copolymer microstructure determination by the click of a

54
1 Supporting information belonging to the paper entitled: Copolymer microstructure determination by the click of a button; reactivity ratios of comonomers from a single MALDI-ToF-MS measurement. S. Huijser, G. D. Mooiweer, R. van der Hofstad, B. B. P. Staal, J. Feenstra, A. M. van Herk, C.E. Koning, R. Duchateau*

Upload: others

Post on 16-Oct-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Copolymer microstructure determination by the click of a

  -­‐  1  -­‐  

Supporting information belonging to the paper entitled:

Copolymer microstructure determination by the click

of a button; reactivity ratios of comonomers from a

single MALDI-ToF-MS measurement.

S. Huijser, G. D. Mooiweer, R. van der Hofstad, B. B. P. Staal,

J. Feenstra, A. M. van Herk, C.E. Koning, R. Duchateau*

Page 2: Copolymer microstructure determination by the click of a

  -­‐  2  -­‐  

Content: Page:

Experimental Section 5

Figure S1a. Benchmark Dell PC, 1 CPU, 3GHz processor, 1 Gb RAM. 6

Figure S1b. Benchmark LIME PC, 4 CPUs parallel, 3 GHz processor, 8 Gb RAM. 6

Figure S2. Flowchart of procedure to determine reactivity ratios by MALDI-ToF-MS. 7

Table S1. Classification of reactivity ratios and microstructure. 8

The analytical form of the probability mass function 8

Table S2. Molecular weights of monomers. 11

Experimental (full and zoomed in, top) and simulated (bottom) MALDI-ToF-MS spectrum of: Figure S3. Copolymer of styrene/methyl acrylate. 12

Figure S4. Copolymer of styrene/ethyl acrylate. 12

Figure S5. Copolymer of styrene/butyl acrylate. 13

Figure S6. Copolymer of styrene/methyl methacrylate. 13

Figure S7. Copolymer of styrene/ethyl methacrylate. 14

Figure S8. Copolymer of styrene/butyl methacrylate. 14

Figure S9. Copolymer of methyl methacrylate/ethyl methacrylate. 15

Figure S10. Copolymer of methyl methacrylate/butyl methacrylate. 15

Figure S11. Copolymer of methyl methacrylate/butyl acrylate. 16

Figure S12. Copolymer of methyl methacrylate/vinyl acetate. 16

Figure S13. Copolymer of butyl methacrylate/ethyl acrylate. 17

Figure S14. Copolymer of ethyl acrylate/vinyl acetate. 17

Figure S15. Copolymer of vinyl acetate/butyl acrylate. 18

Figure S16. Copolymer of ε-caprolactone/4-methylcaprolactone recorded in reflector mode with Na+. 19

Figure S17. Copolymer of ε-caprolactone/1,5-dioxepan-2-one recorded in reflector mode with K+. 19

Figure S18. Copolymer of δ-valerolactone/1,5-dioxepan-2-one recorded in reflector mode with K. 20

Figure S19. Copolymer of ε-caprolactone/trimethylene carbonate with 1,3-propanediol as initiator

recorded in reflector mode with K+. 20

Figure S20. Copolymer of lactide/1,5-dioxepan-2-one recorded in reflector mode with K+. 21

Figure S21. Copolymer of ε-caprolactone / lactide recorded in reflector mode with K+. 21

Chemical composition distribution fitted using Monte Carlo simulations and measured chemical composition distribution of: Figure S22. Copolymer styrene/methyl acrylate, chain length 20. 22

Page 3: Copolymer microstructure determination by the click of a

  -­‐  3  -­‐  

Figure S23. Copolymer styrene/ethyl acrylate, chain length 20. 22

Content: Page:

Figure S24. Copolymer styrene/butyl acrylate, chain length 20. 23

Figure S25. Copolymer Styrene / Methyl methacrylate, chain length 20. 23

Figure S26. Copolymer styrene/ethyl methacrylate, chain length 16. 24

Figure S27. Copolymer styrene/butyl methacrylate, chain length 15. 24

Figure S28. Copolymer methyl methacrylate/ethyl methacrylate, chain length 17. 25

Figure S29. Copolymer methyl methacrylate/butyl methacrylate, chain length 15. 25

Figure S30. Copolymer methyl methacrylate/butyl acrylate, chain length 20. 26

Figure S31. Copolymer methyl methacrylate/vinyl acetate, 20:80 ratio, chain length 18. 26

Figure S32. Copolymer butyl methacrylate/ethyl acrylate, chain length 19. 27

Figure S33. Copolymer ethyl acrylate/vinyl acetate, chain length 15. 27

Figure S34. Copolymer butyl acrylate/vinyl acetate, chain length 30. 28

Figure S35. Copolymer ε-caprolactone/4-methylcaprolactone, 50:50 ratio, chain length 18. 29

Figure S36. Copolymer ε-caprolactone/4-methylcaprolactone, 30:70 ratio, chain length 18. 29

Figure S37. Copolymer ε-caprolactone/1,5-dioxepan-2-one, 50:50 ratio, chain length 20. 30

Figure S38. Copolymer ε-caprolactone/1,5-dioxepan-2-one, 70:30 ratio, chain length 18. 30

Figure S39. Copolymer δ-valerolactone/1,5-dioxepan-2-one, 50:50 ratio, chain length 15. 31

Figure S40. Copolymer ε-caprolactone/trimethylene carbonate, 50:50 ratio, chain length 15. 31

Figure S41. Copolymer lactide/1,5-dioxepan-2-one, 50:50 ratio, chain length 20. 32

Figure S42. Copolymer ε-caprolactone/lactide, chain length 30. 32

Composition vs. chain length of: Figure S43. Copolymer styrene/methyl acrylate, 50:50 ratio. 33

Figure S44. Copolymer styrene/ ethyl acrylate, 50:50 ratio. 33

Figure S45. Copolymer styrene/ butyl acrylate, 50:50 ratio. 34

Figure S46. Copolymer styrene/ methyl methacrylate, 50:50 ratio. 34

Figure S47. Copolymer styrene/ethyl methacrylate, 50:50 ratio. 35

Figure S48. Copolymer methyl methacrylate/ethyl methacrylate, 50:50 ratio. 35

Figure S49. Copolymer methyl methacrylate/butyl methacrylate, 50:50 ratio. 36

Figure S50. Copolymer methyl methacrylate/vinyl acetate, 20:80 ratio. 36

Figure S51. Copolymer butyl methacrylate/ethyl acrylate, 50:50 ratio. 37

Figure S52. Copolymer ethyl acrylate/vinyl acetate, 50:50 ratio. 37

Figure S53. Copolymer butyl acrylate/vinyl acetate, 50:50 ratio. 38

Figure S54. Copolymer ε-caprolactone/4-methylcaprolactone, 50:50 ratio. 39

Page 4: Copolymer microstructure determination by the click of a

  -­‐  4  -­‐  

Figure S55. Copolymer ε-caprolactone/4-methylcaprolactone, 30:70 ratio. 39

Content: Page:

Figure S56. Copolymer ε-caprolactone/1,5-dioxepan-2-one, 50:50 ratio. 40

Figure S57. Copolymer ε-caprolactone/1,5-dioxepan-2-one, 70:30 ratio. 40

Figure S58. Copolymer δ-valerolactone/1,5-dioxepan-2-one, 50:50 ratio. 41

Figure S59. Copolymer ε-caprolactone/trimethylene carbonate, 50:50 ratio. 41

Figure S60. Copolymer lactide/1,5-dioxepan-2one, 50:50 ratio. 42

Figure S61. Copolymer ε-caprolactone/lactide, 50:50 ratio. 42

Homo-probabilities versus chain length (Most abundant chain lengths) of: Figure S62. Copolymer styrene/methyl acrylate. 43

Figure S63. Copolymer styrene/ethyl acrylate. 43

Figure S64. Copolymer styrene/butyl acrylate. 44

Figure S65. Copolymer styrene/ethyl methacrylate. 44

Figure S66. Copolymer styrene/ethyl methacrylate. 45

Figure S67. Copolymer methyl methacrylate/ethyl methacrylate. 45

Figure S68. Copolymer methyl methacrylate/butyl methacrylate. 46

Figure S69. Copolymer methyl methacrylate/butyl acrylate. 46

Figure S70. Copolymer vinyl acetate/methyl methacrylate. 47

Figure S71. Copolymer ethyl acrylate/butyl methacrylate. 47

Figure S72. Copolymer ethyl acrylate/vinyl acetate. 48

Figure S73. Copolymer ε-caprolactone/4-methyl caprolactone, 50:50 ratio. 49

Figure S74. Copolymer ε-caprolactone/1,5-dioxepan-2-one, 50:50 ratio. 49

Figure S75. Copolymer ε-caprolactone/1,5-dioxepan-2-one, 70:30 ratio. 50

Figure S76. Copolymer δ-valerolactone/1,5-dioxepan-2-one, 50:50 ratio. 50

Figure S77. Copolymer ε-caprolactone/trimethylene carbonate. 51

Figure S78. Copolymer lactide/1,5-dioxepan-2one. 51

Figure S79. Copolymer ε-caprolactone/lactide. 52

Page 5: Copolymer microstructure determination by the click of a

  -­‐  5  -­‐  

Experimental Section

Reagents. Free radical: Monomers were purified by conventional methods. 2,2’-azobis(isobutyronitrile)

(AIBN) was recrystallized from methanol. 1-Dodecanethiol (DDT) was used without further purification and

purchased from Aldrich. Ring opening: 1,5- dioxepan-2-one and 4-methylcaprolactone were prepared

according to literature procedures.1,2 D-Lactide was a gift from Purac. ε-Caprolactone, δ-Valerolactone and

Tin (II) 2-ethylhexanoate (Sn(Oct)2) was purchased from Aldrich. The data of the copolymerization of

trimethylene carbonate and ε-caprolactone are reported elsewhere.3

Synthesis. Free radical: A mixture of comonomers (6 mmol) in required molar ratio, initiator AIBN and

chain transfer agent DDT (in a molar ratio of 500:10:1 respectively) was reacted in a 1.5 mL crimp lid vial

placed in an aluminium heating block at 60 or 70 oC. Crude samples were taken with an interval of 30 s to

undergo immediate MALDI-ToF-MS analyses. Ring opening: A mixture of comonomers (10 mmol) in

required molar ratio and a drop of Sn(Oct)2 was reacted in a 1.5 mL crimp lid vial placed in an aluminium

heating block at 130 oC. Crude samples were taken with an interval of 5 minutes to undergo immediate

MALDI-ToF-MS analyses.

MALDI-ToF-MS Analysis. MALDI-ToF-MS analysis was performed on a Voyager DE-STR from Applied

Biosystems equipped with a 337 nm nitrogen laser. An accelerating voltage of 25 kV was applied. Mass

spectra of 1000 shots were accumulated. The polymer samples were dissolved in THF at a concentration of 1

mg mL-1. The cationization agent used was potassium trifluoroacetate (Fluka, >99%) dissolved in THF at a

concentration of 5 mg mL-1. The matrix used was trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-

propenylidene]malononitrile (DCTB) (Fluka) and was dissolved in THF at a concentration of 40 mg mL-1.

Solutions of matrix, salt and polymer were mixed in a volume ratio of 4:1:4, respectively. The mixed solution

was hand-spotted on a stainless steel MALDI target and left to dry. The spectra were recorded in the reflectron

mode as well as the linear mode.

1 Mathisen, T., Masus, K. & Albertsson, A.-C Macromolecules 22, 3842-3846 (1989).

2 Trollsås, M. Kelly, M.A. Claesson, H., Siemens R. & Hedrick, J.L. Macromolecules 32, 4917-4924 (1999).

3 Henry, G.R.P., Huijser, S., Heise, A. & Koning, C.E. manuscript in preparation.

Page 6: Copolymer microstructure determination by the click of a

  -­‐  6  -­‐  

Benchmark tests

Benchmark tests were performed to determine the number of time, ‘d’, a single chain requires to be simulated

by MC to obtain an acceptable absolute error. These tests were performed for a Bernoullian distribution since

the analytical expression for the probability density function is known, enabling direct comparison with the

chemical composition distribution determined by MC. Evidently, the computer’s processor time increases but

the absolute error decreases with increasing sample size as shown in Figure S1. In the case of a quad core

processor the time required to simulate a chain 3·106 times is 5 s with an accuracy that allows for three digits.

5 5.5 6 6.5 7-4.2

-4

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

-2.4

log10(Sample size)

log 10

(Max

abs

err

or)

Max abs error versus binomial distribution

5 5.5 6 6.5 7-0.5

0

0.5

1

1.5

2

2.5

log10(Sample size)

log 10

(Req

uire

d C

PU ti

me

[sec

])

Plot of required CPU time (sec)

Figure S1a. Benchmark Dell PC, 1 CPU, 3GHz processor, 1 Gb RAM.

Page 7: Copolymer microstructure determination by the click of a

  -­‐  7  -­‐  

5 5.5 6 6.5 7-4.2

-4

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

-2.4

log10(Sample size)

log 10

(Max

abs

err

or)

Max abs error versus binomial distribution

5 5.5 6 6.5 7-1

-0.5

0

0.5

1

1.5

log10(Sample size)

log 10

(Req

uire

d C

PU ti

me

[sec

])

Plot of required CPU time (sec)

Figure S1b. Benchmark LIME PC, 4 CPUs parallel, 3 GHz processor, 8 Gb RAM.

