Reff = R200 Mhalo,z( )

vmax = 2vcirc = 2 GMhalo R200

Page 19: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 19

Page 20: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 20

Di erent Wind Models

Page 21: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 21

Phase Diagram at z=1.98

Page 22: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 22

Star Formation Rate Density Evolution

Cucciati et al. 2012, A&A, 539A, 31 (VVDS)

Page 23: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 23

Projection of (200/h kpc)3 volume around a massive galaxy center (run RVWat)

showing Gas properties

Page 24: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 24

Page 25: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 25

Stellar Disk ?

Page 26: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 26

Page 27: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 27

Page 28: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 28

NWt

RVWat

Page 29: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 29

NWt

RVWat

Page 30: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

Mass-Function and Mass-Fraction of Galaxies at z = 2.23

Bower, Benson & Crain 2012, MNRAS, 422, 2816

Page 31: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 31

Gas Density - Radial Profile at z=1.98

Page 32: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 32

(Gas) Carbon Metallicity - Radial Profile at z=1.98

Page 33: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

P. Barai, INAF-OATS 33

ConclusionsWhat aspects of galactic winds can be studied in cosmol sims?

• Can study impact of galactic winds on larger-scales galaxy &IGM properties– Still far away from self-consistently driving these winds in such sims

– Need subgrid prescription

– How does larger-scale environments & mergers affect wind?

• Galactic winds can:– Reduce cosmic SFR density, quench SF in galaxies

– Affect density profile of galaxy halos

– Enrich the CGM and IGM with metals

• Galaxy merger simulations (resolving length scales lower thanpurely cosmol sims) study wind driving

• Can prescriptions from pc-scale sims be incorporated intocosmol sims?

Page 34: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

Extra Slides

Page 35: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 35

Simulation Volume

• The computational box has Hubble expansion

just like the real Universe

– Always encompasses the same mass

• The expansion is taken out from computations,

s.t. the box appears static

• Coordinate system that expands (or co-moves)

with the Universe (the comoving coordinates) is

used

Page 36: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 36

Page 37: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 37

Page 38: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 38

Page 39: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 39

Page 40: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 40

Velocity Field of Gas Particles in run RVWa

Page 41: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 41

• Range roughly consistent

with Tornatore et al. (2010,

MNRAS, 402, 1911)

Page 42: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 42

(Gas) CIV Fraction - Radial Profile at z=1.98

Page 43: Cosmological Simulations with Galactic Wind Feedbackadlibitum.oats.inaf.it/barai/Talks-Posters/2012/... · LT-GADGET3 code: Sub-Grid Galaxy Physics Incorporated • Metal-line cooling

20-juil-12 P. Barai, INAF-OATS 43

(Gas) Temperature - Radial Profile at z=1.98