convection 2

Upload: avinashfriends21

Post on 06-Apr-2018

233 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/3/2019 Convection 2

    1/64

    Convection 2

  • 8/3/2019 Convection 2

    2/64

    DIFFERENTIAL ANALYSIS OF FLUID FLOW Finite control volume approach is very practical and useful, since itdoes not generally require a detailed knowledge of the pressure and

    velocity variations within the control volume Problems could be solved without a detailed knowledge of the flowfield

    Unfortunately, there are many situations that arise in which details of

    the flow are important and the finite control volume approach will notyield the desired information

    How the velocity varies over the cross section of a pipe, how thepressure and shear stress vary along the surface of an airplane wing

    In these circumstances we need to develop relationships that apply ata point, or at least in a very small region infinitesimal volume within agiven flow field.This approach - DIFFERENTIAL ANALYSIS

  • 8/3/2019 Convection 2

    3/64

    DIFFERENTIAL ANALYSIS PROVIDES VERY DETAILED KNOWLEDGA FLOW FIELD

    Control volume analysisInterior of the CV is

    BLACK BOX

    Differential analysis

    All the details of the flow aresolved at every point withinthe flow domain

    Flow out

    Flow in

    Flow out

    Control volume

    F

    Flow out

    Flow out

    Flow domain

    F

    Flow in

  • 8/3/2019 Convection 2

    4/64

    LINEAR MOTION AND DEFORMATION

    Generalmotion

    ++ +

    =

    Translation Lineardeformation

    Rotation Angulardeformation

    Element at t0 Element at t0+ t

  • 8/3/2019 Convection 2

    5/64

    TRANSLATION

    If all points in the element have the same velocity which isonly true if there are no velocity gradients, then theelement will simply TRANSLATE from one position to

    another.

    v t

    u t

    vu

    O

    O

  • 8/3/2019 Convection 2

    6/64

    LINEAR DEFORMATION

    Because of the presence of velocity gradients, the element willgenerally be deformed and rotated as it moves. For example,consider the effect of a single velocity gradient

    On a small cube having sides

    xu

    z and y , x

    AO

    B C

    O

    B C

    A

    uu x x

    uu x

    x

    x

    y

    u

    u

    u x t

    x

    C

    A

    y

    x

  • 8/3/2019 Convection 2

    7/64

    x component of velocity of O and B = u

    x component of velocity of A and C =

    This difference in the velocity causes a STRETCHING of the volumeelement by a volume

    Rate at which the volume V is changing per unit volume due

    the gradient

    x xu

    u

    t z y x xu

    x

    u

    xu

    t

    t xu

    0 t Lim

    t d V d

    V 1

  • 8/3/2019 Convection 2

    8/64

    zw yv xu t d V d V 1

    If the velocity gradients are also present zw

    & yv

    This rate of change of volume per unit volume is called theVOLUMETRIC DILATION RATE

    Volume of the fluid may change as the element moves from onelocation to another in the flow field

    Incompressible fluid volumetric dilation rate = zero

    Change in volume element = zero; fluid density = constant

    (The element mass is conserved)

  • 8/3/2019 Convection 2

    9/64

    Variations in the velocity in the direction of velocity causeLINEAR DEFORMATION

    zw

    & yv

    , xu

    Linear deformation of the element does not change the shape of the element

    Cross derivates cause the element to ROTATE and undergoANGULAR DEFORMATION

    x

    v ,

    y

    u

    Angular deformation of the element changes the shape of theelement

  • 8/3/2019 Convection 2

    10/64

    ANGULAR MOTION AND DEFORMATION

    Consider x-y plane. In a short time interval t line segment OA andOB will rotate through angles and to the new positions OAand OB

    AO

    B C

    uu y

    y

    vv x

    x

    x

    y

    u

    v

    AO

    B C

    u y t

    y

    v x t

    x

    x

    y

    B

    A

  • 8/3/2019 Convection 2

    11/64

    Angular velocity of OA , OA

    t a

    Lim0 t

    oA

    t xv

    x

    t x xv

    Tan

    For small angles

    xv - positive oA - counterclockwise

    t Lim

    0 t oB

    t yu

    y

    t y yuTan

    xv

    t

    t xv

    Lim0 t

    oA

    yu

    t t y

    u

    Lim0 t

    oB

    y

    u - positive oB

    - clockwise

  • 8/3/2019 Convection 2

    12/64

    Rotation z of the element about the z-axis is defined as the averageof the angular velocities oA and oB of the two mutuallyperpendicular lines OA and OB. Thus, if counterclockwise rotation isconsidered positive, it follows that

