contact heat transfer - nanohub

45
Thermal Microsystems for Thermal Microsystems for On On - - Chip Thermal Engineering Chip Thermal Engineering Suresh V. Garimella Purdue University March 21, 2006 Tel: (765) 494 5621 [email protected] www.ecn.purdue.edu/CTRC

Upload: others

Post on 11-Feb-2022

7 views

Category:

Documents


0 download

TRANSCRIPT

Thermal Microsystems forThermal Microsystems forOnOn--Chip Thermal EngineeringChip Thermal Engineering

Suresh V. GarimellaPurdue University

March 21, 2006

Tel: (765) 494 5621 [email protected]

www.ecn.purdue.edu/CTRC

© Suresh Garimella

Motivation from MicroelectronicsMotivation from MicroelectronicsPackage (10Package (10--22))

Transistor (10Transistor (10--99 m)m)

Moore’s LawMoore’s Law

The Number of Transistors Per ChipWill Double Every 18 Months

The Number of Transistors Per ChipThe Number of Transistors Per ChipWill Double Every 18 MonthsWill Double Every 18 Months

1,000,0001,000,000

100,000100,000

10,00010,000

1,0001,000

1010

100100

11’75’75 ’80’80 ’85’85 ’90’90 ’95’95 ’00’00 ’05’05 ’10’10 ’15’15

1 Billion 1 Billion TransistorsTransistors

808680868028680286

i386™ Processori386™ Processori486™ Processori486™ Processor

PentiumPentium®® ProcessorProcessor PentiumPentium®® Pro ProcessorPro Processor

KK

Source: IntelSource: Intel

PentiumPentium®® II ProcessorII ProcessorPentiumPentium®® III ProcessorIII Processor

PentiumPentium®®4 Processor4 Processor

Thermal issues are a critical bottleneck to sustaining “Moore’s Law” through the next 3-5 decades, and hence to continued growth of this trillion-dollar market.

Silicon Die (10Silicon Die (10--22))Heat Sink (10Heat Sink (10--11))

System (10System (1000))Facility (10Facility (1022))

© Suresh Garimella

Need for Multidisciplinary ResearchNeed for Multidisciplinary ResearchDevices:

3D chip structures with integrated coolingOrganic and molecular devicesAtomistic models

Circuits:Active management of compute-intensive functionsEnergy-recovery and scavengingSub-threshold transistors

Materials:Nano-manufactured thermoelectricsNovel thermal materials (CNT-based, nanofins, nanofluids, …)

Thermals:On-chip microsystems-based coolingEmbedded microrefrigerators, ion-driven convection, field-emission cooling

Fabrication:Heterogeneous integration and packagingLow-loss quantum conductance channels synthesis

© Suresh Garimella

OnOn--Chip Thermal EngineeringChip Thermal Engineering

Address management of high thermal loads at three levelsSub-chip, chip, and system levelsHeat loads of 1000 W/cm2 at sub-chip/chip level5-10 kW/cm3 at system level

Integration of cooling approaches at all three levelsChip-integrated thermal sensing and control

Facilitate dynamic control of circuit architecture for thermal management

3D fabrication and integrationPolylithic wafer-scale heterogeneous hyper-integration

© Suresh Garimella

Thermal Management/Control StrategiesThermal Management/Control Strategies

++

+

+

+

+

+

++

+++

+

+

+

+

+

++

+

Thermoelectrics MicrochannelsNovel interface materials

Piezofans

Micropumps

Heat pipes

MIDAF

© Suresh Garimella

SubSub--Chip Level Cooling Strategies Chip Level Cooling Strategies

Coo

ling

(o C)

Current (mA)

25C

100C

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600

50C

A. Shakouri

Solid State Thermoelectric and Thermionic Devices

SiGeC/Si superlattice thin film coolersImprove COP by engineering electron states and phonon statesHave already demonstrated 100 W/cm2 using bulk Si microrefrigerators

Vacuum Thermionic DevicesExploit Nottingham effectLow work function emitters using potassium intercalation with CNTs

Stirling RefrigeratorsOn-chip integrated fabrication for local hot spot cooling

Measured cooling rate for 60x60 µm device

Relative Temperature

(C)

50µm

Thermal image of micro-refrigerators and heaters separated by 25 µm or less

© Suresh Garimella

ChipChip--Level Cooling StrategiesLevel Cooling Strategies3D Integrated Ion Drag Devices

Electrons generated by emitters collide with air molecules creating ionsIons moved using traveling electric field40 W/cm2 heat removal possible

