correlation between conventional clinical tests and a new movement assessment battery - bachelor...

18
  Bachelor Thesis Correlation between conventional clinical tests and a new movement assessment battery May, 2013 Patrick Anderson ([email protected]) Stavros Litsos ([email protected])

Upload: stavros-litsos

Post on 05-Oct-2015

214 views

Category:

Documents


0 download

DESCRIPTION

Correlation between conventional clinical tests and a new movement assessment battery - Bachelor thesisDespite the complexity of movements performed in sports, physical examination is today done by conventional tests that evaluate joints and muscles individually (e.g. Smith press test, Figure1). Our study used a new movement assessment battery of 20 reach tests, which incorporates the complexity and diversity of natural human movements, taking into consideration that joints are interdependent in a movement and that the planes and sequences of a movement change during its performance. The purpose of this study was to determine whether or not there is a correlation between conventional mobility tests and the new assessment battery.

TRANSCRIPT

  • Bachelor Thesis Correlation between conventional clinical tests and a new

    movement assessment battery

    May, 2013

    Patrick Anderson ([email protected])

    Stavros Litsos ([email protected])

  • 1

    Abstract

    The purpose of this study was to determine on whether or not there is a correlation between

    established conventional tests and the new movement assessment battery. Eight males (height,

    182.7 6.1 cm; body mass, 80.2 9.3 kg) participated in this study. A mobility performance mat

    was used as a foundation for all the 20 movements the subjects was instructed to do, each

    movement performed 3 times. Subsequent to the mobility test, the subjects did a series of

    conventional test. Range of motion was then measured using a goniometer. No participants

    withdrew from the study. The conventional tests were completed as the protocol dictated. No

    correlation between mobility rotation tests and internal/external hip rotation was found. Although

    there was a significant correlation between Test 8 and the Thomas test on the right hip, there was

    no significant correlation between the overhead reaches and the results from the Thomas tests. A

    correlation between floor reaches and standing left ankle dorsiflexion was found, while no

    significant correlation was found for the right ankle. A higher correlation between overhead

    reaches and ankle dorsiflexion compared to floor reach and ankle dorsiflexion was registered. In

    both cases, a significant correlation for both right and left leg, with the left achieving higher

    correlation values than the right was found. Dominant leg has an influence on the correlations,

    although not known if positive or negative.

    Keywords

    Mobility tests, conventional tests, biomechanical analysis, physical examination, correlations.

  • 2

    Figure 1: Illustration of knee extension by glut. max. contraction in a Smith press test. Patrick Anderson

    Introduction

    Despite the complexity of movements performed in sports, physical examination is today done

    by conventional tests that evaluate joints and muscles individually. Our study aims to introduce a

    new movement assessment battery, which incorporates the complexity and diversity of natural

    human movements. It takes into consideration that joints are interdependent in a movement and

    that the plans and sequences of a movement change during its performance.

    Clinical tests for joint mobility commonly used by health care professionals and trainers

    usually tests one joint at a time. For instance, the Thomas Tests examines a possible shortness in

    m. rectus femoris and m. illiopsoas and other structures that could limit hip extension. The Elys

    Test (pronated knee flexion) also examines possible shortness in m. rectus femoris. These single

    factorial approaches are not specific to the diversity and complex movements in the human body.

    It has been shown (Hong & Bartlett, 2008, p. 91) that there is a strong coupling of segments

    during dynamic movement but not during standing or sitting, which makes it challenging for

    isolated test to capture this interdependence. Based on the fact that risk factors have been

    individually indicated, according to research, a multifactorial approach of human movement and

    injury risk should be considered (Bahr & Krosshaug, 2005; Bahr, 2003; H.Meeuwisse, 1994).

    Concurrently, evaluation of isolated risk factors does not take into consideration how the athlete

    performs the functional movement patterns required for sport (Kiesel, Plisky, & Voight, 2007).