    yu

    xv

    21

    z

    Rotation x of the element about the x -axis

    zv

    yw

    21

    x

    Rotation yof the element about the y -axis

    xw

    zu

    21

    y

    k

    z j

    yi

    x

  • 8/3/2019 Convection 2

    13/64

    V 21

    V curl 21

    Vorticity is defined as the vector that is twice the rotation vector

    V 2Fluid element will rotate about the z axis as an undeformed block(ie., oA = - oB ) only when Otherwise, the

    rotation will be associated with an angular deformation xv

    yu

    yu

    xv

    Rotation around the z axis is zero.

    0V Rotation and vorticity are zero;

    FLOW FIELD IS IRROTATIONAL

  • 8/3/2019 Convection 2

    14/64

    In addition to rotation associated with derivatives

    These derivatives can cause the fluid element to undergo an angulardeformation which results in change of shape

    Change in the original right angle formed by the lines OA and

    OB is SHEARING STRAIN

    = +is positive if the original right angle is decreasing

    Rate of Shearing Strain or Rate of Angular Deformation

    xv

    & yu

    xv

    yu

    t

    t yu t x

    v

    Lim0 t t

    Lim0 t

  • 8/3/2019 Convection 2

    15/64

    xv

    yu

    Rate of angular deformation is related to a corresponding shearingstress which causes the fluid element to change in shape

    x

    v

    y

    u

    Rate of angular deformation is zero;

    Element is simply rotating as anundeformed blockRotation

  • 8/3/2019 Convection 2

    16/64

    Incompressible flow field

    Fluid elements may translate, distort,and rotote but do not grow or shrinkin volume

    Compressible flow field

    Fluid elements may grow or shrink involume as they translate, distort orrotate

    Volume = V 2

    Volume = V 2= V1

    Volume = V 1

    Time = t 2

    Volume = V 1

    Time = t 1

    Time = t 1

    Time = t 2

    (a)

    (b)

