copec integration of gan supply modulators and rf power...

27
1 University of Colorado Boulder CoPEC Integration of GaN Supply Modulators and RF Power Amplifiers Dragan Maksimovic [email protected] Colorado Power Electronics Center (CoPEC), ECEE Department University of Colorado - Boulder Yuanzhe Zhang 1 , Dr. Miguel Rodriguez 1 *, Andrew Zai 2 , Dr. David Sardin 2 , Prof. Zoya Popovic 2 1 CU-Boulder Colorado Power Electronics Center (CoPEC): drain supply modulators 2 CU-Boulder microwaves research group: RFPAs and transmitter systems 1 *now with AMD

Upload: others

Post on 30-Mar-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

1University of Colorado Boulder

CoPEC

Integration of GaN Supply Modulators and RF Power Amplifiers

Dragan [email protected]

Colorado Power Electronics Center (CoPEC), ECEE DepartmentUniversity of Colorado - Boulder

Yuanzhe Zhang1, Dr. Miguel Rodriguez1*, Andrew Zai2, Dr. David Sardin2, Prof. Zoya Popovic2

1CU-Boulder Colorado Power Electronics Center (CoPEC): drain supply modulators2CU-Boulder microwaves research group: RFPAs and transmitter systems1*now with AMD

Page 2: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

2University of Colorado Boulder

CoPEC System: RF Transmitters

100W

-30%

143W

9%AC

3kW

Each site has between 3 and 12 transmitters!

RFPA

4G base station example

Page 3: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

3University of Colorado Boulder

CoPEC System Efficiency Improvement Objectives

100W50%

200W

• Higher reliability• Lower system cost• +In mobile platforms: battery life

Requires systems approach, co-design of architecture, baseband, RF, and power electronics

Page 4: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

4University of Colorado Boulder

CoPEC Supply Modulation Approach

Supply modulator performs a form of “envelope tracking” (ET) to achieve linearity and

efficiency improvements

Page 5: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

5University of Colorado Boulder

CoPEC System Operation[1]

0 10 20 30 40-100

-50

0

Freq [MHz]

PS

D [d

B/H

z]

EnvelopeVddIdd

-20 -10 0 10 20-80

-60

-40

-20

0

Freq [MHz]

PS

D [d

B/H

z]

IQin

20MHz 40W BTS ET Transmitter

0

20

40

60

Vdd

0

50

100

150

Env

elop

e

0

2

4

6

Idd

5

10

15

20

Gai

n [d

B]

Time [usec]0 0.1 0.2 0.3 0.4 0.5

0

20

40

60

80

Sav

ed [

W]

|V|

VA

Note: envelope BW can be substantially larger than baseband signal BW

[1] J. Hoversten, S. Schafer, M. Roberg, M. Norris, D. Maksimovic, and Z. Popovic, “Codesign of PA, Supply, and Signal Processing for Linear Supply-Modulated RF transmitters,” IEEE Trans. Microw. Theory Tech. 2012

Page 6: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

6University of Colorado Boulder

CoPEC PwrSOC: ET Transmitter on a Chip

Cascode ET amp, 500 MHz BW

[5, 6]

10W, X-Band RFPA [2, 3, 4]

100MHz switching ET amp, 20MHz BW [8, 9]

5.4 x 3.8 mm in GaN-on-SiC RF process

Saturated, harmonically terminated, high-efficiency RFPA

High-frequency (100MHz), wide-

bandwidth (20MHz) switcher assisted by

500MHz cascodeamplifier

Page 7: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

7University of Colorado Boulder

CoPEC D-mode GaN-on-SiC 0.15 m RF process• Intended for RF applications, e.g. RFPA’s, MMIC’s• Depletion-mode, n-type only, threshold voltage VT ≈ − 3.5 V• Device size (gate periphery) W = N·Wg N = number of gate fingers Wg = gate width

GaN-on-SiC HEMT basic unit cellSimplified device layout with

4 parallel cells

Page 8: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

8University of Colorado Boulder

CoPEC RF PA MMIC Design Example[3]

3.8 x 3.2 mm

• Two-stage X-band (10 GHz) power amplifier MMIC• Class-E output stage: four 0.9 mm devices• Gain: 20 dB, bandwidth: 1.6 GHz

Power-added efficiency as a function of output RF output power at different drain supply voltages

[3] S. Schafer, M. Litchfield, A. Zai, C. Campbell, Z. Popovic, “X-Band MMIC GaN Power Amplifiers Designed for High-Efficiency Supply-Modulated Transmitters,” IEEE MTT IMS 2013, Seattle, WA, June 2013.