    Furthermore, according to M.C Siff (Zatsiorsky., 2000), it is not established that a given

    muscle produces the same torque on a multi-joint

    movement that it would have produced in a single

    joint movement. It has also been shown that a

    closed kinetic chain motion in one joint can produce

    torque, and thus motion, that is affecting adjacent

    joints. For instance, contraction of the m. Gluteus

    Maximus (GM) during a Smith press (Figure 1) can result in an extension of the hip and

    extension of the knee even though GM does not cross the knee joint (Levangie & Norkin, 2005,

    p. 63). This brings a challenge for the conventional tests: to identify joint interdependence and

    complex and dynamic movements.

  • 3

    Despite the fact of integrating a functional approach by incorporating the principles of

    PNF (proprioceptive neuromuscular facilitation), muscle synergy and motor learning during the

    last 20 years, the absence of multifactorial functional physical examination, that consider the

    human body as a kinetic linked system of joints interdependence on movement, makes it

    challenging to refer to a functional factor analysis protocol (Cook, Burton, & Hoogenboom,

    2006).

    Although conventional clinical tests single out specific joints for testing, the results

    provided by these tests can be relatively inconsistent among examiners. In a previous study by

    Jason Peeler (Jason D.Peeler, 2008), three certified athletic therapists measured the joint knee

    angle in a modified Thomas Test on 57 healthy participants, two times. The study showed a

    standard deviation of 12 among the examiners and a method error of 6. This raises the question

    of the reliability of tests measuring ranges of motion in various joints. The inconsistency of

    examiners when establishing joint lines, locating important landmarks and aligning axis of

    rotations contributes to a loss of reliability. Consequently, this has an immediate effect on the

    validity.

    To address the lack of specificity and for improved functional application a new

    functional mobility test battery is under development (Table 1). In contrast to traditional tests,

    this test battery incorporates how different parts of the body have an interdependent relationship

    in a standing position when performing certain movements. Twenty different tests lay the

    foundation of the screen that is measured in centimetres or degrees. The results from each

    individual test are carefully combined to create a functional mobility profile. Previous studies

    suggest that applying a test characterized by dynamic movement, such us the mobility tests

    performed on our study, can give access to multiple domains of function. This can also indicate

    athletes at risk of injury with a pre-seasonal assessment (Plisky, Rauh, Kaminski, & Underwood,

    2006). Several other studies have showed that joints are interdependent during movement (John

    McMullen, 2000; Levangie & Norkin, 2005; Marta B. Villamila, Luciana P. Nedela, Carla

    M.D.S Freitasa, 2011; McLester, John, Pierre, 2008). So in order to apply a physical evaluation

    that is able to qualify human movement, a similarity between training and testing procedures is

    essential (Zatsiorsky., 2000, p. 9).

    The purposes of this study were (1) to conduct mobility tests with the novel mobility

    screen test battery and with selected conventional tests used to determine joint mobility in

  • 4

    patients; (2) to determine on whether or not there is a correlation between established

    conventional tests and the new mobility test battery; and (3) to quantify the repeatability of test

    results in conventional tests when executed by different examiners. We hypothesized that (i)

    external rotation in the left hip would correlate with the performance in test 14; (ii) hip extension

    measured in the Thomas test would correlate with the overhead reach tests (tests 2,4,6,8,16); (iii)

    results from a conventional standing dorsiflexion test would correlate with the floor reach tests

    (test 1,3,5,7,9,15); and (iv) that the single leg stance leg results from the conventional standing

    dorsiflexion tests would correlate with the mobility overhead reach tests (tests 2,4,6,8,10,16).

  • 5

    Method

    Eight males (height, 182.7 6.1 cm; body mass, 80.2 9.3 kg) participated in this study. Prior to

    the experiment, the subjects were informed about the risks of participating, the purpose and

    significance of the study and details surrounding data collection. Written informed consent was

    obtained from all the subjects. No participants withdrew from the study.

