conservation laws: systematic construction, noether's...

53
Conservation Laws: Systematic Construction, Noether’s Theorem, Applications, and Symbolic Computations. Alexey Shevyakov Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada Physics seminar November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 1 / 33

Upload: others

Post on 14-Mar-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Conservation Laws: Systematic Construction,Noether’s Theorem, Applications,

and Symbolic Computations.

Alexey Shevyakov

Department of Mathematics and Statistics,University of Saskatchewan, Saskatoon, Canada

Physics seminarNovember 10, 2011

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 1 / 33

Page 2: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Outline

1 Conservation LawsDefinition and ExamplesApplications

2 Variational Principles

3 Symmetries and Noether’s TheoremSymmetries and Variational SymmetriesNoether’s Theorem, ExamplesLimitations of Noether’s Theorem

4 Direct Construction Method for Conservation LawsThe IdeaCompletenessA Detailed Example

5 Examples of Construction of Conservation LawsSymbolic Software (Maple)KdVSurfactant Dynamics Equations

6 Conclusions

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 2 / 33

Page 3: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Outline

1 Conservation LawsDefinition and ExamplesApplications

2 Variational Principles

3 Symmetries and Noether’s TheoremSymmetries and Variational SymmetriesNoether’s Theorem, ExamplesLimitations of Noether’s Theorem

4 Direct Construction Method for Conservation LawsThe IdeaCompletenessA Detailed Example

5 Examples of Construction of Conservation LawsSymbolic Software (Maple)KdVSurfactant Dynamics Equations

6 Conclusions

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 3 / 33

Page 4: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Conservation Laws: Some Definitions

Notation:

The total derivative by x :

The partial derivative by x assuming all chain rules carried out as needed.

Dependent variables should be taken care of.

Example: u = u(x , y), g = g(u), then

Dx [xg ] ≡ ∂

∂x[xg(u(x , y))]

=∂

∂x[xg ] +

∂g[xg ]

∂u[g(u)]

∂xu(x , y).

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 4 / 33

Page 5: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Conservation Laws: Some Definitions

Conservation law:

Given: some model.Independent variables: x = (t, x , y , ...); dependent variables: u = (u, v , ...).

A conservation law: a divergence expression equal to zero

DtΘ(x,u, ...) + DxΨ1(x,u, ...) + Dy Ψ2(x,u, ...) + · · · = 0.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 5 / 33

Page 6: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Conservation Laws: Some Definitions

Conservation law:

Given: some model.Independent variables: x = (t, x , y , ...); dependent variables: u = (u, v , ...).

A conservation law: a divergence expression equal to zero

DtΘ(x,u, ...) + DxΨ1(x,u, ...) + Dy Ψ2(x,u, ...) + · · · = 0.

Time-independent:

Di Ψi ≡ divx,y,...Ψ = 0.

Time-dependent:

DtΘ + divx,y,...Ψ = 0.

A conserved quantity:

Dt

∫V

Θ dV = 0.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 5 / 33

Page 7: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

ODE Models: Conserved Quantities

An ODE:

Dependent variable: u = u(t);A conservation law

DtF (t, u, u′, ...) =d

dtDtF (t, u, u′, ...) = 0.

yields a conserved quantity (constant of motion):

F (t, u, u′, ...) = C = const.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 6 / 33

Page 8: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

ODE Models: Conserved Quantities

An ODE:

Dependent variable: u = u(t);A conservation law

DtF (t, u, u′, ...) =d

dtDtF (t, u, u′, ...) = 0.

yields a conserved quantity (constant of motion):

F (t, u, u′, ...) = C = const.

Example: Harmonic oscillator, spring-mass system

Independent variable: t, dependent: x(t).

ODE: x(t) + ω2x(t) = 0; ω2 = k/m = const.

Conservation law:d

dt

(mx2(t)

2+

kx2(t)

2

)= 0.