Page 9: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

9University of Colorado Boulder

CoPEC Very high frequency switching supply modulator• Dynamic capabilities suitable for envelope tracking application High bandwidth (20 MHz LTE envelope) and high efficiency (>80%) must be

met simultaneously• Possibilities for SOC integration in the same GaN-on-SiC RF process

Page 10: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

10University of Colorado Boulder

CoPEC Device switch characteristics

Ron,s Coss,s Ciss,s Qg,s

Simulated 2.1 Ω∙mm 0.4 pF/mm 1.5 pF/mm 8.8 pC/mm

Comparison of 40V devices FOM = Ron,sQg,s [pVs]Silicon MOSFET (e.g. Si 2318) 148GaN-on-Si (e.g. EPC 8008) 58RF GaN-on-SiC process 19

Low device FOM Zero-voltage-switching (ZVS) Gate-drive integration

High-efficiency at very high switching frequency

Page 11: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

11University of Colorado Boulder

CoPEC 100 MHz Integrated GaN PWM Buck Converter20 V

5-17 V, 10 W peak100 MHz

PWMcontrol signals

20 MHz tracking bandwidth

Page 12: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

12University of Colorado Boulder

CoPEC 100 MHz Integrated GaN PWM Buck Converter

Key challenge: level-shifting high-side gate driver to support very high frequency (100 MHz) PWM control

20 V

5-17 V, 10 W peak100 MHz

PWMcontrol signals

20 MHz tracking bandwidth

Page 13: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

13University of Colorado Boulder

CoPEC Standard active pull-up driver

Chip layout: 2.4 × 2.3 mm

QHS, QLS DHS, DLS Q1, Q3 Q2, Q4 R1 R2

10x125μm 10x120μm 2x25μm 4x50μm 300 Ω 125 Ω

Half-bridgepower stage

Half-bridge power stageQHS/DHS, QLS/DLS

High-side gate driverQ1, R1, Q2

Low-side gate driverQ3, R2, Q4

Low-sidegate driver

High-sidegate driver Vdd = Vin

Page 14: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

14University of Colorado Boulder

CoPEC Active pull-up driver operationQHS on, QLS off

IQ3=13.2 mA

QHS off, QLS on

IQ1= 8.5 mA

D=0.5, Io=0.25 APd,conduction = DVssLS IQ3+(1D)(VinVssHS)IQ1

0 V 5 V+

+

HIGH

Page 15: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

15University of Colorado Boulder

CoPEC Modified active pull-up driver[8,9]

Chip micro-photograph: 2.4 × 2.3 mm

Half-bridgePower stage

Half-bridge power stageQHS/DHS, QLS/DLS

Half-side gate driverQ1, R1, Q2

Low-side gate driverQ3, R2, Q4

Low-sidegate driver

High-sidegate driver

QHS, QLS DHS, DLS Q1, Q3 Q2, Q4 R1 R2

20x200μm 20x100μm 4x25μm 4x50μm 100 Ω 75 Ω

Vdd

Page 16: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

16University of Colorado Boulder

CoPEC Modified active pull-up driver operationQHS on, QLS off

IQ3=25.6 mA

QHS off, QLS on

IQ1= 23.3 mA

D=0.5, Io=0.25 APd,conduction = DVssLS IQ3+(1D)(VssHS)IQ1

0 V 5 V+

+

LOW

Low driver power loss, and no bootstrap capacitor required

Page 17: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

17University of Colorado Boulder

CoPEC Experimental prototype• 10-200 MHz PWM switching, ZVS operation (QSW) • Control: Altera Stratix IV FPGA, 125 ps resolution• Chip package: 20-pin 4x4mm QFN package• Filter components Low-ESR capacitors High-Q air-core inductor (47 nH)

20 V

5-17 V, 10 W peak10-200 MHzPWM

control signals

2.4 × 2.3mm integrated buck

switching converter chip

Page 18: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

18University of Colorado Boulder

CoPEC

82

84

86

88

90

92

94

96

98

0 50 100 150 200

Eff

icie

ncy

[%]

Switching frequency [MHz]

Efficiency as a function of switching frequency

Peak efficiency

2.4 × 2.3mm integrated buck

switching converter chip

Page 19: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

19University of Colorado Boulder

CoPEC Experimental results at 100 MHz switching frequency

• Pout up to 7 W static• ~ 0.2 W driver loss• 91% peak power-stage efficiency

D = 0.75

Vout = 14 V, Pout = 4.5 W, η = 91.0 %

Page 20: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

20University of Colorado Boulder

CoPEC Application: envelope tracking supply for RFPAs

L1 C2 L3 C4 RL Vin Pout,pk

28 nH 820 pF 307 nH 270 pF 30 Ω 20 V 10 W

vin

L1C2

RLL3

C4vLS

FPGA Look-up

TablevHS

vdd

+

-vsw

+

-

vtarget

• Target signal: 20 MHz bandwidth LTE envelope• 4th order filter, 25 MHz cut-off frequency• 100 MHz switching frequency