    Participants first executed 20 movements according to the new mobility test screen and

    their joint mobility was then examined using conventional tests. In the mobility test screen the

    participants task was to start from a standardized starting posture and then reach or rotate as far

    as possible in different directions. A detailed description of each task is shown in Table 1 and in

    the Appendix 2. A custom designed mobility performance mat was used to determine the reach

    distance for the 20 movements the subjects were instructed to do. The mat has an illustration of a

    circular co-ordinate system with origin in the centre. Each 10 cm interval is marked with a circle

    and vectors for every 45 to the left and right are marked (L/R45, L/R90 and L/R135). The

    anterior and posterior vectors are marked as A0 and P180. The vectors printed on the mat guides

    the subjects movements. The subjects executed twenty different movements with three

    repetitions each. The variables obtained in this test used to quantify the subjects mobility were

    the reach distance in centimetres and the rotation angles in degrees. If a subject failed one of the

    repetitions, the recording stopped. The subject was then instructed to start over.

    Subsequent to the mobility tests, the subjects did a series of conventional test on a

    physio-bench, two times, measured first by a sport biology student and second by a

    physiotherapist. The physiotherapeutic Thomas test indicated the passive range of extension in

    each hip the passive range of internal/external hip rotation was measured when the subjects were

    in a prone position and seated position, with the knee in 90-degree flexed position. Ankle

    dorsiflexion was obtained passively in both a supine and standing position in two positions; A

    goniometer was used to measure the different ranges of motion for each test and thus the results

    was given in degrees.

    All the movements were completed successfully with at least three valid repetitions. The

    second trial of the conventional tests had to be rescheduled for another day. However, this also

    was completed successfully, although without a warm-up protocol executed pre-trail. The

    physiotherapist did all the measuring for the second trail. The results from the first and second

    trail of the conventional tests are used to calculate the differences between the two examiners.

  • 6

    Microsoft Excel (Microsoft Norge AS, 1366 Lysaker, Norway) was used to graphically

    visualize ranges of motion of the movements performed on the mobility performance mat and the

    results from the conventional tests and to calculate Pearson correlations between test variables. A

    Pearson correlation tests was calculated between the subjects individual results in the mobility

    screen and their results from the conventional tests. With eight test-subjects, a correlation above r

    = 0.67 can be considered as significant at the p = 0.05 level.

  • 7

    Table 1: Description of each movement in the functional movement screen.

    Functional Movement Patterns Description of movement Test nr.* Combined Planes Description

    1 L SLS L arm R45 reach to floor Left leg standing, left arm is reaching as far as possible along the R45 vector on the floor.

    2 L SLS R arm L135 overhead reach

    Left leg standing, right arm is reaching as far back as possible along the L135 vector, above the head.

    3 L SLS R arm L45 reach to floor Left leg standing, right arm is reaching as far as possible along the L45 vector on the floor.

    4 L SLS L arm R135 overhead reach

    Left leg standing, left arm is reaching as far back as possible along the R135 vector, above the head.

    5 R SLS R arm L45 reach to floor

    Right leg standing, right arm is reaching as far as possible along the L45 vector on the floor.

    6 R SLS L arm R135 overhead reach

    Right leg standing, left arm is reaching as far back as possible along the R135 vector, above the head

    7 R SLS L arm R45 reach to floor Right leg standing, left arm is reaching as far as possible along the R45 vector on the floor.

    8 R SLS R arm L135 overhead reach

    Right leg standing, right arm is reaching as far back as possible along the L135 vector, above the head.

    Pure Planes

    9 L SLS B arms A0 reach to floor Left leg standing, both arms reaching as far as possible along the A0 vector on the floor.

    10 L SLS B arms P180 overhead reach

    Left leg standing, both arms reaching as far back as possible along the P180 vector, above the head.

    11 L SLS B arms L90 overhead reach Left leg standing, both arms reaching as far to the side as possible along the L90 vector, above the head.