Micro-Thermosyphons and Heat Pipes

3D chip-integrated devices for conveying heat from interior of die stack to exterior

Microchannels and MicropumpsSingle and multiphase flow1000 W/cm2 possible

Electric Field and Ion Motion

Pumping Electrodes

Substrate

Ions Neutral Molecules

Ion drag device

SEM of polycrystalline diamond pyramid array (2.5 µm base, tip radium 5 nm)

T. Fisher

© Suresh Garimella

Thermal Interfaces Between LevelsThermal Interfaces Between Levels

0

50

100

150

200

250

300

350

400

450

0.1 0.2 0.3 0.4 0.5

Interface Pressure (MPa)

Ther

mal

Res

ista

nce

(Km

m2 /W

)

Bare Interface

CNT array (10 micron)

CNT array (25 micron)

Tw o-sided CNT array

ApproachDirect synthesis by plasma CVD of well-anchored carbon nanotube arrays over large areas on different substratesOptimize thermal conductance by varying nanotube density, diameter, alignment, and type

AdvantagesMinimum resistance to date ≈ 3 mm2K/W at moderate pressureDry, flexible interface reduces common interface material limitations, such as thermal stress fracture, dry out, pump out, etc.

T. Fisher

(top) SEM image of vertically aligned multi-walled carbon nanotube arrays used for thermal interface conduction. (bottom) Thermal interface resistance as a function of pressure between a silicon die and a copper rod.

© Suresh Garimella

Package and SystemPackage and System--Level StrategiesLevel Strategies

(a) t= 1/30

A

(b) t= 2/30 sec

B

A(c) t= 3/30 sec

A

B

(f) t= 10/30 (g) t= 13/30 s

(d) t= 5/30

A

B

At system level, we still need efficient spreading and cooling solutionsSubstantial research under NSF IUCRC

Miniature heat pipes and vapor chambersMicrochannels and micropumpsJet impingementPiezoelectric fans Solid/liquid phase-change solutionsMiniature vapor compression systems

sec

(e) t= 8/30 sA

B

C

D

sec

(h) t= 15/30

Flow visualization near a boundary, at different times; fan turned on at t = 0t = 0 s.

© Suresh Garimella

What are Thermal Microsystems?What are Thermal Microsystems?Encompass a broad range of microsystems with coupled electrical, thermal, mechanical, magnetic/optical/chemical/… interactions, in which:

Thermal means are used for direct electro-thermal actuation or operation

thermal bimorphsmicromotorsthermal inkjet printheadsmicro fuel injectors

Thermal phenomena are the functional basismicropumps, microvalveselectrowetting for surface tension controllab-on-chip systems

Thermal isolation/control is critical to operationon-chip thermal isolation of diode detectorshigh-performance thermal sensorsthermoelectric elements used for thermal sensing

© Suresh Garimella

Examples ofExamples of

Thermal MicrosystemsThermal Microsystems

© Suresh Garimella

Micromechanical EHD Micromechanical EHD MicropumpMicropumpNeed for:

Low-cost MEMS componentsLow-volume integrated micropumps

Considerations:Flow rateMaximum back pressureMiniaturizationSuitability for integration

Ahn

and

Alle

n (1

995)

Dew

a et

al.

(199

7)

Esas

hi e

t al.

(198

9)

Steh

r et a

l. (1

996)

Koch

et a

l. (1

998)

Kam

per e

t al.

(199

8)

Li e

t al.

(200

0)

Zeng

erle

et a

l. (1

995)

Böhm

et a

l. (1

999)

Xu

et a

l. (2

001)

Ols

son

et a

l. (1

997)

Bard

ell e

t al.

(199

7)

Scha

bmue

ller e

t al.

(200

0)

Ric

hter

et a

l. (1

991)

Fuhr

et a

l. (1

992)

Zeng

et a

l. (2

002)

Che

n et

al.

(200

0)

Lem

off a

nd L

ee (2

000)

Tsai

and

Lin

(200

1) Gen

g et

al.