Page 8: Copolymer microstructure determination by the click of a

  -­‐  8  -­‐  

Flow chart of procedure to determine r-values.

Figure S3. Flowchart of procedure to determine reactivity ratios by MALDI-ToF-MS.

Polymerization

MALDI-ToF-MS

Extract chemical composition distribution per chain length

 

Deconvolution MALDI-ToF-MS spectrum into matrix

 

Check if measured distribution fits MC simulated distribution by LSSQ

 

NO YES Change P11 and P22 in order to minimize

LSSQ and simulate new 1st order Markov Chain by MC

 

MATLAB

MC simulation of 1st order Markov chain for chain length ‘n’ starting with

P11+P22=1

 

Calculate r-values from feed ratios and P-values

 

Copolymer analysis software by B.B.P. Staal

Page 9: Copolymer microstructure determination by the click of a

  -­‐  9  -­‐  

Classification of reactivity ratios according to topology. Table S1 is given here as a support to how the reactivity ratios relate to the expected microstructure of the

copolymer. Table S1. Classification of reactivity ratios and microstructure. Ratios Topology

r1 = 1/r2, r2 = 1/r1 (r1r2 = 1) Random copolymer

r1 << 1, r2 << 1 (r1r2 → 0) Alternating copolymer

r1 >> 1, r2 < 1 (r1r2 < 1) Tends to homopolymer of M1

r1 >>1, r2 >>1 Tends to block copolymer

The analytical form of the probability mass function:

The probability mass function of the number of monomers of type 1 (= monomer B), in a copolymer consisting of monomers A and B with a length n is given.

  ( )( )mnNPa =1                   (1)  

Where n is the chain length, m the number of B units in the chain and aP is the probability distribution.

In order compute a probability mass function, the Fourier theory shall be used. It is already mentioned in an internal memo that the Fourier theory can be very convenient to compute such mass functions. Let :f N→ R

  ( ) ( ) ( ) ( ) ( ) ( )xfkxixfkxxfekfxxx

ikx ∑∑∑∞

=

=

=

+==000

sincosˆ       (2)  

And for the Fourier inverse:

  ( ) ( )π

π

π 2ˆ dkkfexf ikx∫

−=                 (3)  

 

Now we would like to apply these to formulas to calculate our mass probability function. The characteristic function of ( )nN1 is now given by:

 

            (4)  ( ) ( )( )∑

=

==n

ma

ikma mnNPekf

01

ˆ

Page 10: Copolymer microstructure determination by the click of a

  -­‐  10  -­‐  

 

In order to help the reader we shall apply these formulas for a polymer with chain length equals three (n=3).Therefore we go back to “tree” of probabilities as depicted below.  

 

 

 

R is our starting group (e.g. a radical). Every time a chain end reacts there will be 2 possibilities, simply an attachment of repeat unit A or B. All probabilities are now given by all the possible paths we can take. In this case at a chain length of m=3, 8 possible routes could have been taken. The probability for each route is given by the product of the probabilities. For example, the probability of 3 A units in a row is ( )( )( )papapa0 etc. The next step is that we write the sum of probabilities for chains which have the same number of B monomers (m) for a given chain length (n).

 

 

 

 

 

 

 

 

R

pa0

R-b

R-a

pa R-aa

R-ab

R-aaa

R-aab

R-aba

R-abb

R-ba

R-bb

R-baa

R-bab

R-bba

R-bbb

pb0

1-pa

pa

1-pa

1-pb

pb

1-pb

pb

pb

1-pb

pa

1-pa

Number of b-units in the polymer chain

m=0

m=1

m=1

m=2

m=1

m=2

m=2

m=3

n=3

m=0

m=1

m=2

m=3

( )( )20 papa

( )( )( ) ( )( )( ) ( )( )( )papbpbpbpapapapapa −+−−+− 1011010

( )( )( ) ( )( )( ) ( )( )( )pbpbpbpapbpbpbpapa −+−−+− 1011010

( )( )20 pbpb

Page 11: Copolymer microstructure determination by the click of a

  -­‐  11  -­‐  

 

Applying  the  following  formula,  we  obtain:  

 

                    (5)  

 

 

 

This result can be written in a more compact and general way by introducing it in a matrix form.

 

 

                    (6)  

 

Now the Fourier inverse rather easy:

 

( )( ) ( )( ) ( )( ) ( ) π

π

π 211

001

1dk

epbpbepapa

epbpaemnNPn

ik

ikikikm

a ∫ ∑−

⎟⎟⎠

⎞⎜⎜⎝

−==     (7)  

 

This is finally the general formula that is used to perform all other calculations and more over this formula is explicit!

 

Note  that   11Ppa = ,   22Ppb = ,   00 11Ppa =  and   022Ppb =  

 

 

 

( )( )( ) ( )( )( ) ( )( )( ) ( )( )232 01011010 pbpbepbpbpbpapbpbpbpapae ikik +−+−−+−

( )( ) ( )( )( ) ( )( )( ) ( )( )( )+−+−−+−+= papbpbpbpapapapapaepapae ikik 10110100 120

( ) ( )( )∑=

==3

01 3ˆ

ma

ikma mNPekf

( ) ( )( ) ( )( ) ( )∑

⎟⎟⎠

⎞⎜⎜⎝

−=

1

11

00ˆn

ik

ikik

a epbpbepapa

epbpakf

Page 12: Copolymer microstructure determination by the click of a

  -­‐  12  -­‐  

MALDI-ToF-MS spectra

The MALDI-ToF-MS spectra recorded in the reflector mode and the matching isotope patterns for end group

determination are given in the following section. First, the spectra of the free radical copolymers and second

the spectra of the ring opening copolymers will be shown. Table 2 is given as support to explain the difference

between peaks in the spectra.

Table S2. Molecular weights of monomers.