  • 8/3/2019 Convection 2

    17/64

    CONSERVATION OF MASS OR CONTINUITY EQUATION

    Time rate of changeof the mass of thecoincident system

    Time rate of change of the mass of thecontents of the

    coincident controlvolume

    Net rate of flow of mass through thecontrol surface

    0 dA n

    V V d t cs cv

    z y x t

    V d t cv

    cs cv

    sys dA n

    bV V bd t t D

    DBx1

    y1

    z1

    dx

    dy

    dz

    x

    y

    z

  • 8/3/2019 Convection 2

    18/64

    x

    y

    z

    j

    i

    K z yu

    z y x xu

    z yu

    z xv

    z y x

    y

    v z xv

    z y x zw

    y xw

    y xw

    cs dA n

    V

  • 8/3/2019 Convection 2

    19/64

    z yu y xw z xv z yu z y x t

    0 dA n

    V V d t cs cv

    0 z y x zw

    y xw z y x yv

    z xv z y x xu

    0 z y x zw

    z y x yv

    z y x xu

    z y x t

    0 zw

    yv

    xu

    t

  • 8/3/2019 Convection 2

    20/64

    t xu

    yv

    0 zw

    0 zw

    zw

    yv

    yv

    xu

    xu

    t

    0 zw

    yv

    xu

    zw

    yv

    xu

    t

    0V

    . t D

    D

  • 8/3/2019 Convection 2

    21/64

    volume control of contents

    cs cv F dA n

    V V V Vd t

    CONSERVATION OF MOMENTUM

    RATE OF INCREASEOF

    x -MOMENTUM

    RATE AT

    WHICH x -MOMENTUMENTERS

    RATE ATWHICH x -MOMENTUMENTERS

    - +SUM OF THEX-COMPFORCESAPPLIED TO

    FLUID IN CV

    =

    z y x tu

    V Vd t cv

    SURFACE FORCES NORMAL STRESSES

    SHEAR STRESSES

    PRESSURE

    BODY FORCES GRAVITY FORCES

    CORIOLIS FORCES

    CENTRIFUGAL FORCES

  • 8/3/2019 Convection 2

    22/64

    x

    y

    z

    j

    i

    K

    cs dA n

    V V

    z yuu z y x xu

    z yuu 2

    z xvu

    z y x yuv

    z yvu

    y xwu

    z y x zuw

    y xwu

    u

  • 8/3/2019 Convection 2

    23/64

    LHS z y x zuw

    z ywu

    z y x yuv

    z xvu z y x xu

    z yuu

    y xwu z xvu z yuu z y x t

    u

    2

    z y x LHS

    zuw

    yuv

    xu

    tu 2

    z y x LHS

    zu

    w yu

    v xu

    u tu

    yw

    yv

    xu

    tu

    z y x LHS

    Dt Du

  • 8/3/2019 Convection 2

    24/64

    xx

    xy

    xz

    yy

    yz

    yx

    xy

    xz

    xx

    First subscript denotes the direction of the normal to the

    plane on which the stress actsSecond subscript denotes the direction of the stress

  • 8/3/2019 Convection 2

    25/64

    x

    y

    z

    j

    i

    K

    z y xx z y x

    x z y xx xx

    z x yx

    z y x y

    z x yx yx

    z y P z y x x P

    z y P

    z y x RHS

    f z y x x

    P x

    zx yx xx

    x f z zx

    y yx

    x xx

    x P

    Dt Du

    CAUCHYS EQN

  • 8/3/2019 Convection 2

    26/64

    V

    . 3 2

    xu

    2 xx xv

    yu

    xy xw

    zu

    xz

    x f xw

    zu

    z xv

    yu

    yV

    . 3 2

    xu

    2 x x

    P Dt Du

    x 2

    2

    2

    2

    2

    2 f V

    . 3

    2

    z

    w

    y

    v

    x

    u

    x z

    u

    y

    u

    x

    u

    x

    P

    Dt

    Du

    y 2

    2

    2

    2

    2

    2 f V

    . 3 y z

    v

    y

    v

    x

    v y

    P Dt Dv

    x f V

    . 3 x 2

    z

    u 2

    2 y

    u 2

    2 x

    u 2

    x P

    Dt Du

  • 8/3/2019 Convection 2

    27/64

    y 2

    2

    2

    2

    2

    2 f V

    . 3 y z

    v

    y

    v

    x

    v y

    P Dt Dv

    x 2

    2

    2

    2

    2

    2 f V

    . 3 x z

    u

    y

    u

    x

    u x

    P Dt Du

    z 2

    2

    2

    2

    2

    2

    f V

    . 3 z z

    w

    y

    w

    x

    w z

    P Dt Dw

    VISCOUS COMPRESSIBLE FLUID WITH CONSTANT VISCOSITY

    f V

    . 3

    V

    P Dt

    V

    D 2

  • 8/3/2019 Convection 2

    28/64

    VISCOUS COMPRESSIBLE FLUID WITH CONSTANT VISCOSITY

    f V

    . 3V

    P DtV

    D 2

    VISCOUS INCOMPRESSIBLE FLUID WITH CONSTANT VISCOSITY

    f V

    P Dt

    V

    D 2

    INVISCID INCOMPRESSIBLE FLUID WITH CONSTANT VISCOSITY

    f P

    Dt

    V

    DEULERS EQN

  • 8/3/2019 Convection 2

    29/64

    g x p

    zu

    w yu

    v xu

    u tu

    s z

    g s p

    su

    uAlong a stream line ggsin zs

    ds s z

    g ds s p

    ds su

    u

    gdz dpudu

    C gz P 2u

    2

    C gz 2u p 2

    D

  • 8/3/2019 Convection 2

    30/64

    y 2

    2

    2

    2

    2

    2 f V

    . 3 y z

    v

    y

    v

    x

    v y

    P Dt Dv

    x 2

    2

    2

    2

    2

    2

    f V

    . 3 x z

    u

    y

    u

    x

    u x

    P Dt Du

    z 2

    2

    2

    2

    2

    2 f V

    . 3 z z

    w

    y

    w

    x

    w z

    P Dt Dw

    0V

    . t D

    D

    Navier French mathematician Stokes English MechanicianFOUR EQUATION AND FOUR UNKNOWNS U,V,W AND P

    Mathematically well posed

    Nonlinear, second order partial differential equations

    Continuity equation

    X- momentum

    Y- momentum

    Z- momentum

  • 8/3/2019 Convection 2

    31/64

    Relation between Stress and Rateof Strain

    R l ti b t St d R t f St i

  • 8/3/2019 Convection 2

    32/64

    Relation between Stress and Rate of Strain In elasticity, the relationship between the stress and strain of a solid body within

    the elastic limit is governedby Hookes Law.