(200

1)

Blac

k an

d W

hite

(199

9)

Weg

o an

d Pa

gel (

2001

)

Yun

et a

l. (2

001)

Gro

sjea

n an

d Ta

i (19

99)

0.1

1

10

100

1000

10000

Max

imum

flow

rate

/cro

ss-s

ectio

n ar

ea a

t zer

o ba

ck p

ress

ure,

µl

/min

.mm

2

Rotary ValvelessPiezoelectric BubbleElectroosmoticMHD

Elec

trost

atic

Elec

trom

agne

tic

Ther

mop

neum

atic

Sha p

e M

emor

y Al

loy

Peris

talti

c

EHD

(Inje

ctio

n)

EHD

(Ind

uctio

n)

Flex

ural

Plat

eW

aves

Elec

trow

ettin

g

Singhal, Garimella and Raman, Appl Mech Rev, 2004

Diffuser action

Nozzle action

Outlet Inlet

Diffuser action

Nozzle action

Outlet Inlet

Diffuser action

Nozzle action

Diffuser action

Nozzle action

Singhal, Garimella, Murthy, Sensors and Actuators, 2004Singhal, Garimella, IEEE Trans Adv Packaging, 2005

Nozzle Diffuser Micropumping

© Suresh Garimella

Novel MEMS Pump Feasibility AnalysisNovel MEMS Pump Feasibility Analysis

0.00E+00

5.00E-11

1.00E-10

1.50E-10

2.00E-10

0.00E+00 5.00E-04 1.00E-03 1.50E-03 2.00E-03Time (sec)

Q (m

3 /sec

)

Vibrating Diaphragm + Induction EHD

Induction EHD only

Piezoelectric Patch

Diaphragm

Channel54.7 deg

Piezoelectric Patch

Diaphragm

Channel54.7 deg

Cooling performanceSix 200 µm-wide microchannels in 2.25 mm2 chipTotal flow rate = 63 µl/minHeat removal rate = 87 mW for ∆T = 20°CPower input = 7 µW

Patent Pending

© Suresh Garimella

ChipChip--Integrated Integrated MicropumpMicropump DesignDesign

Diaphragm vibration

EHD

© Suresh Garimella

Modeling ResultsModeling Results

Electrodes

Diaphragm

200 µm

© Suresh Garimella

Device PrototypesDevice Prototypes

microchannels

mask

electrodes

bus bars

© Suresh Garimella

ChallengesChallenges

Integration into stacked structuresModeling of coupled effectsWafer bondingLiquid sealingIntegration-capable processes

Low temperatureCMOS compatible

Electrical insulationFor required EHD voltages

Material and process compatibilityReliability and low-cost manufacture

Electrode pattern

Bonded wafers (inverted orientation)

© Suresh Garimella

ElectrowettingElectrowetting for Actuation and Coolingfor Actuation and Cooling

Contact angle reduced on applying voltage (droplet wets surface)

Initial droplet shape

ElectrodeDielectric

Droplet

Contact angle decrease

V

Solid-liquid interface tension reduced by electric fieldDroplet spreads out and wets surfaceSurface tension gradient in droplet can lead to bulk motion of droplet

Continuous Droplet Movement Using EWContinuous Droplet Movement Using EW

Droplet

Top Plate

Bottom Plate

Filler Fluid

Actuation Electrodes

Ground Electrode

Dielectric Layer

Hydrophobic Layer

1 2 3

Continuous Droplet Movement

EWEW--Based Pumping/CoolingBased Pumping/Cooling

Droplets moving along an array of pulsed electrodes

Fluid sink

Fluid source

Heat sourceDroplet formation electrodes

© Suresh Garimella

Challenges for EWChallenges for EW--Based DevicesBased Devices

Understanding / modeling physics underlying electrical control of surface tension and the resultant droplet actuation Estimating dissipative mechanisms opposing droplet motion

Flow field in a moving droplet and resulting shear stressesDroplet contact angle hysteresisDroplet contact line friction

Mapping thermal performance of EW-based heat transfer devicesRole of surface effects on EW-based droplet transport

Surface roughness and morphologyInterface chemistry

© Suresh Garimella

Modeling EWModeling EW--Based Droplet FlowBased Droplet Flow

Energy minimization-based theory for droplet actuation force estimationGradient of system energy gives EW actuation force

( ) ( ) ( )2 2

2 21 02

1

62 2 2 2drop

D oil

vd x k Vm r x x C rdv r v rdt d d

µε ρ π ζ π= − − − −

Droplet

0 V

0 V V

x2 r

Dielectric C1

C2

C3

C4

© Suresh Garimella

Preliminary estimates show that heat transfer rates of 40 W/cm2

can be achieved with this approach, rivaling conventional liquid cooling approaches

Electron Emission& Ion Creation

Generating Region Pumping Region

Microchannels

Schlitz, Garimella, Fisher, ASME IMECE, 2004Zhang, Fisher, Garimella, J Appl Phys, 2004