    12 L SLS B arms R90 overhead reach Left leg standing, both arms reaching as far to the side as possible along the R90 vector, above the head.

    13 L SLS B arms L rotational reach at shoulder height Left leg standing, both arms at shoulder height: rotation as far to the left as possible.

    14 L SLS B arms R rotational reach at shoulder height

    Left leg standing, both arms at shoulder height: rotation as far to the right as possible.

    15 R SLS B arms A0 reach to floor Right leg standing, both arms reaching as far as possible along the A0 vector on the floor.

    16 R SLS B arms P180 overhead reach

    Right leg standing, both arms reaching as far back as possible along the P180 vector, above the head.

    17 R SLS B arms R90 overhead reach

    Right leg standing, both arms reaching as far to the side as possible along the R90 vector, above the head.

    18 R SLS B arms L90 overhead reach

    Right leg standing, both arms reaching as far to the side as possible along the L90 vector, above the head.

    19 R SLS B arms R rotational reach at shoulder height

    Right leg standing, both arms at shoulder height: rotation as far to the right as possible.

    20 R SLS B arms L rotational reach at shoulder height

    Right leg standing, both arms at shoulder height: rotation as far to the left as possible.

    *Each test is labeled as their respective test number throughout this article.

  • 8

    Results

    The mean reach distances obtained in the mobility tests are listed in table 2 with their associated

    standard deviation. Table 3 shows the average range of motion for each of the conventional tests

    representing the maximum passive range of motion in each joint, with exception of standing

    ankle dorsiflexion, which is active.

    Table 2: Results from the mobility screen.

    Mean results; Mobility Screen

    Test nr. Mean (cm)

    St. Dev. (cm) Test nr.

    Mean (cm/)

    St. Dev. (cm/)

    Test 1 78 10.74 Test 11 81 7.87

    Test 2 89 7.69 Test 12 69 11.63

    Test 3 67 14.27 Test 13 132 20.83

    Test 4 62 13.32 Test 14 133 18.44

    Test 5 80 12.48 Test 15 69 14.95

    Test 6 87 6.47 Test 16 69 14.61

    Test 7 63 14.84 Test 17 75 14.83

    Test 8 63 11.50 Test 18 72 12.72

    Test 9 71 12.31 Test 19 132 19.34

    Test 10 72 13.70 Test 20 142 20.66

    The external rotation in the left hip did not correlate with the rotation angle in test 14 (r = -0.08,

    Table 4). None of the other rotational tests gave a significant correlation (Table 4). Hip extension

    as measured by the Thomas test correlated only with the overhead reach distance observed in

    test 8 of the new mobility test, the other tests did not correlate significantly (Table 5). In the floor

    reach tests, 3 significant correlations were found to the conventional standing dorsiflexion test

    (Table 6). The left leg standing and the left leg ankle dorsiflexion during a reach gave significant

    correlations. However, this is not the case for the right leg standing and right ankle dorsiflexion.

    Table 7 shows the correlations between the single leg stance legs results from the conventional

    standing dorsiflexion tests and the mobility overhead reach tests. The correlation for the left leg

    were higher than the correlations for the right leg.

  • 9

    Table 3: Results from the conventional tests.

    Mean results, conventional tests Test Mean () St. Dev. () Thomas tests, right hip 8 6.83

    Thomas tests, left hip 12 6.00

    Pronated rotation, right hip internal 39 8.83

    Pronated rotation, right hip external 58 5.68

    Pronated rotation, left hip internal 35 9.40

    Pronated rotation, right hip external 58 5.48

    Seated rotation, right hip internal 38 4.39

    Seated rotation, right hip external 48 10.73

    Seated rotation, left hip internal 41 6.02

    Seated rotation, left hip external 49 7.67

    Supinated dorsiflexion, right ankle 23 4.57

    Supinated dorsiflexion, left ankle 18 4.74

    Standing dorsiflexion, right ankle 36 5.06

    Standing dorsiflexion, left ankle 36 4.56

    Table 4: Correlations between mobility rotation tests and internal/external hip rotation