    The generalised Hookes law states that each of the six stress components may beexpressed as a linear function of the six components of strain and vice versa

    The validity of this assumption has been verified by experiments for continuous,homogenous and isotropic materials.

    In a fluid, the physical law connection the stress and rate of strain can also be madeby the following simpleand reasonable assumptions:

    a. The stress components may be expressed as a linear function of the rates of strain components

    b. The relations between stress components and rates of strain componentsmust be invariant to a coordinate transformation consisting of either arotation or a mirror reflectionof axes.

    c. The stress components must reduce to the hydrostatic pressure p when allthe gradients of velocities are zero

    DCBA

  • 8/3/2019 Convection 2

    33/64

    3333

    2222

    1111

    DC B A

    DC B A

    DC B A

    xy yy xx xy

    xy yy xx yy

    xy yy xx xx

    where the As, Bs, C s and Ds are constants to be determined. Theassumption (b) requires that the stress-rate of strain relation remainsunaltered with respect to a new coordinate system.

    3333

    2222

    1111

    DC B A

    DC B A DC B A

    y x y y x x y x

    y x y y x x y y

    y x y y x x x x

    (1)

    (2)

    Transformation of stress components

  • 8/3/2019 Convection 2

    34/64

    222

    2222

    2222

    cos sin

    sin cos

    sin cos

    xy yy xx

    y x

    xy yy xx yy xx

    y y

    xy yy xx yy xx

    x x

    Transformation of stress components

    (3)

    x

    y

    y x' y' x'x'

    xx

    xy

    xy yy

    1 X

    1Y

    x

    B

    C

    o

    2 X

    y

    xy yy

    y

    x E

    D

    xy

    xx

    2Y

    xo

    Substituting equation (1) into equation (3 )

  • 8/3/2019 Convection 2

    35/64

    Substituting equation (1) into equation (3 )

    3333

    2222

    1111

    DC B A

    DC B A

    DC B A

    xy yy xx xy

    xy yy xx yy

    xy yy xx xx

    222

    2222

    2222

    cos sin

    sin cos

    sin cos

    xy yy xx

    y x

    xy yy xx yy xx

    y y

    xy yy xx yy xx

    x x

    (1)

    (3)

    2

    2

    223333

    2222111122221111

    sin DC B A

    cos DC B A DC B A DC B A DC B A

    xy yy xx

    xy yy xx xy yy xx xy yy xx xy yy xx x x

    2212

    212

    2212

    212

    2212

    212

    2212

    212

    321

    321

    321

    321

    sin D cos D

    cos D

    sinC cosC

    cosC

    sin B cos B

    cos B

    sin A cos A

    cos A

    xy

    yy xx x x

    222222 2121 B B A A

  • 8/3/2019 Convection 2

    36/64

    2212

    212

    2212

    212

    2212

    212

    2212

    212

    321

    321

    321

    321

    sin D cos D

    cos D

    sinC cosC

    cosC

    sin B cos cos sin A cos cos

    xy

    yy xx x x

    (4)

    We know that

    22

    222

    22

    22

    2222

    cos sin

    sin cos

    sin cos

    xy yy xx y x

    xy yy xx yy xx

    y y

    xy yy xx yy xx

    x x

    (5)

    Substituting eqn (5) in eqn (3)

    1111

    111

    111

    222

    22

    2212

    212

    2212

    212

    D cosC sin B

    sin A

    sinC cos B

    cos A

    sinC cos B

    cos A

    xy

    yy xx x x

    (6)

    Comparing eqn (4) and eqn (6)

  • 8/3/2019 Convection 2

    37/64

    Comparing eqn (4) and eqn (6)

    2212

    212

    2212

    212

    2212

    212

    2212

    212

    321

    321

    321

    321

    sin D cos D

    cos D

    sinC cosC

    cosC

    sin B cos B

    cos B

    sin A cos A

    cos A

    xy

    yy xx x x

    (4)

    1111

    111

    111

    222

    22

    2212

    212

    2212

    212

    D cosC sin B

    sin A

    sinC cos B

    cos A

    sinC cos B

    cos A

    xy

    yy xx x x

    (6)