MicroscaleMicroscale Ion Driven AirflowIon Driven Airflow

Darkfield image of single MWNT on W tip

Patent pending

© Suresh Garimella

MicroscaleMicroscale Ion Driven AirflowIon Driven Airflow

Ion and Air Flow

Electric Potential

Ion Cloud

Ion Cloud

Next Time Step

Initial Time Step

Electrodes

Φ (V)

x (m)

Φ (V)

x (m)

Ion and Air Flow

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

x*

e*

t* = 0.0T*t* = 0.4T*t* = 0.8T*t* = 1.0T*

Periodic ion concentration

Peterson, Zhang, Fisher, Garimella, PSST, 2005

MIDAF over flat plate

© Suresh Garimella

Miniature Piezoelectric FansMiniature Piezoelectric Fans

Ultrasonic Piezoelectric Bimorph

Resonant vibration of small piezoelectric elements to generate air flow

Advantages of Piezoelectric Fans:Low power, 1-10 mWNoiseless for frequencies:

- Less than 100 Hz (infrasonic)- Greater than 20 kHz (ultrasonic)

Lightweight, compact and inexpensiveNo wearing parts, long life, robust and durableVersatile – configurable to different applications

slim profile fanbaffled infrasonic fans

Flow in an “impingement” mode

US Patent 6,713,942 B2

© Suresh Garimella

0 500 1000 150050

60

70

80

90

100

Time (sec)H

eatt

rans

ferc

oeffi

cien

th(W

/m2 K

)0 500 1000 1500

50

55

60

65

70

75

80

85

90

95

100

105

Vertical, Half CoverageVertical, Full CoverageVertical, No CoverageHorizontal

Enhancem

entin

h(%

)

102

64

52

28 Vertical Orientation

Horizontal Orientation

Heat Sink Piezoelectric Fan

Heat Transfer Feasibility

Infrasonic Fans Infrasonic Fans Feasibility and Feasibility and ModelingModeling

Açıkalın, Wait, Garimella, Raman, HTE, 2004

X (m)

Y(m

)

0.02 0.06 0.10

0.01

0.02

0.03

0.04

2-D streaming model for a

baffled piezoelectric

fan

Experimental flow visualization

agrees well with model

Açıkalın, Raman, Garimella, JASA, 2003

Analytical Finite element

Optimal thickness ratio:

tp/tb ≈ 0.5

Optimal length ratio:

(L2-L1)/L3 ≈ 0.6

Optimal geometry depends on material properties of the beam and the patch

Geometry Optimization

Buermann, Raman, Garimella, IEEE CPT 2002Basak, Raman, Garimella, J Vibr. Acous, 2005

Fluid Modeling

© Suresh Garimella

Ultrasonic Ultrasonic MicrofansMicrofans

At fixed field, a scaling down by a factor of 50 leads to a performance enhancement of a factor of 1000

© Suresh Garimella

HigherHigher--Mode Mode MicrocantileversMicrocantilevers

Macro fan in 5th Mode Micro fan in 1st Mode

Same frequency

Scale down all dimensions by 2 orders of magnitude

Fluid shear stresses concentrated near slots and outer edges

1Z R j Lj C

ωω

= + +

Power consumption and losses increase with mode number

Quality factors in air

Wait, Basak, Raman, Garimella, IEEE CPT, in reviewBasak, Raman, Garimella, JVA, 2005Basak, Raman, Garimella, J Appl Phys, 2006

ω↑ R↓ L↓↓ C↔ Z↓

© Suresh Garimella

Enabling TechnologiesEnabling Technologies

–– Fundamental Research Fundamental Research ––

© Suresh GarimellaLiu, Garimella, J Thermophys Heat Transfer, 2004Lee, Garimella, Liu, Int J Heat Mass Transfer, 2005

Velocity (m/s)

Rad

ialp

ositi

on(m

m)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.05

0.1

0.15

0.2

0.25

0.3 IR PIV measurementTheory - Eq.(8)

ReN

u500

500

1000

1000

1500

1500

2000

2000

2500

2500

3000

3000

6 6

8 8

10 10

12 12

14 14

16 16

18 18

20 2022 2224 24

ExperimentTurbulentProposed correlation

SingleSingle--Phase Transport in Phase Transport in MicrochannelsMicrochannels

• Develop predictive relationships and correlations for single-phase flow

• Develop novel non-intrusive measurement techniques for MEMS devices

© Suresh Garimella

Bulk flow

G-10 housing

Copper block

Viewing window

O-ring groove

Thermocouple

Pressure transducer

MicrochannelThermocouple

Cartridge heater

Incipient heat flux q''exp (W/cm2)