Abbreviation Name Mw (g mol−l) BA Butyl Acrylate 128 MA Methyl Acrylate 86 EA Ethyl Acrylate 100 nBMA n-Butyl Methacrylate 142 MMA Methyl Methacrylate 100 EMA Ethyl Methacrylate 114 Sty Styrene 104 VAc Vinyl Acetate 86 CL ε-Caprolactone 114 D-LA D-Lactide 144 DXO 1,5-dioxepan-2-one 116 MCL 4-Methylcaprolactone 128 TMC Trimethylene carbonate 102 VL δ-Valerolactone 100

Page 13: Copolymer microstructure determination by the click of a

  -­‐  13  -­‐  

1250 3000 4750 6500 8250 10000Mass (m/z)

50

100

% In

tens

ity

1740 1779 1818 1857 1896 1935

Mass (m/z)

50

100

% In

tens

ity

1740 1779 1818 1857 1896 1935

50

100Experimental

C12H25S-(STY)n-(MA)m-H

Δm/z = 18 Δm/z = 104

1250 3000 4750 6500 8250 10000Mass (m/z)

50

100

% In

tens

ity

1250 3000 4750 6500 8250 10000Mass (m/z)

50

100

% In

tens

ity

1740 1779 1818 1857 1896 1935

Mass (m/z)

50

100

% In

tens

ity

1740 1779 1818 1857 1896 1935

50

100Experimental

C12H25S-(STY)n-(MA)m-H

Δm/z = 18 Δm/z = 104

Figure S3. Experimental (full and zoomed in, top) and simulated (bottom) MALDI-ToF-MS spectrum of the copolymer of styrene/methyl acrylate.

2780 2811 2842 2873 2904 2935

Mass (m/z)

50

100

% In

tens

ity

2780 2811 2842 2873 2904 2935

50

100

1250 3000 4750 6500 8250 10000

Mass (m/z)

50

100

% In

tens

ity

Experimental

C12H25S-(STY)n-(EA)m-H

Δm/z = 104

2780 2811 2842 2873 2904 2935

Mass (m/z)

50

100

% In

tens

ity

2780 2811 2842 2873 2904 2935

50

100

1250 3000 4750 6500 8250 10000

Mass (m/z)

50

100

% In

tens

ity

Experimental

C12H25S-(STY)n-(EA)m-H

Δm/z = 104

Figure S4. Experimental (full and zoomed in, top) and simulated (bottom) MALDI-ToF-MS spectrum of the copolymer of styrene/ethyl acrylate.

Page 14: Copolymer microstructure determination by the click of a

  -­‐  14  -­‐  

1000 2800 4600 6400 8200 10000

Mass (m/z)

50

100

% In

tens

ity

1670 1718 1766 1814 1862 1910Mass (m/z)

50

100

% In

tens

ity

1670 1718 1766 1814 1862 1910

50

100

C12H25S-(STY)n-(BA)m-H

Experimental

Δm/z = 24 Δm/z = 104

1000 2800 4600 6400 8200 10000

Mass (m/z)

50

100

% In

tens

ity

1670 1718 1766 1814 1862 1910Mass (m/z)

50

100

% In

tens

ity

1670 1718 1766 1814 1862 1910

50

100

C12H25S-(STY)n-(BA)m-H

Experimental

Δm/z = 24 Δm/z = 104

Figure S5. Experimental (full and zoomed in, top) and simulated (bottom) MALDI-ToF-MS spectrum of the copolymer of styrene/butyl acrylate.

1000 2800 4600 6400 8200 10000

Mass (m/z)

50

100

% In

tens

ity

2435 2471 2507 2543 2579 2615

50

100

2435 2471 2507 2543 2579 2615

50

100

Experimental

C12H25S-(STY)n-(MMA)m-H

C12H25S-(STY)n-(MMA)m-C4H6N

2435 2471 2507 2543 2579 2615Mass (m/z)

50

100

% In

tens

ity

1000 2800 4600 6400 8200 10000

Mass (m/z)

50

100

% In

tens

ity

2435 2471 2507 2543 2579 2615

50

100

2435 2471 2507 2543 2579 2615

50

100

Experimental

C12H25S-(STY)n-(MMA)m-H

C12H25S-(STY)n-(MMA)m-C4H6N

2435 2471 2507 2543 2579 2615Mass (m/z)

50

100

% In

tens

ity

Figure S6. Experimental (full and zoomed in, top) and simulated (bottom) MALDI-ToF-MS

spectrum of the copolymer of styrene/methyl methacrylate.

Page 15: Copolymer microstructure determination by the click of a

  -­‐  15  -­‐  

1250 2317 3384 4451 5518 6585Mass (m/z)

50

100

% In

tens

ity

1605 1653 1701 1749 1797 1845

Mass (m/z)

40

100

% In

tens

ity

1605 1653 1701 1749 1797 1845

40

100 Experimental

C12H25S-(STY)n-(EMA)m-H

Δm/z = 104Δm/z = 10

1250 2317 3384 4451 5518 6585Mass (m/z)

50

100

% In

tens

ity

1605 1653 1701 1749 1797 1845

Mass (m/z)

40

100

% In

tens

ity

1605 1653 1701 1749 1797 1845

40

100 Experimental

C12H25S-(STY)n-(EMA)m-H

Δm/z = 104Δm/z = 10

Figure S7. Experimental (full and zoomed in, top) and simulated (bottom) MALDI-ToF-MS spectrum of the copolymer of styrene/ethyl methacrylate.

100

1250 3000 4750 6500 8250 10000Mass (m/z)

50

% In

tens

ity

1855 1882 1909 1936 1963 1990

Mass (m/z)

50

100

% In

tens

ity

1855 1882 1909 1936 1963 1990

50

100 Experimental

C12H25S-(STY)n-(BMA)m-H

100

1250 3000 4750 6500 8250 10000Mass (m/z)

50

% In

tens

ity

1250 3000 4750 6500 8250 10000Mass (m/z)

50

% In

tens

ity

1855 1882 1909 1936 1963 1990

Mass (m/z)

50

100

% In

tens

ity

1855 1882 1909 1936 1963 1990

50

100 Experimental

C12H25S-(STY)n-(BMA)m-H

Figure S8. Experimental (full and zoomed in, top) and simulated (bottom) MALDI-ToF-MS spectrum of the copolymer of styrene/butyl methacrylate.

Page 16: Copolymer microstructure determination by the click of a

  -­‐  16  -­‐  

1245 2615 3985 5355 6725 8095

Mass (m/z)

50

100

% In

tens

ity

1900 1941 1982 2023 2064 2105Mass (m/z)

50

100

% In

tens

ity

1900 1941 1982 2023 2064 2105

50

100Experimental

C12H25S-(EMA)n-(MMA)m-H

Δm/z = 114Δm/z = 14

1245 2615 3985 5355 6725 8095

Mass (m/z)

50

100

% In

tens

ity

1900 1941 1982 2023 2064 2105Mass (m/z)

50

100

% In

tens

ity

1900 1941 1982 2023 2064 2105

50

100Experimental

C12H25S-(EMA)n-(MMA)m-H

Δm/z = 114Δm/z = 14

Figure S9. Experimental (full and zoomed in, top) and simulated (bottom) MALDI-ToF-MS spectrum of the copolymer of methyl methacrylate/ethyl methacrylate.

