copyright © 2011, a road-based qos-aware multipath routing for urban vehicular ad hoc networks...

30
Copyright © 2011, [email protected] A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指指指指 指指指 指指 指指指 指指指指指指指指指指指指指指指指 指指指指指指指指指指指指 1

Upload: laurence-melton

Post on 17-Jan-2018

234 views

Category:

Documents


0 download

DESCRIPTION

Copyright © 2011, Introduction – Motivation Stable and efficient routing plays a key role for the success of VANETs Road-based routing has been shown well- suited in urban VANETs [5][8] –(better than traditional node-based routing) Multipath routing provides alternative routes once the current route fails  However, existing multipath routing protocols are node-based, which are not suitable for urban VANETs 3

TRANSCRIPT

Page 1: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

A Road-based QoS-aware Multipath Routing

for Urban Vehicular Ad Hoc Networks

指導教授:王國禎 學生:謝宜玲國立交通大學資訊科學與工程研究所行動計算與寬頻網路實驗室

1

Page 2: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

Outline

• Introduction• Related work• Proposed multipath routing protocol for urban

VANETs (MRV)– Multiple road-disjoint paths discovery– Path life time and life periods prediction– Dynamic QoS path switching

• Simulation• Conclusion• References

2

Page 3: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

Introduction – Motivation

• Stable and efficient routing plays a key role for the success of VANETs

• Road-based routing has been shown well-suited in urban VANETs [5][8]– (better than traditional node-based routing)

• Multipath routing provides alternative routes once the current route fails

However, existing multipath routing protocols are node-based, which are not suitable for urban VANETs

3

Page 4: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

Introduction – Routing in VANETs

• Road-based routing vs. node-based routing– Node-based routing: sensitive to node mobility– Road-based routing: depending on node density

• As long as the node density is not sparse in each road section of a path, the whole path is connected

– Node density does not vary too much in a road section, in a short period

• It has more choices of next hopRoad-based routing is steadier than node-based

routing, for urban VANETs

4

Page 5: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

5

Page 6: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

Introduction – Multipath routing

• Multipath routing– further enhance the route stability 1.provides alternative routes once the current route

fails2.provides concurrent transmission with multiple paths

(optional)• Existing multipath routing protocols

– are node-based (not road-based)– potential drawback: potential transmission

interference if they are multiple paths through the same road sections [14]

6

Page 7: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

Introduction – QoS routing

• QoS routing in urban VANETs– Utilize probability of connectivity and hop count to decide the best

QoS path– derive/estimate probability of connectivity and hop count with

vehicles mobility data (e.g. speed, position, node density)• Most of current QoS routing protocols for VANETs are

node-based– derive a route’s QoS along with route discovery– only consider straight roads (e.g. highways) or limited local roads

• due to inherited weakness of node-based routingFor generic city road topologies, road-based routing approach is

preferred• Road-based QoS routing

– IGRP [5]: directly determine a path’s with the assistance of traffic statistics

• Additional traffic statistics is required; however, it may not reflect the current situation

7

Page 8: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

Introduction – the proposed routing protocol

• We propose a road-based QoS-aware multipath routing protocol for urban VANETs (MRV)

1. MRV can find multiple road-disjoint paths2. Predict a path’s future lifetime and life periods to

adaptively utilize multiple paths– We propose a space-time planar approach to predict

the connectivity of each road section in a path3. Dynamic QoS path switching

– dynamically switch to a path that satisfies the packet delay constraint

• Packet delay is estimated according to a path’s life periods

8

Page 9: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

Related work

9

Page 10: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

Related work

• Expected results

• Contribution of MRV over other road-based routing protocols– Provide multiple path and consider QoS (vs. RBVT-R)– On-demand route discovery (vs. IGRP)

10

Page 11: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

Proposed multipath routing protocol for urban VANETs (MRV)

11

• Problem description1. How to find multiple road-disjoint paths? 2. Among the multiple paths, we choose the path with longest

lifetimeHow to estimate a road section’s lifetime so as to derive a path’s lifetime