Conserved quantity: energy.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 6 / 33

Page 9: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

ODE Models: Conserved Quantities

Example: ODE integration

An ODE:

K ′′′(x) =−2 (K ′′(x))

2K(x)− (K ′(x))

2K ′′(x)

K(x)K ′(x).

Three independent conserved quantities:

KK ′′

(K ′)2= C1,

KK ′′ ln K

(K ′)2− ln K ′ = C2,

xKK ′′ + KK ′

(K ′)2− x = C3.

yield complete ODE integration.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 7 / 33

Page 10: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

PDE Models

Example 1: small string oscillations, 1D wave equation

Independent variables: x , t; dependent: u(x , t).

utt = c2uxx , c2 = T/ρ.

Conservation laws:

Momentum: Dt(ρut)−Dx(Tux) = 0;Conserved quantity: total momentum M =

∫ρutdx = const.

Energy: Dt

(ρu2

t

2+

Tu2x

2

)−Dx(Tutux) = 0;

Conserved quantity: total energy E =∫ (ρu2

t

2+

Tu2x

2

)dx = const.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 8 / 33

Page 11: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

PDE Models

Example 2: Adiabatic motion of an ideal gas in 3D

Independent variables: t; x = (x1, x2, x3) ∈ D ⊂ R3.

Dependent: ρ(x , t), v 1(x , t), v 2(x , t), v 3(x , t), p(x , t).

Equations:Dtρ+ Dj(ρv j) = 0,

ρ(Dt + v jDj)v i + Di p = 0, i = 1, 2, 3,

ρ(Dt + v jDj)p + γρpDjvj = 0.

Conservation laws:

Mass: Dtρ+ Dj(ρv j) = 0,

Momentum: Dt(ρv i ) + Dj(ρv i v j + pδij) = 0, i = 1, 2, 3,

Energy: Dt(E) + Dj

(v j(E + p)

)= 0, E = 1

2ρ|v |2 +

p

γ − 1.

Angular momentum, etc.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 9 / 33

Page 12: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Applications of Conservation Laws

ODEs

Constants of motion.

Integration.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 10 / 33

Page 13: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Applications of Conservation Laws

ODEs

Constants of motion.

Integration.

PDEs

Direct physical meaning.

Constants of motion.

Differential constraints (div B = 0, etc.).

Analysis: existence, uniqueness, stability.

Nonlocally related PDE systems, exact solutions. Potentials, stream functions, etc.:

V = (u, v), div V = ux + vy = 0,

u = Φy ,v = −Φx .

Modern numerical methods often require conserved forms.

An infinite number of conservation laws can indicate integrability / linearization.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 10 / 33

Page 14: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Outline

1 Conservation LawsDefinition and ExamplesApplications

2 Variational Principles

3 Symmetries and Noether’s TheoremSymmetries and Variational SymmetriesNoether’s Theorem, ExamplesLimitations of Noether’s Theorem

4 Direct Construction Method for Conservation LawsThe IdeaCompletenessA Detailed Example

5 Examples of Construction of Conservation LawsSymbolic Software (Maple)KdVSurfactant Dynamics Equations

6 Conclusions

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 11 / 33

Page 15: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Variational Principles

Action integral

J[U] =

∫Ω

L(x ,U, ∂U, . . . , ∂kU)dx .

Principle of extremal action

Variation of U: U(x)→ U(x) + εv(x).

Require: variation of action δJ ≡ J[U + εv ]− J[U] =∫

Ω(δL) dx = O(ε2).

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 12 / 33

Page 16: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Variational Principles

Action integral

J[U] =

∫Ω

L(x ,U, ∂U, . . . , ∂kU)dx .

Principle of extremal action

Variation of U: U(x)→ U(x) + εv(x).

Require: variation of action δJ ≡ J[U + εv ]− J[U] =∫

Ω(δL) dx = O(ε2).