1455 2481 3507 4533 5559 6585

Mass (m/z)

50

100

% In

tens

ity

2170 2202 2234 2266 2298 2330Mass (m/z)

50

100

% In

tens

ity

2170 2202 2234 2266 2298 2330

50

100Experimental

C12H25S-(BMA)n-(MMA)m-H

Δm/z = 42 Δm/z = 100

1455 2481 3507 4533 5559 6585

Mass (m/z)

50

100

% In

tens

ity

1455 2481 3507 4533 5559 6585

Mass (m/z)

50

100

% In

tens

ity

2170 2202 2234 2266 2298 2330Mass (m/z)

50

100

% In

tens

ity

2170 2202 2234 2266 2298 2330

50

100Experimental

C12H25S-(BMA)n-(MMA)m-H

Δm/z = 42 Δm/z = 100

Figure S10. Experimental (full and zoomed in, top) and simulated (bottom) MALDI-ToF-MS spectrum of the copolymer of methyl methacrylate/butyl methacrylate.

Page 17: Copolymer microstructure determination by the click of a

  -­‐  17  -­‐  

1000 2800 4600 6400 8200 10000

Mass (m/z)

50

100

% In

tens

ity

1900 1924 1948 1972 1996 2020

Mass (m/z)

50

100

% In

tens

ity

1900 1924 1948 1972 1996 2020

50

100 Experimental

C12H25S-(MMA)n-(BA)m-H

Δm/z = 100Δm/z = 28

1000 2800 4600 6400 8200 10000

Mass (m/z)

50

100

% In

tens

ity

1900 1924 1948 1972 1996 2020

Mass (m/z)

50

100

% In

tens

ity

1900 1924 1948 1972 1996 2020

50

100 Experimental

C12H25S-(MMA)n-(BA)m-H

Δm/z = 100Δm/z = 28

Figure S11. Experimental (full and zoomed in, top) and simulated (bottom) MALDI-ToF-MS spectrum of the copolymer of methyl methacrylate/butyl acrylate.

1250 2000 2750 3500 4250 5000

Mass (m/z)

50

100

% In

tens

ity

1465 1505 1545 1585 1625 1665

Mass (m/z)

50

100

% In

tens

ity

1465 1505 1545 1585 1625 1665

50

100 Experimental

C12H25S-(VAc)n-(MMA)m-H

Δm/z = 100Δm/z = 14

1250 2000 2750 3500 4250 5000

Mass (m/z)

50

100

% In

tens

ity

1250 2000 2750 3500 4250 5000

Mass (m/z)

50

100

% In

tens

ity

1465 1505 1545 1585 1625 1665

Mass (m/z)

50

100

% In

tens

ity

1465 1505 1545 1585 1625 1665

50

100 Experimental

C12H25S-(VAc)n-(MMA)m-H

Δm/z = 100Δm/z = 14

Figure S12. Experimental (full and zoomed in, top) and simulated (bottom) MALDI-ToF-MS spectrum of the copolymer of methyl methacrylate/vinyl acetate.

Page 18: Copolymer microstructure determination by the click of a

  -­‐  18  -­‐  

995 2375 3755 5135 6515 7895

Mass (m/z)

50

100

% In

tens

ity

1625 1681 1737 1793 1849 1905

Mass (m/z)

50

100

% In

tens

ity

1625 1681 1737 1793 1849 1905

50

100Experimental

C12H25S-(EA)n-(BMA)m-HΔm/z = 42 Δm/z = 100

995 2375 3755 5135 6515 7895

Mass (m/z)

50

100

% In

tens

ity

1625 1681 1737 1793 1849 1905

Mass (m/z)

50

100

% In

tens

ity

1625 1681 1737 1793 1849 1905

50

100Experimental

C12H25S-(EA)n-(BMA)m-HΔm/z = 42 Δm/z = 100

Figure S13. Experimental (full and zoomed in, top) and simulated (bottom) MALDI-ToF-MS

spectrum of the copolymer of butyl methacrylate/ethyl acrylate.

1565 1605 1645 1685 1725 1765Mass (m/z)

50

100

% In

tens

ity

1565 1605 1645 1685 1725 1765

50

100

1250 3000 4750 6500 8250 10000

Mass (m/z)

50

100

% In

tens

ity

Experimental

C12H25S-(VAc)n-(EA)m-H

Δm/z = 100Δm/z = 14

1565 1605 1645 1685 1725 1765Mass (m/z)

50

100

% In

tens

ity

1565 1605 1645 1685 1725 1765

50

100

1250 3000 4750 6500 8250 10000

Mass (m/z)

50

100

% In

tens

ity

1250 3000 4750 6500 8250 10000

Mass (m/z)

50

100

% In

tens

ity

Experimental

C12H25S-(VAc)n-(EA)m-H

Δm/z = 100Δm/z = 14

Figure S14. Experimental (full and zoomed in, top) and simulated (bottom) MALDI-ToF-MS spectrum of the copolymer of ethyl acrylate/vinyl acetate.

Page 19: Copolymer microstructure determination by the click of a

  -­‐  19  -­‐  

1000 4800 8600 12400 16200 20000

Mass (m/z)

50

100

% In

tens

ity

1665 1685 1705 1725 1745 1765

Mass (m/z)

50

100

% In

tens

ity

1665 1685 1705 1725 1745 1765

50

100 Experimental

C12H25S-(VAc)n-(BA)m-H

Δm/z = 42

1000 4800 8600 12400 16200 20000

Mass (m/z)

50

100

% In

tens

ity

1000 4800 8600 12400 16200 20000

Mass (m/z)

50

100

% In

tens

ity

1665 1685 1705 1725 1745 1765

Mass (m/z)

50

100

% In

tens

ity

1665 1685 1705 1725 1745 1765

50

100 Experimental

C12H25S-(VAc)n-(BA)m-H

Δm/z = 42

Figure S15. Experimental (full and zoomed in, top) and simulated (bottom) MALDI-ToF-MS spectrum of the copolymer of vinyl acetate/butyl acrylate.

Page 20: Copolymer microstructure determination by the click of a

  -­‐  20  -­‐  

Mass (m/z)

900 1720 2540 3360 4180 5000

Mass (m/z)

50

100

% In

tens

ity

1590 1639 1688 1737 1786 1835

50

100

% In

tens

ity

1590 1639 1688 1737 1786 1835

50

100 Experimental

O

O

O

OHOH

Δm/z = 14 Δm/z = 114

Mass (m/z)

900 1720 2540 3360 4180 5000

Mass (m/z)

50

100

% In

tens

ity

1590 1639 1688 1737 1786 1835

50

100

% In

tens

ity

1590 1639 1688 1737 1786 1835

50

100 Experimental

O

O

O

OHOH

Δm/z = 14 Δm/z = 114

900 1720 2540 3360 4180 5000

Mass (m/z)

50

100

% In

tens

ity

1590 1639 1688 1737 1786 1835

50

100

% In

tens

ity

1590 1639 1688 1737 1786 1835

50

100 Experimental

O

O

O

OHOH

Δm/z = 14 Δm/z = 114

Figure S16. Experimental (full and zoomed in, top) and simulated (bottom) MALDI-ToF-MS spectrum of the copolymer of ε-caprolactone/4-methylcaprolactone recorded in reflector mode with Na+.