3. As time elapses, a road section becomes connected or disconnected How to dynamically switch to another path

Page 12: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

Proposed MRV – multipath discovery

• Multipath discovery (route discovery, RD)– RD packet: [src, dest, seq #, road section list (RS list)]

• generated at source and being flooded out, until reaching destination– The RS list in an RD packet is updated when the packet

enters a new road section– RD packet table

• Every node maintains one, to check whether a received RD packet had been seen

1. Road-disjoint paths• RD packet with duplicate RS is dropped• (disregarding the beginning and ending RSs)• However, duplicate RSs are allowed if not enough multiple paths are

available2. Loop detection

• e.g. a node in RS3 received an RD packet with RS list [5, 3, 2, 7, 8]

12

Page 13: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

13

Page 14: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

Proposed MRV – multipath discovery

• Route reply– For each RD packet, the destination node sends a

route reply (RR) packet to the source node– Along with the RR packet being relayed among

RSs, the path’s future connectivity prediction is processed in each RS

14

Page 15: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

Road section connectivity problem

15

• Geographical forwarding– used to relay data packets through a road section

• Every node maintains a neighbor table for choosing next hop• neighbor table: every node periodically broadcast a HELLO

Page 16: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

Road section connectivity problem

16

• A potential problem and its solution– As time elapses, a road section may become connected

or disconnected, due to node mobilityRS life periods prediction path life periods path

switching before disconnection

Page 17: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

Road section connectivity problem – space-time planar approach

We propose a space-time planar approach to formulate and resolve the road section connectivity problem– A road section’s life period can be derived A path’s life period is then derived

17

Page 18: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected] 18

Page 19: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

Path lifetime estimation and QoS path switching

19

• RS life periods is included in the RR packet– RR packet piggybacks the relay nodes’ neighbor tables– The last node in the RS, e.g. node i, calculates RS C1-

C2’s life periods using the space-time planar approach – Intersect the derived life periods with the existing life

periods piggybacked in the RR packet (so as to reduce RR packet size)

• The piggybacked neighbor tables are also removed

Page 20: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

QoS path switching

20

• The source node may switch to a path which is connected currently or satisfies delay constraint– Small gaps may be tolerated because of using carry-

and-forward

Page 21: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

QoS path switching

21

• Packet delay di for path i is due to two kinds of delay– Transmission delay (dp) – Path disconnection delay (dd)– di = dp(i) + dd(i)

Page 22: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

QoS path switching

22

• Transmission delay (dp) – dij : packet delay through RSij, dij = tp*{2+[(Lij – 2*s)/(Tr/2)]}

• tp is transmission delay of a hop, which is regarded as a constant [8]– dp(i) = ∑dij, for RSij in path i

• Path disconnection delay (dd)– dd is the sum of the mean of each disconnection period

Page 23: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

Simulation

23

• Simulator: QualNet 5.0• Map: a grid map of 1000m x 1000m with 200m

interval [8]• Total 200 nodes• Node mobility trace generator: VanetMobiSim

– node speed: [0m/s, 20m/s]• Radio range: 275m [8]• Two-ray ground propagation model [8]

– With NLOS, only nodes in adjacent road sections are allowed for radio communication

Page 24: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

Simulation

• We expect that MRV will have significant higher packet delivery rate, shorter packet delay and lower control overhead than a single-path road-based routing protocol, RBVT-R, and a traditional multipath routing protocol, AOMDV

• Expected results

24

Page 25: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

Conclusion

• We have presented a road-based QoS-aware multipath routing protocol for urban VANETs (MRV)

• MRV is used to find multiple road-disjoint paths and to estimate paths' future life periods for QoS path switching

• A space-time planar approach has been proposed to predict each road section’s connectivity of a path and to derive a path’s future lifetime and life periods

25

Page 26: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

Conclusion

• We expect that MRV will have significant higher packet delivery rate, shorter packet delay and lower control overhead than a single-path road-based routing protocol, RBVT-R, and a traditional multipath routing protocol, AOMDV

• To the best of our knowledge, there is no road-based multipath routing protocol in literature

26

Page 27: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

References

27

1. M. K. Marina and S. R. Das, "Ad hoc on-demand multipath distance vector routing," Wireless Communications and Mobile Computing, pp. 969-988, 2006.