    .Correlation, rotational tests

    Mobility and conventional tests Correlations

    r = Test 13

    -0.56 Pronated rotation, left hip internal Test 14

    -0.08 Pronated rotation, right hip external Test 19

    -0.02 Pronated rotation, right hip internal Test 20

    -0.19 Pronated rotation, right hip external

  • 10

    Table 5: Correlations between overhead reaches and results from the Thomas tests (hip

    extension).

    Correlations, overhead reach and hip extension

    Mobility and Conventional tests Correlation

    r = Test 2

    0.26 Thomas tests, left hip Test 4

    0.39 Thomas tests, left hip

    Test 6 0.45 Thomas tests, right hip

    Test 8 0.74 Thomas tests, right hip

    Test 10 0.64 Thomas tests, left hip

    Test 16 0.64 Thomas tests, right hip

    Note: Significant correlations were printed in bold letters.

    Table 6: Correlations between mobility floor reaches and standing ankle dorsiflexion.

    Correlation, Floor reach and dorsiflexion

    Mobility and conventional tests Correlations

    r = Test 1

    0.87 Standing dorsiflexion, left ankle Test 3

    0.84 Standing dorsiflexion, left ankle

    Test 5 0.56 Standing dorsiflexion, right ankle

    Test 7 0.54 Standing dorsiflexion, right ankle

    Test 9 0.79 Standing dorsiflexion, left ankle

    Test 15 0.55 Standing dorsiflexion, right ankle

    Note: Significant correlations were printed in bold letters.

  • 11

    Table 7: Correlations between mobility overhead reaches and standing ankle dorsiflexion.

    Correlations, overhead reaches and dorsiflexion

    Mobility and conventional tests Correlations

    r = Test 2

    0.85 Standing dorsiflexion, left ankle Test 4

    0.93 Standing dorsiflexion, left ankle

    Test 6 0.43 Standing dorsiflexion, right ankle

    Test 8 0.62 Standing dorsiflexion, right ankle

    Test 10 0.82 Standing dorsiflexion, left ankle

    Test 16 0.61 Standing dorsiflexion, right ankle

    Note: Significant correlations were printed in bold letters.

  • 12

    Table 8 displays the mean differences and standard deviations of the results between two

    examiners performing conventional tests on the subjects. The average indicates the average mean

    differences and the average standard deviation among all the tests.

    Table 8: Measuring differences between two examiners for the conventional tests.

    Measuring differences - Conventional tests

    Conventional Tests Mean diff.

    () St. Dev. ()

    Thomas tests, right hip 7 4

    Thomas tests, left hip 5 4

    Pronated rotation, right hip internal 12 8

    Pronated rotation, right hip external 6 8

    Pronated rotation, left hip internal 15 8

    Pronated rotation, right hip external 4 6

    Seated rotation, right hip internal 4 7

    Seated rotation, right hip external 3 13

    Seated rotation, left hip internal 1 6

    Seated rotation, left hip external 5 10

    Supinated dorsiflexion, right ankle 6 3

    Supinated dorsiflexion, left ankle 2 7

    Standing dorsiflexion, right ankle 3 4

    Standing dorsiflexion, left ankle 3 5

    Average 5 7

  • 13

    Discussion

    Our result shows no correlation between the pure plane rotations and the internal/external

    rotations of the stance hip. One could argue that standing in a fixed position and rotating as far as

    possible is greatly determined by the hips ability to rotate. The results presented in Table 4 show

    the complete opposite that conventional tests of hip rotational mobility had no correlation with

    the ability to perform a rotational test in standing. Our results predict that difficulties in

    performing a backhand shot in tennis would not be because of hip rotation limitation, but

    because of other parameters. The rotation may have some other origin than the hip joint, perhaps

    in the spine or the shoulder complex. These results emphasize the importance of a new test

    battery, which evaluate the movement as a whole instead of taking it a part, piece by piece. The

    correlation from test 13 and internal left hip rotation yields a correlation of -0.56. It is almost as

    if low rotational ranges of motion in the hip increases the ability to rotate the upper body.