900 1420 1940 2460 2980 3500

Mass (m/z)

50

100

% In

tens

ity

O

OO

O

OHOH

1740 1779 1818 1857 1896 1935Mass (m/z)

40

100

% In

tens

ity

1740 1779 1818 1857 1896 1935

40

100 Experimental

Δm/z = 116Δm/z = 2

900 1420 1940 2460 2980 3500

Mass (m/z)

50

100

% In

tens

ity

900 1420 1940 2460 2980 3500

Mass (m/z)

50

100

% In

tens

ity

O

OO

O

OHOH

1740 1779 1818 1857 1896 1935Mass (m/z)

40

100

% In

tens

ity

1740 1779 1818 1857 1896 1935

40

100 Experimental

Δm/z = 116Δm/z = 2

Figure S17. Experimental (full and zoomed in, top) and simulated (bottom) MALDI-ToF-MS spectrum of the copolymer of ε-caprolactone/1,5-dioxepan-2-one recorded in reflector mode with K+.

Page 21: Copolymer microstructure determination by the click of a

  -­‐  21  -­‐  

1005 1383 1761 2139 2517 2895

Mass (m/z)

50

100

% In

tens

ity

1315 1339 1363 1387 1411 1435Mass (m/z)

50

100

% In

tens

ity

1315 1339 1363 1387 1411 1435

50

100Experimental

O

OO

O

OH

n m

OH

1005 1383 1761 2139 2517 2895

Mass (m/z)

50

100

% In

tens

ity

1315 1339 1363 1387 1411 1435Mass (m/z)

50

100

% In

tens

ity

1315 1339 1363 1387 1411 1435

50

100Experimental

1005 1383 1761 2139 2517 2895

Mass (m/z)

50

100

% In

tens

ity

1005 1383 1761 2139 2517 2895

Mass (m/z)

50

100

% In

tens

ity

1315 1339 1363 1387 1411 1435Mass (m/z)

50

100

% In

tens

ity

1315 1339 1363 1387 1411 1435

50

100Experimental

O

OO

O

OH

n m

OH

Figure S18. Experimental (full and zoomed in, top) and simulated (bottom) MALDI-ToF-MS spectrum of the copolymer of δ-valerolactone/1,5-dioxepan-2-one recorded in reflector mode with K.

750 1155 1560 1965 2370 2775Mass (m/z)

50

100

% In

tens

ity

1275 1320 1365 1410 1455 1500Mass (m/z)

50

100

% In

tens

ity

1275 1320 1365 1410 1455 1500

50

100

O O

O

O O

OOH

O

O O

O

OH

m n m n

Experimental

Δm/z = 12 Δm/z = 114

750 1155 1560 1965 2370 2775Mass (m/z)

50

100

% In

tens

ity

750 1155 1560 1965 2370 2775Mass (m/z)

50

100

% In

tens

ity

1275 1320 1365 1410 1455 1500Mass (m/z)

50

100

% In

tens

ity

1275 1320 1365 1410 1455 1500

50

100

O O

O

O O

OOH

O

O O

O

OH

m n m n

Experimental

Δm/z = 12 Δm/z = 114

Figure S19. Experimental (full and zoomed in, top) and simulated (bottom) MALDI-ToF-MS spectrum of the copolymer of ε-caprolactone/trimethylene carbonate with 1,3-propanediol as initiator recorded in reflector mode with K+.

Page 22: Copolymer microstructure determination by the click of a

  -­‐  22  -­‐  

2240 2302 2364 2426 2488 2550

Mass (m/z)

50

100

% In

tens

ity

2240 2302 2364 2426 2488 2550

50

100

1345 1976 2607 3238 3869 4500Mass (m/z)

50

100

% In

tens

ity

Experimental

OO

OO

O

OH

n m

OO

H

Δm/z = 28 Δm/z = 144

2240 2302 2364 2426 2488 2550

Mass (m/z)

50

100

% In

tens

ity

2240 2302 2364 2426 2488 2550

50

100

1345 1976 2607 3238 3869 4500Mass (m/z)

50

100

% In

tens

ity

Experimental

OO

OO

O

OH

n m

OO

H

Δm/z = 28 Δm/z = 144

Figure S20. Experimental (full and zoomed in, top) and simulated (bottom) MALDI-ToF-MS spectrum the copolymer of lactide/1,5-dioxepan-2-one recorded in reflector mode with K+.

1930 2886 3842 4798 5754 6710Mass (m/z)

50

100

% In

tens

ity

3000 3051 3102 3153 3204 3255

Mass (m/z)

50

100

% In

tens

ity

3000 3051 3102 3153 3204 3255

50

100 Experimental

OO

OO

OH

n m

OO

H

Δm/z = 30 Δm/z = 144

1930 2886 3842 4798 5754 6710Mass (m/z)

50

100

% In

tens

ity

1930 2886 3842 4798 5754 6710Mass (m/z)

50

100

% In

tens

ity

3000 3051 3102 3153 3204 3255

Mass (m/z)

50

100

% In

tens

ity

3000 3051 3102 3153 3204 3255

50

100 Experimental

OO

OO

OH

n m

OO

H

Δm/z = 30 Δm/z = 144

Figure S21. Experimental (full and zoomed in, top) and simulated (bottom) MALDI-ToF-MS spectrum the copolymer of ε-caprolactone / lactide recorded in reflector mode with K+.

Page 23: Copolymer microstructure determination by the click of a

  -­‐  23  -­‐  

Chemical composition distribution An example of a recorded chemical composition distribution for a certain chain length will be shown for each comonomer pair treated in this paper along with the fitted distribution for that chain length.

Figure S22. Copolymer styrene/methyl acrylate, chain length 20, chemical composition distribution fitted using Monte Carlo simulations and measured chemical composition distribution.

Figure S23. Copolymer styrene/ethyl acrylate, chain length 20, chemical composition distribution fitted using Monte Carlo simulations and measured chemical composition distribution.

Page 24: Copolymer microstructure determination by the click of a

  -­‐  24  -­‐  

Figure S24. Copolymer styrene/butyl acrylate, chain length 20, chemical composition distribution fitted using Monte Carlo simulations and measured chemical composition distribution.