Variation of Lagrangian

δL = L(x ,U + εv , ∂U + ε∂v , . . . , ∂kU + ε∂kv)− L(x ,U, ∂U, . . . , ∂kU)

= ε

(∂L[U]

∂Uσvσ +

∂L[U]

∂Uσj

vσj + · · ·+ ∂L[U]

∂Uσj1···jk

vσj1···jk

)+ O(ε2)

= ε(vσEUσ (L[U]) + ...) + O(ε2),

where EUσ are the Euler operators.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 12 / 33

Page 17: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Variational Principles

Action integral

J[U] =

∫Ω

L(x ,U, ∂U, . . . , ∂kU)dx .

Principle of extremal action

Variation of U: U(x)→ U(x) + εv(x).

Require: variation of action δJ ≡ J[U + εv ]− J[U] =∫

Ω(δL) dx = O(ε2).

Euler-Lagrange equations:

Euσ (L[u]) =∂L[u]

∂uσ+ · · ·+ (−1)kDj1 · · ·Djk

∂L[u]

∂uσj1···jk= 0,

σ = 1, . . . ,m.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 12 / 33

Page 18: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Variational Principles

Example 1: Harmonic oscillator, x = x(t)

L =1

2mx2 − 1

2kx2, ExL = −m(x + ω2x) = 0.

Example 2: Wave equation for u(x , t)

L =1

2ρut

2 − 1

2T ux

2, EuL = −ρ(utt − c2uxx) = 0.

Example 3: Klein-Gordon nonlinear equations for u(x , t)

L = −1

2utux + h(u), EuL = utx + h′(u) = 0.

Many other non-dissipative systems have variational formulations.

A practical way to tell whether a DE system has a variational formulation: itslinearization must be self-adjoint (symmetric). Relatively few models are!

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 13 / 33

Page 19: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Variational Principles

Example 1: Harmonic oscillator, x = x(t)

L =1

2mx2 − 1

2kx2, ExL = −m(x + ω2x) = 0.

Example 2: Wave equation for u(x , t)

L =1

2ρut

2 − 1

2T ux

2, EuL = −ρ(utt − c2uxx) = 0.

Example 3: Klein-Gordon nonlinear equations for u(x , t)

L = −1

2utux + h(u), EuL = utx + h′(u) = 0.

Many other non-dissipative systems have variational formulations.

A practical way to tell whether a DE system has a variational formulation: itslinearization must be self-adjoint (symmetric). Relatively few models are!

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 13 / 33

Page 20: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Variational Principles

Example 1: Harmonic oscillator, x = x(t)

L =1

2mx2 − 1

2kx2, ExL = −m(x + ω2x) = 0.

Example 2: Wave equation for u(x , t)

L =1

2ρut

2 − 1

2T ux

2, EuL = −ρ(utt − c2uxx) = 0.

Example 3: Klein-Gordon nonlinear equations for u(x , t)

L = −1

2utux + h(u), EuL = utx + h′(u) = 0.

Many other non-dissipative systems have variational formulations.

A practical way to tell whether a DE system has a variational formulation: itslinearization must be self-adjoint (symmetric). Relatively few models are!

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 13 / 33

Page 21: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Outline

1 Conservation LawsDefinition and ExamplesApplications

2 Variational Principles

3 Symmetries and Noether’s TheoremSymmetries and Variational SymmetriesNoether’s Theorem, ExamplesLimitations of Noether’s Theorem

4 Direct Construction Method for Conservation LawsThe IdeaCompletenessA Detailed Example

5 Examples of Construction of Conservation LawsSymbolic Software (Maple)KdVSurfactant Dynamics Equations

6 Conclusions

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 14 / 33

Page 22: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Symmetries of Differential Equations

Consider a general DE system

Rσ[u] = Rσ(x , u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N

with variables x = (x1, ..., xn), u = u(x) = (u1, ..., um).