    However, this correlation was not significant.

    The correlations between the overhead reaches and the Thomas tests, as seen in Table 5,

    have an average of 0.52 0.18. The lowest correlation being 0.26 for the test 2 and the highest

    correlation being 0.74 for the test 8. One would presume that the ability to bend backwards is

    greatly affected by the hips ability to extend. After all, bending backwards forces the hip to

    extend. As for test 8 and right hip extension, which yielded a correlation of 0.74, which is

    significant, one can argue that this is because of the participants dominant limb. Even though

    the dominant limb was not registered in this study, there is no doubt that the correlation of the

    right hip is much better than the left hip. The question then becomes which leg is actually

    dominant: is it the left leg with no significant extension during a back bend, or is it the right hip

    with a significant participation in the same movement. The average correlation was not

    significant suggesting that hip extension may have little influence when performing a back bend.

    However, a correlation of 0.52 shows some relationship, but our test group was too small for it to

    reach any significance. This strengthens the theory that joints are interdependent during a

    complex dynamic movement: when performing a complex movement, like the back bend,

    several joints participates. The joints influence each other to a certain degree so that the hip

    extension does not become significant for the movement. However, as seen in Table 6, another

    joint has a much greater influence on this particular ability.

  • 14

    Overhead reaches, or bending backwards, induces a knee flexion to keep the bodys

    center of mass within the base of support. This flexion forces an ankle dorsiflexion, because the

    foot has to be fixated on the ground for the movement to be valid. As seen in Table 7, there was

    a high correlation between the overhead reaches and range of motion in ankle dorsiflexion, the

    highest being 0.93 for the test 6 and left ankle dorsiflexion. The average correlation was 0.71

    0.18 with a range of 0.5, which is significant. When a high-level athlete experience problems

    doing a throw-in in soccer, serve in tennis or a bridge in gymnastics, one could argue that a

    physiotherapist should evaluate ankle dorsiflexion. The results from Table 7 suggest that there

    are joints that have an indirect role to movement: the backbend is mainly an extension

    movement, but an ankle dorsiflexion has a greater influence on this ability than hip extension as

    seen in Table 5. There were also indications of asymmetry between the right and left foot.

    However, the opposite leg has better correlations compared to Table 5.

    This asymmetry between the right and left foot is also observed in Table 6. We see that

    despite a relatively small difference in the correlation values achieved between the floor

    reaches/standing ankle dorsiflexion and overhead reaches/standing ankle dorsiflexion, the only

    significant correlation was found for the left ankle. The reason for this is unknown, but perhaps

    the subjects dominant limb may alter the results, as seen in Table 5. This has previously been

    confirmed by a recent study (Sung & Kim, 2011). It is unknown if the dominant left leg

    contributes to a further reach or if it is the non-dominant left leg that contributes.

    There is also a slight variation among the test supervisors performing the conventional

    tests, shown in Table 8. The average difference was 5 6 degrees of range of motion. This is

    comparable of the results given by the study done by Jason Peeler (2008) who found a slightly

    higher variation of 12 6 degrees of range of motion. However, our tests examiners consisted of

    one experienced physiotherapist and one sport biology student. Even though the student has a

    high basic knowledge of anatomy and palpation, it cannot match the clinical experience and

    knowledge of an educated physiotherapist. This does not change the fact that there is a variation

    when measuring ranges of motion. When measuring joint range of motion in high-level athletes,

    there should be a consistency to the results from practitioners. This would increase the efficacy

    and the validity of the conventional tests.