Figure S25. Copolymer Styrene / Methyl methacrylate, chain length 20, chemical composition distribution fitted using Monte Carlo simulations and measured chemical composition distribution.

Page 25: Copolymer microstructure determination by the click of a

  -­‐  25  -­‐  

Figure S26. Copolymer styrene/ethyl methacrylate, chain length 16, chemical composition distribution fitted using Monte Carlo simulations and measured chemical composition distribution.

Figure S27. Copolymer styrene/butyl methacrylate, chain length 15, chemical composition distribution fitted using Monte Carlo simulations and measured chemical composition distribution.

Page 26: Copolymer microstructure determination by the click of a

  -­‐  26  -­‐  

Figure S28. Copolymer methyl methacrylate/ethyl methacrylate, chain length 17, chemical composition distribution fitted using Monte Carlo simulations and measured chemical composition distribution.

Figure S29. Copolymer methyl methacrylate/butyl methacrylate, chain length 15, chemical composition distribution fitted using Monte Carlo simulations and measured chemical composition distribution.

Page 27: Copolymer microstructure determination by the click of a

  -­‐  27  -­‐  

Figure S30. Copolymer methyl methacrylate/butyl acrylate, chain length 20, chemical composition distribution fitted using Monte Carlo simulations and measured chemical composition distribution.

Figure S31. Copolymer methyl methacrylate/vinyl acetate, 20:80 ratio, chain length 18, chemical composition distribution fitted using Monte Carlo simulations and measured chemical composition distribution.

Page 28: Copolymer microstructure determination by the click of a

  -­‐  28  -­‐  

Figure S32. Copolymer butyl methacrylate/ethyl acrylate, chain length 19, chemical composition distribution fitted using Monte Carlo simulations and measured chemical composition distribution.

Figure S33. Copolymer ethyl acrylate/vinyl acetate, chain length 15, chemical composition distribution fitted using Monte Carlo simulations and measured chemical composition distribution.

Page 29: Copolymer microstructure determination by the click of a

  -­‐  29  -­‐  

Figure S34. Copolymer butyl acrylate/vinyl acetate, chain length 30, chemical composition distribution fitted using Monte Carlo simulations and measured chemical composition distribution.

Page 30: Copolymer microstructure determination by the click of a

  -­‐  30  -­‐  

Figure S35. Copolymer ε-caprolactone/4-methylcaprolactone, 50:50 ratio, chain length 18, chemical composition distribution fitted using Monte Carlo simulations and measured chemical composition distribution.

Figure S36. Copolymer ε-caprolactone/4-methylcaprolactone, 30:70 ratio, chain length 18, chemical composition distribution fitted using Monte Carlo simulations and measured chemical composition distribution.

Page 31: Copolymer microstructure determination by the click of a

  -­‐  31  -­‐  

Figure S37. Copolymer ε-caprolactone/1,5-dioxepan-2-one, 50:50 ratio, chain length 20, chemical composition distribution fitted using Monte Carlo simulations and measured chemical composition distribution.

Figure S38. Copolymer ε-caprolactone/1,5-dioxepan-2-one, 70:30 ratio, chain length 18, chemical composition distribution fitted using Monte Carlo simulations and measured chemical composition distribution.

Page 32: Copolymer microstructure determination by the click of a

  -­‐  32  -­‐  

Figure S39. Copolymer δ-valerolactone/1,5-dioxepan-2-one, 50:50 ratio, chain length 15, chemical composition distribution fitted using Monte Carlo simulations and measured chemical composition distribution.

Figure S40. Copolymer ε-caprolactone/trimethylene carbonate, 50:50 ratio, chain length 15, chemical composition distribution fitted using Monte Carlo simulations and measured chemical composition distribution.

Page 33: Copolymer microstructure determination by the click of a

  -­‐  33  -­‐  

Figure S41. Copolymer lactide/1,5-dioxepan-2-one, 50:50 ratio, chain length 20, chemical composition distribution fitted using Monte Carlo simulations and measured chemical composition distribution.

Figure S42. Copolymer ε-caprolactone/lactide, chain length 30, chemical composition distribution fitted using MC and measured chemical composition distribution.

Page 34: Copolymer microstructure determination by the click of a

  -­‐  34  -­‐  

Composition versus chain length

Figure S43. Composition vs. chain length of copolymer styrene/methyl acrylate, 50:50 ratio.

Figure S44. Composition vs. chain length of copolymer styrene/ ethyl acrylate, 50:50 ratio.

Page 35: Copolymer microstructure determination by the click of a

  -­‐  35  -­‐  

Figure S45. Composition vs. chain length of copolymer styrene/ butyl acrylate, 50:50 ratio.

! Figure  S46.  Composition  vs.  chain  length  of  copolymer  styrene/  methyl  methacrylate, 50:50 ratio.  

Page 36: Copolymer microstructure determination by the click of a

  -­‐  36  -­‐  

Figure S47. Composition vs. chain length of copolymer styrene/ethyl methacrylate, 50:50 ratio.

 

 

Figure  S48.  Composition  vs.  chain  length  of  copolymer  methyl  methacrylate/ethyl  methacrylate, 50:50 ratio.  

Page 37: Copolymer microstructure determination by the click of a

  -­‐  37  -­‐  

 

Figure  S49.  Composition  vs.  chain  length  of  copolymer  methyl  methacrylate/butyl  methacrylate, 50:50 ratio.  

 

!  

Page 38: Copolymer microstructure determination by the click of a

  -­‐  38  -­‐  

Figure  S50.  Composition  vs.  chain  length  of  copolymer  methyl  methacrylate/vinyl  acetate,  20:80  ratio.  

Figure  S51.  Composition  vs.  chain  length  of  copolymer  butyl  methacrylate/ethyl  acrylate, 50:50 ratio.  

 

 

Page 39: Copolymer microstructure determination by the click of a

  -­‐  39  -­‐  

Figure  S52.  Composition  vs.  chain  length  of  copolymer  ethyl  acrylate/vinyl  acetate, 50:50 ratio.  

 

 

Figure  S53.  Composition  vs.  chain  length  of  copolymer  butyl  acrylate/vinyl  acetate, 50:50 ratio.    

Page 40: Copolymer microstructure determination by the click of a

  -­‐  40  -­‐  

 

Figure  S54.  Composition  vs.  chain  length  of  copolymer  ε-­‐caprolactone/4-­‐methylcaprolactone, 50:50 ratio.  

Fig

ure  S55.  Composition  vs.  chain  length  of  copolymer  ε-­‐caprolactone/4-­‐methylcaprolactone,

30:70 ratio.  