Definition

A transformationx∗ = f (x , u; a) = x + aξ(x , u) + O(a2),u∗ = g(x , u; a) = u + aη(x , u) + O(a2).

depending on a parameter a is a point symmetry of Rσ[u] if the equation is the same innew variables x∗, u∗.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 15 / 33

Page 23: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Symmetries of Differential Equations

Consider a general DE system

Rσ[u] = Rσ(x , u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N

with variables x = (x1, ..., xn), u = u(x) = (u1, ..., um).

Definition

A transformationx∗ = f (x , u; a) = x + aξ(x , u) + O(a2),u∗ = g(x , u; a) = u + aη(x , u) + O(a2).

depending on a parameter a is a point symmetry of Rσ[u] if the equation is the same innew variables x∗, u∗.

Example 1: translations

The translationx∗ = x + C , t∗ = t, u∗ = u

leaves KdV invariant:

ut + uux + uxxx = 0 = u∗t∗ + u∗u∗x∗ + u∗x∗x∗x∗ .

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 15 / 33

Page 24: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Symmetries of Differential Equations

Consider a general DE system

Rσ[u] = Rσ(x , u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N

with variables x = (x1, ..., xn), u = u(x) = (u1, ..., um).

Definition

A transformationx∗ = f (x , u; a) = x + aξ(x , u) + O(a2),u∗ = g(x , u; a) = u + aη(x , u) + O(a2).

depending on a parameter a is a point symmetry of Rσ[u] if the equation is the same innew variables x∗, u∗.

Example 2: scaling

Same for the scaling:x∗ = αx , t∗ = α3t, u∗ = αu.

One hasut + uux + uxxx = 0 = u∗t∗ + u∗u∗x∗ + u∗x∗x∗x∗ .

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 15 / 33

Page 25: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Variational Symmetries

Consider a general DE system

Rσ[u] = Rσ(x , u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N

that follows from a variational principle with J[U] =∫

ΩL(x ,U, ∂U, . . . , ∂kU)dx .

Definition

A symmetry of Rσ[u] given by

x∗ = f (x , u; a) = x + aξ(x , u) + O(a2),u∗ = g(x , u; a) = u + aη(x , u) + O(a2).

is a variational symmetry of Rσ[u] if it preserves the action J[U].

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 16 / 33

Page 26: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Variational Symmetries

Consider a general DE system

Rσ[u] = Rσ(x , u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N

that follows from a variational principle with J[U] =∫

ΩL(x ,U, ∂U, . . . , ∂kU)dx .

Definition

A symmetry of Rσ[u] given by

x∗ = f (x , u; a) = x + aξ(x , u) + O(a2),u∗ = g(x , u; a) = u + aη(x , u) + O(a2).

is a variational symmetry of Rσ[u] if it preserves the action J[U].

Example 1: translations for the wave equation

utt = (T/ρ)2uxx , L =1

2ρut

2 − 1

2T ux

2.

The translation x∗ = x + C , t∗ = t, u∗ = u is evidently a variational symmetry.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 16 / 33

Page 27: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Variational Symmetries

Consider a general DE system

Rσ[u] = Rσ(x , u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N

that follows from a variational principle with J[U] =∫

ΩL(x ,U, ∂U, . . . , ∂kU)dx .

Definition

A symmetry of Rσ[u] given by

x∗ = f (x , u; a) = x + aξ(x , u) + O(a2),u∗ = g(x , u; a) = u + aη(x , u) + O(a2).

is a variational symmetry of Rσ[u] if it preserves the action J[U].

Example 2: scaling for the wave equation

utt = (T/ρ)2uxx , L =1

2ρut

2 − 1

2T ux

2.

The scaling x∗ = x , t∗ = t, u∗ = u/α is not a variational symmetry: L∗ = α2L,J∗ = α2J.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 16 / 33

Page 28: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Noether’s Theorem (restricted to point symmetries)

Theorem

Given:

a PDE system

Rσ[u] = Rσ(x , u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N,

following from a variational principle;

a variational symmetry

(x i )∗ = f i (x , u; a) = x i + aξi (x , u) + O(a2),(uσ)∗ = gσ(x , u; a) = uσ + aησ(x , u) + O(a2).