    A B A 21

    B A B 21

    C C B AC 2331

    D D D 21

    2221

    3

    B A A AC

    03 D

    It should be noted that the corresponding transformation applied to

  • 8/3/2019 Convection 2

    38/64

    xy yy xx xy

    xy yy xx yy

    xy yy xx xx

    B AC

    DC A B

    DC B A

    2

    (7)

    It should be noted that the corresponding transformation applied to

    y x y y &

    Now let us consider the new coordinate system ( x 1, y 1) which is related

    to the original coordinate system ( x , y ) by y y and x x 11

    Thus, the new coordinate system is a mirror reflection of the originalsystem with respect to the y-axis. With reference to the newcoordinate system, the velocity components are

    vv and uu 11

    Rates of strain and stresses are

  • 8/3/2019 Convection 2

    39/64

    Rates of strain and stresses are

    xx x x xu

    xu

    1

    1

    11

    yy y y yv

    yv

    1

    1

    11

    xy y x yu

    xv

    yu

    xv

    1

    1

    1

    1

    11

    xy y x

    yy y y

    xx x x

    11

    11

    11

    (8)

    (9)

    Equations (8) and (9) into equation (7)

    DCBA

  • 8/3/2019 Convection 2

    40/64

    1111111

    111111

    11111111

    21

    11

    y x y y x x y x

    y x y y x x y y

    y x y y x x x x

    B A

    C

    DC A B

    DC B A

    (10)

    According to assumption (b), the relations between stress components and rates of strain components must be invariant to a coordinate transformation consisting of either a rotation or a mirror reflection of axes, Equation (7) and (10) independent of the coordinate system. Hence, C = 0

    xy yy xx xy

    xy yy xx yy

    xy yy xx xx

    B AC

    DC A B

    DC B A

    2

    (7)

    p DAccording to assumption(c), Eqn. (7) gives

    22

    B A

    The constant (A-B)/2 in the last equation of equation (10) is the proportionality constantconnecting the shearing stress and rate of

    shearing strain which is generally denoted bythe dynamic coefficient of viscosity,

    The relations between stress and rate of strain in the two dimensional case given in

  • 8/3/2019 Convection 2

    41/64

    xy xy xy

    yy yy

    xx xx

    p yv

    xu

    B

    p yv

    xu

    B

    2

    2

    2

    gequation(7) are reduced to

    3

    2 B

    The relations between stress and rate of strain can be extended to three dimensionalflows. They are

    wvu

  • 8/3/2019 Convection 2

    42/64

    xz zx zx zx

    zy yz yz yz

    yx xy xy xy

    zz zz

    yy yy

    xx xx

    p zw

    yv

    xu

    B

    p z

    w

    y

    v

    x

    u B

    p zw

    yv

    xu

    B

    2

    2

    2

    2

    2

    2

    The sum of the three normal stresses is

    For an incompressible fluid, zw

    yv

    xu

    q .q . B p zz yy xx 323

    0q .

    The sum of the three normal stresses is

  • 8/3/2019 Convection 2

    43/64

    zw

    yv

    xu

    q .q . B p zz yy xx 323

    For an incompressible fluid, 0q .

    p zz yy xx3

    DESIRABLE SITUATIONS OF TURBULENT FLOW

  • 8/3/2019 Convection 2

    44/64

    To transfer the required heat between a solid and an adjacent fluid such as in thecooling coils of an air conditioner or a boiler of a power plant would require anenormously large heat exchanger if the flow were laminar Turbulence is also of importance in the mixing of fluids. Smoke from a stack wouldcontinue for miles as a ribbon of pollutant without rapid dispersion within thesurrounding air if the flow were laminar rather than turbulent Although there is mixing on a molecular scale (laminar flow), it is several orders of magnitude slower and less effective than the mixing on a macroscopic scale(turbulent flow). It is considerably easier to mix cream into a cup of coffee (turbulent

    flow) than to thoroughly mix two colorsof a viscous paint (laminar flow)

    DESIRABLE SITUATIONS OF LAMINAR FLOW Pressure drop in pipes - power requirements for pumping can be considerablylower if the flow is laminar rather than turbulent

    Blood flow through a persons arteries is normally laminar, except in the largestarteries with high blood flowrates Aerodynamic drag on an airplane wing can be considerably smaller with laminarflow past it than with turbulent

    DEFINITION OF TURBULENCE:

  • 8/3/2019 Convection 2

    45/64

    Taylor and Von Karman (1937)

    Turbulence is an irregular motion which in general makes its

    appearance in fluids, gaseous or liquids, when they flow past solidsurfaces or even when neighbouring streams of same fluid past overone another

    Turbulent fluid motion is an irregular condition of flow in whichvarious quantities show a random variation with time and spacecoordinates, so that statistically distinct average values can bediscerned

  • 8/3/2019 Convection 2

    46/64

    MEAN MOTION AND FLUCTUATIONS

    'uu

    Time ( t )

    u

    t0 t0+T

    t u

    MEAN MOTION AND FLUCTUATIONS

  • 8/3/2019 Convection 2

    47/64

    uuu ;uuuT t

    t

    dt t , z , y , xuT 1

    u o

    o

    T t

    t

    dtuT t

    t

    dtuT 1

    T t

    t

    dtuT t

    t

    dtuT 1

    T t

    t

    dtuuT 1

    u o

    o

    o

    o

    o

    o

    o

    o

    o

    o

    0T uuT T 1

    T uT t

    t

    dtuT 1

    u o

    o

    T t

    t

    dtT 1

    _______ o

    o

    2u 2u

    0u

    21

  • 8/3/2019 Convection 2

    48/64

    u

    2

    u

    ______

    IntensityTurbulence

    T o

    t

    o t

    dt 2uT 1

    2u

    uu 2 2u 2u 2uu 2u

    uu 2 2u 2u 2u________

    _____________________

    0 zeroT u

    T t

    t

    dtuT u

    T t

    t

    dtuuT 1________ o

    o

    o

    o

    uu 0________

    uu

    u .u 2u 2u

    _____________

  • 8/3/2019 Convection 2

    49/64

    vuuvvuvuvvuuuv_________________________________________

    vuvuuv__________

    RULES

    f f

    g f ____

    g f

    g . f ____

    g . f

    s f

    s

    ___ f

    ds f ______

    ds . f

    REYNOLDS EQUATIONS AND REYNOLDS STRESSES

  • 8/3/2019 Convection 2

    50/64

    0 zw

    yv

    xu

    2 z

    u 2

    2 y

    u 2

    2 x

    u 2

    x P

    zu

    w yu

    v xu

    u tu

    2 z

    v 2

    2 y

    v 2

    2 x

    v 2

    y P

    zv

    w yv

    v xv

    u tv

    2 z

    w 2 2 y

    w 2 2 x

    w 2 z P

    zww

    ywv

    xwu

    tw

    ppp;www;vvv;uuu

  • 8/3/2019 Convection 2

    51/64

    p p p ;www ;vvv ;uuu

    0

    z

    w

    y

    v

    x

    u

    0 z

    _____ww

    y

    _____vv

    x

    _____uu

    x

    __u

    xu

    x

    _____uu

    0 zw

    yv

    xu

    222P

  • 8/3/2019 Convection 2

    52/64

    2 z

    u 2

    2 y

    u 2

    2 x

    u 2

    x P

    zu

    w yu

    v xu

    u tu

    2 z

    u 2

    2 y

    u 2

    2 x

    u 2

    x P

    z

    uw

    y

    uv

    x

    2u

    tu

    tu

    t

    __u

    tu

    t

    _____uu

    FlowsSteady Mean for zero tu

    ____22

    ____2

    __________2

    ___2

  • 8/3/2019 Convection 2

    53/64

    xu

    u 2 x

    2u x

    2u x

    2u x

    2uu x

    2u

    xuu 2

    x

    ____

    2u x

    ___

    2u

    y

    ____vu

    y

    uv

    y

    vu

    y

    ___uv

    y

    ___uv

    ____vu

    ____vuvu

    y

    _____________

    vvuu y

    ___

    uv

    z

    ____wu

    zu

    w zw

    u z

    ___uw

    _______

  • 8/3/2019 Convection 2

    54/64

    x p

    x p

    x p p

    x p

    x

    _____ p p

    2 z

    u 2

    2 y

    u 2

    2 x

    u 2

    x p

    z

    ____wu

    z

    uw

    z

    wu

    y

    ____vu

    y

    uv

    y

    vu

    x

    uu 2

    x

    ____ 2u

    uuuwvu