Page 41: Copolymer microstructure determination by the click of a

  -­‐  41  -­‐  

 

!  Figure  S56.  Composition  vs.  chain  length  of  copolymer  ε-­‐caprolactone/1,5-­‐dioxepan-­‐2-­‐one, 50:50 ratio.  

 

Page 42: Copolymer microstructure determination by the click of a

  -­‐  42  -­‐  

Fig

ure  S57.  Composition  vs.  chain  length  of  copolymer  ε-­‐caprolactone/1,5-­‐dioxepan-­‐2-­‐one, 70:30

ratio.  

Figu

re  S58.  Composition  vs.  chain  length  of  copolymer  δ-­‐valerolactone/1,5-­‐dioxepan-­‐2-­‐one,  50:50

ratio.  

Page 43: Copolymer microstructure determination by the click of a

  -­‐  43  -­‐  

 

Figu

re  S59.  Composition  vs.  chain  length  of  copolymer  ε-­‐caprolactone/trimethylene  carbonate,

50:50 ratio.  

 

!  

Page 44: Copolymer microstructure determination by the click of a

  -­‐  44  -­‐  

Figure  S60.  Composition  vs.  chain  length  of  copolymer  lactide/1,5-­‐dioxepan-­‐2one,  50:50 ratio.  

 

!  Figure  S61.  Composition  vs.  chain  length  of  copolymer  ε-­‐caprolactone/lactide,  50:50 ratio.  

Homo-­‐probabilities  versus  chain  length  

‘Most  abundant  chain  lengths’  

 

Page 45: Copolymer microstructure determination by the click of a

  -­‐  45  -­‐  

 

Figure  S62.  Homo-­‐probabilities  vs.  chain  length  of  copolymer  styrene/methyl  acrylate.  

!  

Figure  S63.  Homo-­‐probabilities  vs.  chain  length  of  copolymer  styrene/ethyl  acrylate.  

Page 46: Copolymer microstructure determination by the click of a

  -­‐  46  -­‐  

Figure  S64.  Homo-­‐probabilities  vs.  chain  length  of  copolymer  styrene/butyl  acrylate.  

Figure A3-45. Homo-probabilities vs. chain length of copolymer styrene / methyl methacrylate.

Figure A3-46. Homo-probabilities vs. chain length of copolymer styrene / ethyl methacrylate.

Appendix Chapter 3

probabilities vs. chain length of copolymer styrene / methyl methacrylate.

probabilities vs. chain length of copolymer styrene / ethyl methacrylate.

Appendix Chapter 3

3-30

probabilities vs. chain length of copolymer styrene / methyl methacrylate.

probabilities vs. chain length of copolymer styrene / ethyl methacrylate.

 

 

Figure  S65.  Homo-­‐probabilities  vs.  chain  length  of  copolymer  styrene/ethyl  methacrylate.  

Page 47: Copolymer microstructure determination by the click of a

  -­‐  47  -­‐  

Figure  S66.  Homo-­‐probabilities  vs.  chain  length  of  copolymer  styrene/ethyl  methacrylate.  

 Figure  S67.  Homo-­‐probabilities  vs.  chain  length  of  copolymer  methyl  methacrylate/ethyl  methacrylate.  

Page 48: Copolymer microstructure determination by the click of a

  -­‐  48  -­‐  

Figure  S68.  Homo-­‐probabilities  vs.  chain  length  of  copolymer  methyl  methacrylate/butyl  methacrylate.  

Figure A3-47. Homo-probabilities vs. chain length of copolymer methyl methacry

Figure A3-48. Homo-probabilities vs. chain length of copolymer methyl methacrylate / butyl acrylate.

Appendix Chapter 3

probabilities vs. chain length of copolymer methyl methacrylate / butyl methacrylate.

probabilities vs. chain length of copolymer methyl methacrylate / butyl acrylate.

Appendix Chapter 3

3-31

late / butyl methacrylate.

probabilities vs. chain length of copolymer methyl methacrylate / butyl acrylate.

 

Figure  S69.  Homo-­‐probabilities  vs.  chain  length  of  copolymer  methyl  methacrylate/butyl  acrylate.  

Page 49: Copolymer microstructure determination by the click of a

  -­‐  49  -­‐  

 

Figure  S70.  Homo-­‐probabilities  vs.  chain  length  of  copolymer  vinyl  acetate/methyl  methacrylate.  

!  Figure  S71.  Homo-­‐probabilities  vs.  chain  length  of  copolymer  ethyl  acrylate/butyl  methacrylate.  

Page 50: Copolymer microstructure determination by the click of a

  -­‐  50  -­‐  

 Figure  S72.  Homo-­‐probabilities  vs.  chain  length  of  copolymer  ethyl  acrylate/vinyl  acetate.  

 

Page 51: Copolymer microstructure determination by the click of a

  -­‐  51  -­‐  

 

 Figure  S73.  Homo-­‐probabilities  vs.  chain  length  of  copolymer  ε-­‐caprolactone/4-­‐methyl  caprolactone,  50:50  ratio.  

!  

Page 52: Copolymer microstructure determination by the click of a

  -­‐  52  -­‐  

Figure  S74.  Homo-­‐probabilities  vs.  chain  length  of  copolymer  ε-­‐caprolactone/1,5-­‐dioxepan-­‐2-­‐one,  50:50  ratio.  

 Figure  S75.  Homo-­‐probabilities  vs.  chain  length  of  copolymer  ε-­‐caprolactone/1,5-­‐dioxepan-­‐2-­‐one,  70:30  ratio.  

 

Figure A3-53. Homo-probabilities vs. chain length of copolymer

Figure A3-54. Homo-probabilities vs. chain length of copolymer

Appendix Chapter 3

probabilities vs. chain length of copolymer -caprolactone / trimethylene carbonate.

probabilities vs. chain length of copolymer -valerolactone / 1,5-dioxepan

Appendix Chapter 3

3-34

caprolactone / trimethylene carbonate.

dioxepan-2-one.

 

Page 53: Copolymer microstructure determination by the click of a

  -­‐  53  -­‐  

Figure  S76.  Homo-­‐probabilities  vs.  chain  length  of  copolymer  δ-­‐valerolactone/1,5-­‐dioxepan-­‐2-­‐one,  50:50  ratio.  

 Figure  S77.  Homo-­‐probabilities  vs.  chain  length  of  copolymer  ε-­‐caprolactone/trimethylene  carbonate.  

 

 Figure  S78.  Homo-­‐probabilities  vs.  chain  length  of  copolymer  lactide/1,5-­‐dioxepan-­‐2one.  

Page 54: Copolymer microstructure determination by the click of a

  -­‐  54  -­‐  

Figure  S79.  Homo-­‐probabilities  vs.  chain  length  of  copolymer  ε-­‐caprolactone/lactide.