Then the system Rσ[u] has a conservation law Di Φi [u] = 0.

In particular,Di Φ

i [u] ≡ Λσ[u]Rσ[u] = 0,

where the multipliers are given by

Λσ = ησ(x , u)− ∂uσ

∂xiξi (x , u).

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 17 / 33

Page 29: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Noether’s Theorem: Examples

Example: translation symmetry for the harmonic oscillator

Equation: x(t) + ω2x(t) = 0, ω2 = k/m.

Symmetry:t∗ = t + a, ξ = 1;x∗ = x , η = 0,

Multiplier (integrating factor): Λ = η − x(t)ξ = −x ;

Conservation law:

ΛR = −x(x(t) + ω2x(t)) = − 1

m

d

dt

(mx2(t)

2+

kx2(t)

2

)= 0.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 18 / 33

Page 30: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Limitations of Noether’s Theorem

The given DE system, as written, must be variational.

Numbers of PDEs and dependent variables must coincide.

Dissipative systems are not variational.

If single PDE, must be of even order.

If a PDE system is not variational, artifices sometimes can make it variational!

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 19 / 33

Page 31: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Limitations of Noether’s Theorem

The given DE system, as written, must be variational.

Numbers of PDEs and dependent variables must coincide.

Dissipative systems are not variational.

If single PDE, must be of even order.

If a PDE system is not variational, artifices sometimes can make it variational!

Example 1: The use of multipliers.

The PDEutt + H ′(ux)uxx + H(ux) = 0,

as written, does not admit a variational principle. However, the equivalent PDE

ex [utt + H ′(ux)uxx + H(ux)] = 0,

does follow from a variational principle!

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 19 / 33

Page 32: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Limitations of Noether’s Theorem

The given DE system, as written, must be variational.

Numbers of PDEs and dependent variables must coincide.

Dissipative systems are not variational.

If single PDE, must be of even order.

If a PDE system is not variational, artifices sometimes can make it variational!

Example 2: The use of a transformation.

The PDEexutt − e3x(u + ux)2(u + 2ux + uxx) = 0,

as written, does not admit a variational principle. But the point transformation x∗ = x ,t∗ = t, u∗(x∗, t∗) = y(x , t) = exu(x , t), maps it into the self-adjoint PDE

ytt − (yx)2yxx = 0,

which is the Euler–Lagrange equation for the Lagrangian L[Y ] = y 2t /2− y 4

x /12.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 19 / 33

Page 33: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Limitations of Noether’s Theorem

The given DE system, as written, must be variational.

Numbers of PDEs and dependent variables must coincide.

Dissipative systems are not variational.

If single PDE, must be of even order.

If a PDE system is not variational, artifices sometimes can make it variational!

Example 3: The use of a differential substitution.

The KdV equationut + uux + uxxx = 0,

as written, does not admit a variational principle. However, a substitution u = vx yields avariational PDE

vxt + vxvxx + vxxxx = 0.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 19 / 33

Page 34: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Limitations of Noether’s Theorem (ctd.)

. . .

The use of an artificial additional equation. Any PDE system can be madevariational, by appending an adjoint equation!

Example:

The diffusion equation ut − uxx = 0 is dissipative, hence not self-adjoint.

Its adjoint equation: wt + wxx = 0.

But the PDE systemut − uxx = 0,

ut + uxx = 0

is self-adjoint!

Lagrangian:L = utw − wtu + 2uxwx .

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 20 / 33

Page 35: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Outline

1 Conservation LawsDefinition and ExamplesApplications

2 Variational Principles

3 Symmetries and Noether’s TheoremSymmetries and Variational SymmetriesNoether’s Theorem, ExamplesLimitations of Noether’s Theorem

4 Direct Construction Method for Conservation LawsThe IdeaCompletenessA Detailed Example

5 Examples of Construction of Conservation LawsSymbolic Software (Maple)KdVSurfactant Dynamics Equations

6 Conclusions

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 21 / 33

Page 36: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

The Idea of the Direct Construction Method

Definition

The Euler operator with respect to U j :

EU j =∂

∂U j−Di

∂U ji

+ · · ·+ (−1)sDi1 . . .Dis

∂U ji1...is

+ · · · , j = 1, . . . ,m.