  • 8/3/2019 Convection 2

    55/64

    z

    ____wu

    y

    ____vu

    x

    ____ 2u

    2 z

    u 2

    2 y

    u 2

    2 x

    u 2

    x p

    zu

    w yu

    v xu

    u zw

    yv

    xu

    u

    z

    ____wu

    y

    ____vu

    x

    ____ 2u

    2 z

    u 2

    2 y

    u 2

    2 x

    u 2

    x p

    zu

    w yu

    v xu

    u

  • 8/3/2019 Convection 2

    56/64

    z

    ____wu

    y

    ____vu

    x

    ____ 2u

    u 2 x p

    zu

    w yu

    v xu

    u

    z

    ____wv

    y

    ____ 2v

    x

    ____vu

    v 2 y p

    zw

    w yv

    v xv

    u

    z

    ____ 2w y

    ____wv

    x

    ____wu

    w 2 z p

    zw

    w yw

    v xw

    u

    ____wu

    ____vu

    ____ 2u2puuu

  • 8/3/2019 Convection 2

    57/64

    zwu

    yvu

    xu

    u 2 x p

    zu

    w yu

    v xu

    u

    z

    ____wv

    y

    ____ 2v

    x

    ____vu

    v 2

    y p

    zw

    w yv

    v xv

    u

    z

    ____ 2w

    y

    ____wv

    x

    ____wu

    w 2 z p

    zw

    w yw

    v xw

    u

    u 2 x p

    zu

    w yu

    v xu

    u

    v 2 y p

    zw

    w yv

    v xv

    u

    w 2 z p

    zw

    w yw

    v xw

    u

    Steady state Navier Stokesequations, if the velocitycomponents and pressurecomponents are replaced bymean components or timeaverages

    Resultant surface force per unit area due to the additional terms

  • 8/3/2019 Convection 2

    58/64

    Resultant surface force per unit area due to the additional terms

    z

    ' zz

    y

    ' yz

    x

    ' xz k

    z

    ' yz

    y

    ' yy

    x

    ' xy

    j z

    ' xz

    y

    ' xy

    x

    ' xxi P

    ___ 2u' xx

    ___ 2v' yy

    ___ 2w' zz

    ___vu' xy

    ___wu' xz

    ___wv' yz

    ' xz

    ' xy'xx2 puuu

  • 8/3/2019 Convection 2

    59/64

    z yy

    x xxu 2

    xp

    zw

    yv

    xu

    z

    ' yz

    y

    ' yy

    x

    ' xy

    v 2

    y p

    zw

    w yv

    v xv

    u

    z

    ' zz

    y

    ' yz

    x

    ' xzw 2

    z p

    zw

    w yw

    v xw

    u

    zz yz xz yz yy xy

    xz xy xx

    ___ 2w

    ___wv

    ___wu

    ___

    wv

    ___ 2

    v

    ___

    vu

    ___wu

    ___vu

    ___ 2u

    =

    In turbulent flow, laminar stresses must be increased by additional

    streses REYNOLDS STRESSES (1895 - Reynolds)

    V l it fil Average velocityy y

  • 8/3/2019 Convection 2

    60/64

    Laminar flow shear stresscaused by random motionof molecules

    Turbulent flow as a series of random three dimensional eddies

    (1)

    (2)

    Velocity profileu = u(y)

    u 1< u 2

    AA

    u

    u u y

    Average velocityprofile

    Turbulenteddies

    AA

    u

    y

  • 8/3/2019 Convection 2

    61/64

    _____vu

    dy du

    turblam

    Laminar flow 0v0u0_____

    vu

    Pipe wall Viscous sublayer

  • 8/3/2019 Convection 2

    62/64

    VISCOUS SUBLAYER :lam >>> turb OVERLAP LAYER: lam ~ turb TURBULENT LAYER:

    lam

  • 8/3/2019 Convection 2

    63/64

    VISCOUS SUBLAYER

    OVERLAP LAYER

    TURBULENT LAYER

    5 y yu

    30 y 505 . 3 yln 5u

    30 y 5 . 5 yln 5 . 2u

    u

    uu ;wu ;

    yu y

    25

  • 8/3/2019 Convection 2

    64/64

    30 y 5 . 5 yln 5 . 2u

    5 y ; yu

    30 y 505 . 3 yln 5u

    Pipe centerline

    Experimental data

    uu*

    20

    15

    10

    5

    1

    010 10 2 10 3 10 4

    yu*

    Viscous sublayer