Inci

pien

thea

tflu

xq'

' mod

el(W

/cm

2 )

10 20 30 40 50 6010

20

30

40

50

60

-20%

+20%

Time t (ms)B

ubbl

era

dius

r b(µ

m)

Con

tact

angl

(deg

)

0 100 200 300 4000

5

10

15

20

25

30

35

40

0

20

40

60

80

100

ONB

SlugAnnular

Heat flux q'' (W/cm2)

T w-T

in(o C

)

Wal

ltem

pera

ture

(o C)

10 20 30 40 50 60

6

8

10

12

14

16

18

20

22

0

0.2

0.4

0.6

0.8

1

Q = 0.16 LPM (Re = 610)Q = 0.20 LPM (Re = 763)Q = 0.23 LPM (Re = 877)

Wc = 275 umHc = 636 umDh = 384 umTin = 87 oC

Increasing flow velocity

Liu, Lee, Garimella, ASME JHT 2005Liu, Garimella, IJHMT 2005

Unresolved issuesFlow boiling mechanisms not fully identifiedFlow regime maps need to be constructed for the microscaleBoiling instabilities and associated flow mal-distribution not well predictedSingle-microchannel results not readily extrapolated to multiple microchannelsModels for flow boiling

TwoTwo--Phase Transport in Phase Transport in MicrochannelsMicrochannels

Liu, Lee, Garimella, IJHMT, 2005

© Suresh Garimella

Boiling VisualizationBoiling Visualization

Wc= 381 µm, Hc= 392 µmQ = 35 mL/min

12,500 fps

Pressure drop

Inlet and outlet Temperatures

Liquid inlet

Fluid outlet

Interface for wall temperature measurement and heat input

Heat sink

q” = 6.77 W/cm2 10.70

14.35 20.47

Re = 230 (liquid at inlet)

© Suresh Garimella

299.2299 .2

299.

2

300.

6

300.6

302.

0

302.0

303.

4

303.4

304.9

304.9

306.3

306.

3

306.3

307.7

307.7

309.1

309.

1

310.

5

x(m)

z(m

)

0 0.01 0.02 0.03 0.04 0.050

0.01

0.02

0.03

0.04 condensersection

5 mm

x (m)

Pre

ssur

edr

op(N

/m2 )

0 0.01 0.02 0.03 0.04 0.05-150

-100

-50

0

50

100

150

200

250

300

350

400

Vapor corethickness = 0.4 mmVapor corethickness = 0.8 mm

Vapor pressure drop

liquid pressure drop

∆ Pv

Pl

HeaterClamp

Condensate CollectionAnnulus

Liquid Pool

WickConical

Cap

Thermocouple Pass-through

Vacuum Pressure

GageHeater

Clamp

Condensate CollectionAnnulus

Liquid Pool

WickConical

Cap

Thermocouple Pass-through

Vacuum Pressure

Gage

Miniature Flat Heat PipesMiniature Flat Heat Pipes

Transient analysis of miniature flat heat pipes at high heat fluxesPrediction of transient temperature, velocity and pressure fields in the heat pipePrediction of dryoutDissipation from multiple hot spotsPrediction of required wick propertiesWick performance and transport measurements

Vadakkan, Garimella, Murthy, JHT, 2004Iverson, Garimella, ASME HTFED, 2004

© Suresh Garimella

ThinThin--Film Evaporation: Film Evaporation: µµPIV Experiments PIV Experiments

CCD CAMERA

CENTER PLANE

TOP PLANE 2

BOTTOM PLANE 2

TOP PLANE 1

BOTTOM PLANE 1

gravity

x[pix]

y[pi

x]

100 200 300 400 500

100

200

300

400

500

600

x[pix]

y[pi

x]

100 200 300 400 500

100

200

300

400

500

600

x[pix]

y[pi

x]

100 200 300 400 500

100

200

300

400

500

600

x[pix]

y[pi

x]

100 200 300 400 500

100

200

300

400

500

600

x[pix]

y[pi

x]

100 200 300 400 500

100

200

300

400

500

600

Center planeTop Plane 1Top Plane 2 Bottom Plane 2Bottom Plane 1

Challenges:

• Moving meniscus• Particle agglomeration at

triple line

Microscale study of velocity field and evaporative mass flow near an evaporating meniscus