Consider a general DE system Rσ[u] = Rσ(x , u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N withvariables x = (x1, ..., xn), u = u(x) = (u1, ..., um).

Theorem

The equationsEU j F (x ,U, ∂U, . . . , ∂sU) ≡ 0, j = 1, . . . ,m

hold for arbitrary U(x) if and only if

F (x ,U, ∂U, . . . , ∂sU) ≡ Di Ψi

for some functions Ψi (x ,U, ...).

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 22 / 33

Page 37: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

The Idea of the Direct Construction Method

Consider a general DE system Rσ[u] = Rσ(x , u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . ,N withvariables x = (x1, ..., xn), u = u(x) = (u1, ..., um).

Direct Construction Method

Specify dependence of multipliers: Λσ = Λσ(x ,U, ...), σ = 1, ...,N.

Solve the set of determining equations

EU j (ΛσRσ) ≡ 0, j = 1, . . . ,m,

for arbitrary U(x) (off of solution set!) to find all such sets of multipliers.

Find the corresponding fluxes Φi (x ,U, ...) satisfying the identity

ΛσRσ ≡ Di Φi .

Each set of fluxes and multipliers yields a local conservation law

Di Φi (x , u, ...) = 0,

holding for all solutions u(x) of the given PDE system.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 23 / 33

Page 38: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Completeness

Completeness of the Direct Construction Method

For the majority of physical DE systems (in particular, all systems in solved form),all conservation laws follow from linear combinations of equations!

ΛσRσ ≡ Di Φi .

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 24 / 33

Page 39: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

A Detailed Example

Consider a nonlinear telegraph system for u1 = u(x , t), u2 = v(x , t):

R1[u, v ] = vt − (u2 + 1)ux − u = 0,R2[u, v ] = ut − vx = 0.

Multiplier ansatz: Λ1 = ξ(x , t,U,V ), Λ2 = φ(x , t,U,V ).

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 25 / 33

Page 40: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

A Detailed Example

Consider a nonlinear telegraph system for u1 = u(x , t), u2 = v(x , t):

R1[u, v ] = vt − (u2 + 1)ux − u = 0,R2[u, v ] = ut − vx = 0.

Multiplier ansatz: Λ1 = ξ(x , t,U,V ), Λ2 = φ(x , t,U,V ).

Determining equations:

EU

[ξ(x , t,U,V )(Vt − (U2 + 1)Ux − U) + φ(x , t,U,V )(Ut − Vx)

]≡ 0,

EV

[ξ(x , t,U,V )(Vt − (U2 + 1)Ux − U) + φ(x , t,U,V )(Ut − Vx)

]≡ 0.

Euler operators:

EU =∂

∂U−Dx

∂Ux−Dt

∂Ut,

EV =∂

∂V−Dx

∂Vx−Dt

∂Vt.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 25 / 33

Page 41: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

A Detailed Example

Consider a nonlinear telegraph system for u1 = u(x , t), u2 = v(x , t):

R1[u, v ] = vt − (u2 + 1)ux − u = 0,R2[u, v ] = ut − vx = 0.

Multiplier ansatz: Λ1 = ξ(x , t,U,V ), Λ2 = φ(x , t,U,V ).

Determining equations:

EU

[ξ(x , t,U,V )(Vt − (U2 + 1)Ux − U) + φ(x , t,U,V )(Ut − Vx)

]≡ 0,

EV

[ξ(x , t,U,V )(Vt − (U2 + 1)Ux − U) + φ(x , t,U,V )(Ut − Vx)

]≡ 0.