  • 15

    Conclusions

    No correlation was found between the pure plane rotations and the internal/external rotations of

    the stance hip during a closed kinetic chain movement. A significant correlation between

    overhead reaches/standing ankle dorsiflexion and floor reaches/standing ankle dorsiflexion was

    found, with the first mentioned getting higher values than the second. Backwards bending causes

    a knee flexion in order to maintain body`s center of mass within the support surface. This flexion

    forces an ankle dorsiflexion due to a closed kinetic chain movement. Although leg dominance

    was not registered, it is hypothesized that it may alter the results. This points out the importance

    of treating the human body as an integrated system, taking into consideration that during a

    complex dynamic movement several joints are involved. The variability of the results by

    applying conventional tests in order to evaluate the range of motion of the different joints

    reduces the validity of these tests even more. In order to be able to capture and predict the quality

    of a highly complicated movement pattern performed during a competitive sport, we should first

    be able to apply a test battery of which the results are reproducible. However, further research is

    necessary to draw any major conclusions. More subjects as well as registration of their dominant

    limb is a needed for further analysis.

  • 16

    References

    Bahr, R. (2003). Risk factors for sports injuries -- a methodological approach. British Journal of Sports Medicine, 37(5), 384392. doi:10.1136/bjsm.37.5.384

    Bahr, R., & Krosshaug, T. (2005). Understanding injury mechanisms: a key component of preventing injuries in sport. British journal of sports medicine, 39(6), 3249. doi:10.1136/bjsm.2005.018341

    Cook, G., Burton, L., & Hoogenboom, B. (2006). Pre-participation screening: the use of fundamental movements as an assessment of function - part 1. North American journal of sports physical therapy: NAJSPT, 1(2), 6272.

    H.Meeuwisse, W. (1994). Assessing causation in sport injury - a multifactorial model. Clinical Journal of Sport Medicine, (4), 166170.

    Hong, Y., & Bartlett, R. (2008). Routledge Handbook of Biomechanics and Human Movement Science. (Youlian Hong & Roger Bartlett, Ed.) (p. 89). New York: Rourledge.

    Jason D.Peeler, J. E. A. (2008). Reliability limits of the modified Thomas test for assessing Rectus femoris muscle flexibility about the knee joint. Journal of Athleric training, 43(5), 470.

    John McMullen, T. L. U. (2000). A KineticChainApproachforShoulder Rehabilitation. Journal of Athletic training, 35(3), 329337.

    Kiesel, K., Plisky, P. J., & Voight, M. L. (2007). Can Serious Injury in Professional Football be Predicted by a Preseason Functional Movement Screen? North American journal of sports physical therapy: NAJSPT, 2(3), 14758.

    Levangie, P. K., & Norkin, C. C. (2005). Joint Structure and Function: A Comprehensive Analysis. (J. P. Margaret M, Ed.) (Fourth Edi., p. 609). Philadelphia, USA.

    Marta B. Villamila, Luciana P. Nedela, Carla M.D.S Freitasa, B. M. (2011). Simulation of the human TMJ behavior based on interdependent joints topology. Computer methods and programs in biomedicine.

    McLester, John, Pierre, P. S. P. (2008). Applied Biomechanics: CONCEPTS AND CONNECTIONS.

    Plisky, P. J., Rauh, M. J., Kaminski, T. W., & Underwood, F. B. (2006). Star Excursion Balance Test as a predictor of lower extremity injury in high school basketball players. The Journal of orthopaedic and sports physical therapy, 36(12), 9119.

  • 17

    Sung, P. S., & Kim, Y. H. (2011). Kinematic analysis of symmetric axial trunk rotation on dominant hip. Journal of rehabilitation research and development, 48(8), 102936. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22068377

    Zatsiorsky., V. M. (Ed.). (2000). Biomechanics in Sport: Performance Enhancement and Injury Prevention (The Encyclopaedia of Sports Medicine, Vol. 9) (p. 667). Wiley-Blackwell.