Page 21: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

21University of Colorado Boulder

CoPEC Envelope tracking experimental results

• 20 MHz LTE envelope, 100 MHz switching frequency

• Power stage efficiency: 83.7%

• Total efficiency: 80.1% (including on-chip driver loss)

• Normalized RMS error: 5.4%

Page 22: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

22University of Colorado Boulder

CoPEC Path to very high bandwidth (500MHz) tracking

RFPA

Drain modulator vdd(t)

Vin

Drain modulator

Drain modulator

-+

vdd,ref(t)

ilin(t)

Multi-phase switcher [10]

AC-coupled wide-bandwidth linear amplifier [5, 6]

Page 23: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

23University of Colorado Boulder

CoPEC Two-phase buck converter chip

2.6 x 2.7 mm

Page 24: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

24University of Colorado Boulder

CoPEC Two-phase switching ET amplifier

• 50MHz per-phase switching frequency

• 25MHz tracking bandwidth

• 3.4% RMSE tracking 20MHz LTE envelope

• 93.2% peak, 85% total efficiency

Page 25: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

25University of Colorado Boulder

CoPEC ET Transmitter System Test Results

18MHz LTE

PAR=7.1dB

VeSP = signal split + DPD

Composite power-added efficiency: 53.6%

ACPR: -28 dB

Page 26: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

26University of Colorado Boulder

CoPEC Conclusions

• Integrated switching converters in GaN-on-SiC process

• 20 V, 10 W peak, >90% peak efficiency, 100 MHz switching

• Accurate tracking of 20 MHz LTE envelope, 85% overall efficiency

• Path to ET RF transmitter SOC integration with up to 500 MHz envelope bandwidth capability in GaN-on-SiC process

Acknowledgments Dr. Chuck Campbell, John Hitt and Maureen Kalinski, TriQuint (now Qorvo) DARPA MPC program

CascodeET amp,

500 MHz BW [5, 6]

10W, X-Band RFPA [2, 3, 4]

100MHz switching ET amp, 20MHz BW [8, 9]

ET Transmitter on a Chip5.4 x 3.8 mm in GaN-on-SiC RF process

Page 27: CoPEC Integration of GaN Supply Modulators and RF Power ...pwrsocevents.com/wp-content/uploads/2014-presentations/ts...Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics

27University of Colorado Boulder

CoPEC Selected References[1] J. Hoversten, S. Schafer, M. Roberg, M. Norris, D. Maksimovic, Z. Popovic, “Co-design of PA, Supply and

Signal Processing for Linear Supply-Modulated RF Transmitters,” IEEE Trans. Microwave Theory and Techniques, Special Issue on PAs, pp. 210-220, April 2012.

[2] M. Litchfield, M. Roberg, Z. Popovic, “A MMIC/hybrid high-efficiency X-band power amplifier, Power Amplifiers for Wireless and Radio Appl. (PAWR), 2013 IEEE Topical Conf., pp.10,12, Jan. 2013.

[3] S. Schafer, M. Litchfield, A. Zai, C. Campbell, Z. Popovic, “X-Band MMIC GaN Power Amplifiers Designed for High-Efficiency Supply-Modulated Transmitters,” IEEE MTT IMS 2013, Seattle, WA, June 2013.

[4] A. Zai, S. Schafer, D. Sardin, Y. Zhang, D. Maksimovic, Z. Popovic, “High-Efficiency X-Band MMIC GaNPower Amplifiers with Supply Modulation,” IEEE IMS 2014

[5] D. Sardin, Z. Popovic, “Decade Bandwidth High-Efficiency GaN VHF/UHF Power Amplifier,” IEEE MTT IMS 2013, Seattle, WA, June 2013

[6] D. Sardin, Z. Popovic, “High Efficiency 15-500MHz Wideband Cascode GaN HEMT MMIC Amplifiers,” IEEE IMS 2014.

[7] M. Rodriguez, Y. Zhang, and D. Maksimovic, “High-frequency PWM buck converters using GaN-on-SiCHEMTs,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2462–2473, 2014.

[8] Y. Zhang, M. Rodriguez, and D. Maksimovic, “High-frequency integrated gate drivers for half-bridge GaNpower stage,” in Control and Modeling for Power Electron. (COMPEL), 2014 IEEE 15th Workshop on, 2014.

[9] Y. Zhang, M. Rodriguez, and D. Maksimovic, “100 MHz, 20 V, 90% efficient synchronous Buck converter with integrated gate driver,” in Proc. IEEE Energy Convers. Congr. Expo., 2014.

[10] M. Norris, D. Maksimovic, “10 MHz large signal bandwidth, 95% efficient power supply for 3G-4G cell phone base stations,” IEEE APEC 2012.