Split determining equations:

φV − ξU = 0, φU − (U2 + 1)ξV = 0,

φx − ξt − UξV = 0, (U2 + 1)ξx − φt − UξU − ξ = 0.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 25 / 33

Page 42: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

A Detailed Example

Consider a nonlinear telegraph system for u1 = u(x , t), u2 = v(x , t):

R1[u, v ] = vt − (u2 + 1)ux − u = 0,R2[u, v ] = ut − vx = 0.

Multiplier ansatz: Λ1 = ξ(x , t,U,V ), Λ2 = φ(x , t,U,V ).

Solution: five sets of multipliers (ξ, φ) =

0 1

t x − 12t2

1 −t

ex+ 12U2+V Uex+ 1

2U2+V

ex+ 12U2−V −Uex+ 1

2U2−V

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 25 / 33

Page 43: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

A Detailed Example

Consider a nonlinear telegraph system for u1 = u(x , t), u2 = v(x , t):

R1[u, v ] = vt − (u2 + 1)ux − u = 0,R2[u, v ] = ut − vx = 0.

Multiplier ansatz: Λ1 = ξ(x , t,U,V ), Λ2 = φ(x , t,U,V ).

Resulting five conservation laws:

Dtu −Dxv = 0,

Dt [(x − 12t2)u + tv ] + Dx [( 1

2t2 − x)v − t( 1

3u3 + u)] = 0,

Dt [v − tu] + Dx [tv − ( 13u3 + u)] = 0,

Dt [ex+ 1

2u2+v ] + Dx [−uex+ 1

2u2+v ] = 0,

Dt [ex+ 1

2u2−v ] + Dx [uex+ 1

2u2−v ] = 0.

To obtain further conservation laws, extend the multiplier ansatz...

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 25 / 33

Page 44: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Outline

1 Conservation LawsDefinition and ExamplesApplications

2 Variational Principles

3 Symmetries and Noether’s TheoremSymmetries and Variational SymmetriesNoether’s Theorem, ExamplesLimitations of Noether’s Theorem

4 Direct Construction Method for Conservation LawsThe IdeaCompletenessA Detailed Example

5 Examples of Construction of Conservation LawsSymbolic Software (Maple)KdVSurfactant Dynamics Equations

6 Conclusions

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 26 / 33

Page 45: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Symbolic Software for Computation of Conservation Laws

Example of use of the GeM package for Maple for the KdV.

Use the module: with(GeM):

Declare variables: gem_decl_vars(indeps=[x,t], deps=[U(x,t)]);

Declare the equation:

gem_decl_eqs([diff(U(x,t),t)=U(x,t)*diff(U(x,t),x)

+diff(U(x,t),x,x,x)],

solve_for=[diff(U(x,t),t)]);

Generate determining equations:

det_eqs:=gem_conslaw_det_eqs([x,t, U(x,t), diff(U(x,t),x),

diff(U(x,t),x,x), diff(U(x,t),x,x,x)]):

Reduce the overdetermined system:

CL_multipliers:=gem_conslaw_multipliers();

simplified_eqs:=DEtools[rifsimp](det_eqs, CL_multipliers, mindim=1);

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 27 / 33

Page 46: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Symbolic Software for Computation of Conservation Laws

Example of use of the GeM package for Maple for the KdV.

Solve determining equations:

multipliers_sol:=pdsolve(simplified_eqs[Solved]);

Obtain corresponding conservation law fluxes/densities:

gem_get_CL_fluxes(multipliers_sol, method=*****);

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 28 / 33

Page 47: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Examples of Symbolic Computation of Conservation Laws

Example 1

KdV equation:ut + uux + uxxx = 0.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 29 / 33

Page 48: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Example 2: Conserved Form of Surfactant Dynamics Equations

Ref.: C. Kallendorf, A.S., M. Oberlack, Y.Wang, 2011

Surfactants = surface active agents.

Two-phase interface described by a level set function Φ; S =

x ∈ R3 : Φ(x) = 0

.