2. Cheng-Shiun Wu, Shuo-Cheng Hu and Chih-Shun Hsu” Design of fast restoration multipath routing in VANETs", in Proc. of Computer Symposium (ICS), pp. 73 - 78, 2011.

3. S.-J. Lee, M. Gerla,"Split Multipath Routing with Maximally Disjoint Paths in Ad Hoc Networks," IEEE International Conference on Communications, vol. 10, pp. 3201 - 3205, 2001.

4. X. Huang and Y. Fang, "Performance Study of Node-Disjoint Multipath Routing in Vehicular Ad Hoc Networks," vol. 58, issue 4, pp. 1942 - 1950, 2009.

Page 28: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

References

28

5. H. Saleet et al., "Intersection-based geographical routing protocol for VANETs: a proposal and analysis," IEEE Transactions on Vehicular Technology, vol. 60, issue 9, pp. 4560 - 4574, Nov. 2011.

6. M. Jerbi, S.-M. Senouci, R. Meraihi and Y. Ghamri-Doudane, "An improved vehicular ad hoc routing protocol for city environments," in Proc. of IEEE International Conference on Communications (ICC), pp. 3972 - 3979, 2007.

7. K. Lee, M. Le, J. Haerri and M. Gerla, "Louvre: Landmark overlays for urban vehicular routing environments," in Proc. of IEEE VTC, pp. 1-5, 2008.

8. J. Nzouonta et al., "VANET routing on city roads using real-time vehicular traffic information," IEEE Transactions on Vehicular Technology, vol. 58, issue 7, pp. 3609 - 3626, 2009.

Page 29: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

References

29

9. H. Rongxi ,H. Rutagemwa and S. Xuemin, "Differentiated reliable routing in hybrid vehicular ad-hoc networks," in Proc. of International Conference on Communications, pp. 2353-2358, May 2008.

10. Cheng-Shiun Wu, Shuo-Cheng Hu and Chih-Shun Hsu” Design of fast restoration multipath routing in VANETs", in Proc. of Computer Symposium (ICS), pp. 73 - 78, 2011.

11. S. Bitam and A. Mellouk, "QoS swarm bee routing protocol for vehicular ad hoc networks," in Proc. of International Conference on Communications (ICC), pp. 1-5, June 2011.

12. Z. Mo, H. Zhu, K. Makki and N. Pissinou, "MURU: A multi-hop routing protocol for urban vehicular ad hoc networks," in Proc. of 3rd Annual International Conference on Mobile and Ubiquitous Systems, 2006, pp. 1–8, 2006.

Page 30: Copyright © 2011, A Road-based QoS-aware Multipath Routing for Urban Vehicular Ad Hoc Networks 指導教授:王國禎 學生:謝宜玲 國立交通大學資訊科學與工程研究所

Copyright © 2011, [email protected]

13. Y. Gongjun, D.B. Rawat and B.B. Bista, "Provisioning vehicular ad hoc networks with quality of service," in Proc. of International Conference on Broadband, Wireless Computing, Communication and Applications(BWCCA), pp. 102 - 107, 2010.

14. Yufeng Chen, Zhengtao Xiang, Wei Jian and Weirong Jiang, "An Adaptive Cross-Layer Multi-Path Routing Protocol for Urban VANET," in Proc. of the IEEE International Conference on Automation and Logistics, pp. 603 – 608, 2010.

15. Xiaoxia Huang and Yuguang Fang, "Performance Study of Node-Disjoint Multipath Routing in Vehicular Ad Hoc Networks," IEEE Transactions on Vehicular Technology, vol. 54, issue 4, pp. 1942 - 1950, 2009.

16. Yi-Ling Hsieh and Kuochen Wang, “Road Layout Adaptive Overlay Multicast for Urban Vehicular Ad Hoc Networks,” in Proc. of the IEEE 73rd VTC, pp. 1-5, 2011. (submitted to journal Computer Networks)

30