Test setup

© Suresh Garimella

Part II - intrinsic meniscusPart I - thin film

(invisible)

Junction Thickness δj

θ

Thin film

2000 W/m2

343 K Inlet

343K Vapor

1000 μm

100 μm

50 μmSteel

OctaneThin film: 0.35 WMeniscus: 4.25 W

Temperature Contour

ThinThin--Film Evaporation: ModelingFilm Evaporation: Modeling

• Analytical model for heat transfer from thin film region

• CFD model for intrinsic meniscus region

-13.0dC

0.0dC

-12

-10

-8

-6

-4

-2

0

LI01

dC

-8

-6

-4

-2

0 Temperature at back of foil along

LI01Microscale IR Temperature Microscale IR Temperature MeasurementsMeasurements

Thin film

Wire

Heated Foil

© Suresh Garimella

Enhanced Transport in OpenEnhanced Transport in Open--Cell FoamsCell Foams

Radius

Por

osity

0.48 0.49 0.5 0.51 0.520.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

AnalyticalFluent

R

2R

P orosity

Effe

ctiv

eTh

erm

alC

ondu

ctiv

ity,W

/mK

0.88 0.9 0.92 0.94 0.96 0.980

1

2

3

4

5

6

7

8

9

10

11

C almidi E xperimentsTetrakaidecahedron M odelBC C M odelBoomsma M odelC almidi M odelBhattacharya M odel

Aluminum - Air

Flow Direction

z

yx

_ =

Cube BCC Final Geometry

Constant Heat FluxKrishnan, Murthy, Garimella, ASME JHT, 2005Krishnan, Murthy, Garimella, ASME JHT, in press

© Suresh Garimella

Thermal Contact ConductanceThermal Contact Conductance

Insulated heat sink

Coolant Inlet

Coolant Outlet

Electrolytic iron flux meters

Experimental samples

Radiation shield(Front half removed to expose test column)

Insulated heat source

Direction of one-dimensional heat flux

Load Cell

Base Plate

Column Power Input Terminals

Column Support Bolts

Column Support Bolts

Insulated heat sink

Coolant Inlet

Coolant Outlet

Electrolytic iron flux meters

Experimental samples

Radiation shield(Front half removed to expose test column)

Insulated heat source

Direction of one-dimensional heat flux

Load Cell

Base Plate

Column Power Input Terminals

Column Support Bolts

Column Support Bolts

Insulated heat sink

Coolant Inlet

Coolant Outlet

Electrolytic iron flux meters

Experimental samples

Radiation shield(Front half removed to expose test column)

Insulated heat source

Direction of one-dimensional heat flux

Load Cell

Base Plate

Column Power Input Terminals

Column Support Bolts

Column Support Bolts

Hs

Hc

Hequiv

CNT TIM

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

0.00 1.00 2.00 3.00 4.00 5.00 6.00Interface Pressure (MPa)

TCC

(W/K

)

Experiment (Al 1 micron)Numerical Prediction BeforeNumerical Prediction After

Al-Al 1 µm Ra

T Fisher

Black, Singhal, Garimella, AIAA JTHT, 2004Black, Garimella, AIAA JTHT, 2005Singhal, Litke, Black, Garimella, IJHMT, 2005

Coated Joints

Experimental Test Column

© Suresh Garimella

MicrojetMicrojet ImpingementImpingement

Air Flow

(a) Ducted suction (bare)

H (19.5)

Cd (2.7)

Air Flow

(b) Ducted suction (enhanced)

H (21.9)

Cd (2.7)

C (3.18)

Air Flow

(a) Ducted suction (bare)

H (19.5)

Cd (2.7)

Air Flow

(b) Ducted suction (enhanced)

H (21.9)

Cd (2.7)

C (3.18)

© Suresh Garimella

MultiphysicsMultiphysics CoCo--Design ApproachDesign Approach

Quantum Dot

FET

Molecular Electronics

MicrochannelsMicroscale Ion Driven Convection

Thermoelectrics

Off-chip Interconnect & Stacked Die

Novel Materials, Devices and Circuit

Architectures

AMKORAMKOR

Integrated Pumps

ILLUSTRATION: C. SLAYDEN

CNT TIM

ICEICE333D IntegrallyCooledElectronics

Develop the fundamental science and technology needed for truly integrated electro-thermal co-design of thermal microsystems, with a focus on microelectronic systems