Unit normal: n = − ∇Φ

|∇Φ| . Concentration: c.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 30 / 33

Page 49: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Example 2: Conserved Form of Surfactant Dynamics Equations

Ref.: C. Kallendorf, A.S., M. Oberlack, Y.Wang, 2011

Surfactants = surface active agents.

Two-phase interface described by a level set function Φ; S =

x ∈ R3 : Φ(x) = 0

.

Unit normal: n = − ∇Φ

|∇Φ| . Concentration: c.

Surfactant Dynamics Equations:

Incompressibility of the flow:∇ · u = 0.

Interface transport by the flow:

Φt + u · ∇ (Φ) = 0.

Surfactant transport:

ct + ui ∂c

∂x i− cni nj

∂ui

∂x j− α(δij − ni nj)

∂x j

((δik − ni nk)

∂c

∂xk

)= 0.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 30 / 33

Page 50: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Example 2: Conserved Form of Surfactant Dynamics Equations

Result

The surfactant dynamics system can be written in a fully conserved form:

∇ · u = 0.

Φt + u · ∇ (Φ) = 0.

∂t(c F(Φ) |∇Φ|) +

∂x i

(Ai F(Φ) |∇Φ|

)= 0,

where

Ai = cui − α(

(δik − ni nk)∂c

∂xk

), i = 1, 2, 3,

and F is an arbitrary sufficiently smooth function.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 31 / 33

Page 51: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Conclusions and Open Problems

Conclusions

Divergence-type conservation laws are useful in analysis and numerics.

Conservation laws can be obtained systematically through the Direct ConstructionMethod, which employs multipliers and Euler operators.

The method is implemented in a symbolic package GeM for Maple.

For variational DE systems, conservation laws correspond to variational symmetries.

Noether’s theorem is usually not a preferred way to derive unknown conservationlaws.

Open problems

Computations become hard for conservation laws of high orders.Can we tell anything in advance about highest order of the conservation law for agiven DE system?

For complicated DEs and multipliers, computation of fluxes/densities can becomechallenging.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 32 / 33

Page 52: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Conclusions and Open Problems

Conclusions

Divergence-type conservation laws are useful in analysis and numerics.

Conservation laws can be obtained systematically through the Direct ConstructionMethod, which employs multipliers and Euler operators.

The method is implemented in a symbolic package GeM for Maple.

For variational DE systems, conservation laws correspond to variational symmetries.

Noether’s theorem is usually not a preferred way to derive unknown conservationlaws.

Open problems

Computations become hard for conservation laws of high orders.Can we tell anything in advance about highest order of the conservation law for agiven DE system?

For complicated DEs and multipliers, computation of fluxes/densities can becomechallenging.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 32 / 33

Page 53: Conservation Laws: Systematic Construction, Noether's ...math.usask.ca/~shevyakov/publ/talks/shev_phys_Nov2011_v...November 10, 2011 A. Shevyakov (Math&Stat) Conservation Laws 10 Nov

Some references

Bluman, G.W., Cheviakov, A.F., and Anco, S.C. (2010).Applications of Symmetry Methods to Partial Differential Equations.Springer: Applied Mathematical Sciences, Vol. 168.

Anco, S.C. and Bluman, G.W. (1997).Direct construction of conservation laws from field equations. Phys. Rev. Lett. 78,2869–2873.

Anco, S.C. and Bluman, G.W. (2002).Direct construction method for conservation laws of partial differential equations.Part I: Examples of conservation law classifications. Eur. J. Appl. Math. 13,545–566.

Cheviakov, A.F. (2007).GeM software package for computation of symmetries and conservation laws ofdifferential equations. Comput. Phys. Commun. 176, 48–61.

Kallendorf, C., Cheviakov, A.F., Oberlack, M., and Wang, Y.Conservation Laws of Surfactant Transport Equations. Submitted, 2011.

A. Shevyakov (Math&Stat) Conservation Laws 10 Nov. 2011 33 / 33