corneal collagen crosslinking financial disclosures new … · 2019. 7. 11. · asota, fant,...

7
1 Corneal Collagen Crosslinking New Techniques and Biomechanics Paolo Vinciguerra MD, Edoardo Stagni MD, William Dupps MD PhD, Cynthia Roberts PhD, Karolinne Maia Rocha MD PhD, George O. Waring IV MD Course Director: R. Doyle Stulting MD, PhD September 17, 2011 XXIX European Society of Cataract and Refractive Surgery Vienna, Austria Financial Disclosures Some authors have financial interest in the material presented Corneal Collagen Cross-Linking Treatment Riboflavin 0.1% drops Pretreat x 20 min Q 5 min during irradiation UVA Light irradiation 365 nm 0.3 mW/cm 2 30 minutes Ricrolin® Riboflavin VEGA Cross-Linker Initial Concept Slide courtesy Prof. Theo Seiler History: UVA + Riboflavin Studied since 1994 in Europe University of Dresden Prof. Theo Seiler Eberhard Spoerl Gregory Wollensak Looking for ways to increase cross- links in corneal stroma First clinical use in 1998 Keratoconus Corneal Collagen Structure Corneal collagen fibrils Posterior displacement of lamellae Lack orthogonal uniformity Uneven distribution Areas of vertical elongation Slippage of corneal fibrils Corneal remodeling Thinning at apex of cone Normal corneal surface Keratoconus corneal surface Photo courtesy CA Eksteen, www.eyesite.co.za

Upload: others

Post on 13-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Corneal Collagen Crosslinking

    New Techniques and Biomechanics

    Paolo Vinciguerra MD, Edoardo Stagni MD,

    William Dupps MD PhD, Cynthia Roberts PhD,

    Karolinne Maia Rocha MD PhD, George O. Waring IV MD

    Course Director:

    R. Doyle Stulting MD, PhD

    September 17, 2011

    XXIX European Society of Cataract and Refractive Surgery

    Vienna, Austria

    Financial Disclosures

    Some authors have financial interest

    in the material presented

    Corneal Collagen Cross-Linking

    Treatment

    Riboflavin 0.1% drops

    – Pretreat x 20 min

    – Q 5 min during irradiation

    UVA Light irradiation

    – 365 nm

    – 0.3 mW/cm2

    – 30 minutes

    Ricrolin®

    Riboflavin

    VEGA Cross-Linker

    Initial Concept

    Slide courtesy Prof. Theo Seiler

    History: UVA + Riboflavin

    Studied since 1994 in Europe– University of Dresden

    • Prof. Theo Seiler

    • Eberhard Spoerl

    • Gregory Wollensak

    – Looking for ways to increase cross-links in corneal stroma

    First clinical use in 1998

    Keratoconus Corneal Collagen Structure

    Corneal collagen fibrils

    – Posterior displacement of

    lamellae

    – Lack orthogonal uniformity

    – Uneven distribution

    – Areas of vertical elongation

    Slippage of corneal fibrils

    – Corneal remodeling

    – Thinning at apex of cone

    Normal corneal surface

    Keratoconus corneal surfacePhoto courtesy CA Eksteen, www.eyesite.co.za

  • 2

    Epithelial Thickness in Keratoectasia

    * **

    * *

    * p < 0.05

    Design Specifications

    Riboflavin– Absorption peak 365 nm to

    370 nm– Concentration 0.1%

    UVA toxicity depends on how deeply radiation penetrates the eye– Determined by:

    • Wavelength

    • Intensity• Duration of Exposure

    • Frequency of Exposure

    UVA + Photosensitizer– Absorption coefficient

    maximizes absorption in cornea

    – Minimize threshold for endothelial cell toxicity

    0

    1

    2

    3

    4

    5

    300 350 400 450 500 550

    Riboflavin biphasic

    absorption peak

    Riboflavin

    Vitamin B2 Water Soluble Vitamin

    – Non-toxic

    Normal function– Catalyzes oxidation-reduction reactions

    Cross-linking function– Increases absorption of UVA irradiation

    – Photosensitizer for production of reactive oxygen molecules (singlet oxygen)

    UVA Corneal Absorption in

    Presence of Riboflavin

    Stress-Strain Measurements

    0

    1

    2

    0 2 4 6 8 10 12

    Strain in %

    Str

    es

    s in

    10

    5 P

    a

    porcine corneas

    crosslinked

    untreated

    (Spoerl/Seiler:Exp Eye Res, 1998)

    Increased Resistance Against

    Enzymes

    0

    2

    4

    6

    8

    10

    0 2 4 6 8 10 12 14

    Time in days

    co

    rne

    al d

    iam

    ete

    r in

    mm

    collagenase digestion in dependance on time

    2 mW/cm² 3 mW/cm²1 mW/cm²control group

    (Spoerl,Wollensak,Seiler: Current Eye Res. 2004)