© Suresh Garimella

AcknowledgementsAcknowledgementsCTRC MembersCTRC Members

Aavid ThermalloyAlcoaAppleCisco SystemsDelphi Electronics and SafetyDensoEaton CorporationGeneral ElectricGraftechHoneywellIntel CorporationModine Manufacturing Co.NanoconductionNokia Research CenterPhilipsRockwell AutomationRockwell CollinsSandia National LabsSchlumbergerSony Computer EntertainmentSony CorporationSterling PCU

National Science FoundationNational Science FoundationSemiconductor Research CorpSemiconductor Research Corp2121stst Century R&T FundCentury R&T FundUS ArmyUS ArmyCray ResearchCray Research

Ph.D. StudentsPh.D. StudentsTolga AcikalinVaibhav BahadurSudipta BasakPramod ChamarthyDavid GoBrian IversonBen JonesMark KimberShankar KrishnanPoh-Seng LeeDong LiuAbhijit SatheDan SchlitzJames SimpsonVishal SinghalSuwat TrutassanawinUnni VadakkanWei Zhang

StaffStaffDr. Tailian ChenDr. Lorenzo CremaschiDr. Madhu IyengarDr. Dawei SunDr. Hao WangPhilip Buermann

M.S. StudentsM.S. StudentsRavi AnnapragadaTony BlackTyler DavisHemanth DhavaleswarapuPaul LitkeJohn McHaleChristine MerrillMike PetersonSydney Wait

FacultyFacultyTim FisherEckhard GrollJayathi MurthyArvind RamanSteve Wereley…

© Suresh Garimella

For more info For more info ……www.ecn.purdue.edu/CTRC

© Suresh Garimella

Questions and AnswersQuestions and Answers

© Suresh Garimella

Selected ReferencesSelected ReferencesS. V. Garimella and C. B. Sobhan, “Transport in Microchannels - A Critical Review,” Ann. Rev. Heat Transfer, 2003.C. B. Sobhan and S. V. Garimella, “A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels,” Microscale Thermophysical Engineering, Vol. 5, pp. 293-311, 2001.V. Singhal, S. V. Garimella, and A. Raman “Microscale Pumping Technologies for Microchannel Cooling Systems,”Applied Mechanics Reviews, Vol. 57, pp. 191-221, 2004.S. V. Garimella and V. Singhal, “Single-Phase Flow and Heat Transport and Pumping Considerations in Microchannel Heat Sinks,” Heat Transfer Engineering, Vol. 25, pp. 15-25, 2004.

S. V. Garimella, V. Singhal and D. Liu, “On-Chip Thermal Management with Microchannel Heat Sinks and Integrated Micropumps,” Procs IEEE (in press).D. Liu, P.S. Lee, and S. V. Garimella, “Prediction of the Onset of Nucleate Boiling in Microchannel Flow,”International Journal of Heat and Mass Transfer, Vol. 48, pp. 5134-5149, 2005.D. Liu, S. V. Garimella and S. T. Wereley, “Infrared Micro-Particle Image Velocimetry Measurement in Silicon-Based Microdevices,” Experiments in Fluids Vol. 38, pp. 385-392, 2005.D. Liu and S. V. Garimella, “Investigation of Liquid Flow in Microchannels,” AIAA J. Thermophysics and Heat Transfer, Vol. 18, pp 65-72, 2004.P.-S. Lee, S. V. Garimella, and D. Liu, “Investigation of Heat Transfer in Rectangular Microchannels,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 1688-1704, 2005.

V. Singhal, S. V. Garimella and J. Y. Murthy, “Low Reynolds Number Flow Through Nozzle-Diffuser Elements in Valveless Micropumps,” Sensors and Actuators A, Vol. 113, pp. 226-235, 2004.V. Singhal and S. V. Garimella, “A Novel Valveless Micropump with Electrohydrodynamic Enhancement for High Heat Flux Cooling,” IEEE Transactions on Advanced Packaging, Vol. 28, 2005.

D. J. Schlitz, S. V. Garimella and T. S. Fisher, “Microscale Ion-Driven Air Flow over a Flat Plate,” Procs. HT-FED04, 2004 ASME Heat Transfer/Fluids Engineering Summer Conference, HT-FED04-56470, July 11-15, 2004, Charlotte, North Carolina.M. S. Peterson, W. Zhang, T. S. Fisher, and S. V. Garimella, “Low-Voltage Ionization of Air with Carbon-Based Materials,” Plasma Sources Science and Technology , Vol. 14, pp. 654-660, 2005.W. Zhang, T. S. Fisher and S. V. Garimella, “Simulation of Ion Generation and Breakdown in Atmospheric Air,”Journal of Applied Physics, Vol 96, No. 11, pp. 6066-6072, 2004.

© Suresh Garimella

Selected ReferencesSelected ReferencesT. Açıkalın, S. M. Wait, S. V. Garimella and A. Raman, “Experimental Investigation of the Thermal Performance of Piezoelectric Fans,” Heat Transfer Engineering, Vol. 25, pp. 4-14, 2004.T. Açıkalın, A. Raman and S. V. Garimella, “Two-dimensional Streaming Flows Induced by Resonating Thin Beams,” Journal of the Acoustical Society of America, Vol. 114, pp. 1785-1795, 2003.T. Acikalin, S. V. Garimella, J. Petroski and A. Raman, “Optimal Design of Miniature Piezoelectric Fans for Cooling Light Emitting Diodes,” ITHERM04, Las Vegas, Nevada, June 2004.S. Basak, A. Raman and S. V. Garimella, “Dynamic Response Optimization of PiezoelectricallyExcited Thin Resonant Beams,” ASME Journal of Vibration and Acoustics Vol. 127, pp. 18-27, 2005.

S. Krishnan, J. Y. Murthy and S. V. Garimella, “A Two-Temperature Model for Solid/Liquid Phase Change in Metal Foams,” ASME Journal of Heat Transfer Vol. 127, pp. 995-1004, 2005.S. Krishnan, S. V. Garimella, and S. S. Kang, “A Novel Hybrid Heat Sink using Phase Change Materials for Transient Thermal Management of Electronics,” IEEE Transactions on Components and Packaging Technologies Vol. 28, pp. 281-289, 2005.S. Krishnan and S. V. Garimella, “Analysis of a Phase Change Energy Storage System for Pulsed Power Dissipation,” IEEE Transactions on Components and Packaging Technologies,Vol. 27, pp 191-199, 2004.S. Krishnan and S. V. Garimella, “Thermal Management of Transient Power Spikes in Electronics - Phase Change Energy Storage or Copper Heat Sinks?” ASME Journal of Electronic Packaging, Vol. 126, pp. 308-316, 2004.S. Krishnan, J. Y. Murthy and S. V. Garimella, “A Two-Temperature Model for the Analysis of Passive Thermal Control Systems,” ASME Journal of Heat Transfer, Vol. 126, pp. 628-637, 2004.

© Suresh Garimella

Selected ReferencesSelected ReferencesS. V. Garimella and C. B. Sobhan, “Recent Advances in the Modeling and Applications of Nonconventional Heat Pipes,” Chapter 4, Advances in Heat Transfer, Vol. 35, pp. 249-308, 2001.U. Vadakkan, J. Y. Murthy and S. V. Garimella, “Transient Analysis of Flat Heat Pipes,” ASME Summer Heat Transfer Conference, Las Vegas, Nevada, HT2003-47349, July 21-23, 2003.U. Vadakkan, S. V. Garimella and J. Y. Murthy, “Transport in Flat Heat Pipes at High Heat Fluxes from Multiple Discrete Heat Sources,” ASME Journal of Heat Transfer, Vol. 126, pp. 347-354, 2004B. D. Iverson and S. V. Garimella, “Experimental Measurements of Heat and Mass Transport in Heat Pipe Wicks,” Procs. HT-FED04, 2004 ASME Heat Transfer/Fluids Engineering Summer Conference, HT-FED04-56230, July 11-15, 2004, Charlotte, North Carolina.

V. Singhal, P. J. Litke, A. F. Black and S. V. Garimella, “An Experimentally Validated Thermomechanical Model for the Prediction of Thermal Contact Conductance,” International Journal of Heat and Mass Transfer Vol. 48, pp. 5446-5459, 2005.A. F. Black, V. Singhal and S. V. Garimella, “Analytical Investigation and Predictive Correlation for Constriction Resistance,” AIAA Journal of Thermophysics and Heat Transfer, Vol. 18, pp. 30-36, 2004.V. Singhal, T. Siegmund and S. V. Garimella, “Optimization of Thermal Interface Materials for Electronics Cooling Applications,” IEEE Transactions on Components and Packaging Technologies, Vol. 27, June 2004.C. V. Madhusudana and S. V. Garimella, “Measurement of Thermal Contact Conductance –Steady-State or Transient?” Paper Number TED-AJ03-179, Procs. 6th ASME-JSME Thermal Engineering Joint Conference, Kohala Coast, Hawaii, March 16-20, 2003