  • 3

    Increased Collagen Fiber Diameter

    12,2 %

    4,6 %

    (Wollensak,Spoerl,Seiler: Cornea 2004)

    Intact Epithelium Prevents

    Riboflavin Absorption

    EPI Intact

    EPI Removed

    Riboflavin Q1 x 10

    Asota, Fant, Edelhauser, and Stulting, unpublished

    Str

    om

    a

    US Clinical Trial on Ricrolin

    CXL

    12 sites currently enrolling

    Early data (stay tuned)

    Trans-epithelial CXL

    • Operating Room not necesary

    • Corneal thickness < 400 µ

    • Easier technique

    • Pre treatment VA maintenance

    • Better patient compliance (children)

    • No post-treatment pain

    • No complications derived from

    disepithelization

  • 4

    Ricrolin TE (SOOFT, Italia)

    Riboflavin

    Dextran T500

    Bio-Enhancer

    Photo-enhancer

    Trometamol

    Trometamol (Tris -(hydroxymethyl)aminomethane)

    Inert aminoalcohol with low toxicity

    Commonly used in cosmetics and other drugs as

    buffer

    Buffer action mitigates carbon dioxide and others

    acids

    It’s present cosmetics and drugs

    Low toxicity

    – in literature, is reported only one case regarding a

    periorbital dermatitis

    Nahas G G, Sutin K M, Fermon C et al. Guidelines for the treatment of acidaemia with THAM.

    Drugs 1998: 55: 191–224.

    (Cover et al., Microbios, 68 1991)

    Trometamol

    • Increases efficacy (Abdelkader H et al., AAPS SciTech.,

    • Decrease toxicity (U.S. Pharmacopoeia, Vol. XXII)

    • Improve liposolubillty(Valles et al., Me6)

    • Combined with EDTA allow the transit

    through the tight-junctions

    Evaluation of Ricrolin TE

    Stagni E. Caporossi

    Inclusion Criteria

    • 50 patient

    • Age: 12 to 42 years

    • Progressive Keratoconus II-III° Amsler–

    Krumeich

    • Treated worst eye (larger corneal curvature

    and thinner pachymetry)

    • Contralateral eye used as control

    • Mean corneal thickness: 412,9 micron

    Materials and Methods

    Follow up: T0, 7, 15 days, 1, 3, 6, 9,12, 18 months

    VA measured with LogMar ETDRS tables

    Used instruments:– Digital Slit lamp

    – Ultrasound and optic pachimetry

    – Corneal topography and aberrometry

    – Corneal OCT

    – Corneal endothelial count

    – Corneal confocal microscopy

  • 5

    TechniqueRicrolin MUST BE preserved at 4-8°C during the treatment

    p

  • 6

    Stroma 250 µ

    treated with CXL TE

    Stroma 250 µ

    control

    Stroma 250 µ

    treated with CXL

    Confocal microscopy

    Control endothelium

    Confocal microscopy

    CXL TE endothelium

    statistically not significant (p< 0.5)

    CXL

    Pre: 2427 ± 236.4

    Post: 2387 ± 361.0

    Controls

    Pre: 2523 ± 198.2

    Post: 2474 ± 241.0

    Corneal endothelial count (cell/mm2)

    Results TE CXL Summary

    • Better compliance of patients (possibility to treat

    patients under 15 years and “complicated patients”)

    • No post-treatment pain

    • Age over 35 y.o.

    • Corneal thickness < 400 micron

    • Manteinance of pre-treatment visual acuity

    • Cooperate with traditional CCL (possibility to use both

    techniques in the same patient)

    Iontophoretic Delivery of

    Riboflavin

    Applications

    36

    Lidosite Lidocaïne

    patch

    (Vyteris)

    Iontopatch

    Dexamethasone

    (Teikoku Pharma)

    Ionsys Fentanyl

    patch

    (Incline

    therapeutics)

    Eyegate Transscleral

    device

    (Eyegate Pharma)

    Phase III

  • 7

    Riboflavin: a perfect candidate

    37

    Small Molecular weight (456)

    Negatively charged at physiological pH

    High Solubility in water

    Proof-of-concept devices

    38

    - Surface 0.8 cm2

    - Riboflavin volume

    0.35 ml

    - Stainless steel

    electrode

    - Current controlled generator

    - 0,25 – 2,5 mA current range

    - 0,5 – 5 min time range

    Corneal Riboflavin content

    39

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    5000

    5min iontophoresis 0.9% NaCl solution

    15min Passive Riboflavin 3min Iontophoresis Riboflavin

    5min Iontophoresis Riboflavin

    Mean Concentration of riboflavin (ng/g of cornea)

    What does the future hold for

    Crosslinking?

    Increased wattage decreased treatment time

    Iontophoretic delivery system

    Combination therapy

    – Rings

    – Thermal keratoplasty– Topography guided PRK with crosslinking

    Neurolinking

    Prophylactic CXL combined with excimer surgery in boarderline patients

    Biomechanically modulated vision correction

    Scleral crosslinking

    Thank You