conjugated polymer based plastic solar cellslinz institute for organic solar cells physics of...

45
Conjugated Polymer Based Plastic Solar Cells Niyazi Serdar SARICIFTCI Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz Austria Conjugated Polymer Based Plastic Solar Cells Niyazi Serdar SARICIFTCI Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz Austria Introduction to

Upload: others

Post on 22-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Conjugated Polymer Based Plastic Solar Cells

    Niyazi Serdar SARICIFTCILinz Institute for Organic Solar Cells (LIOS),

    Physical Chemistry, Johannes Kepler University LinzAustria

    Conjugated Polymer Based Plastic Solar Cells

    Niyazi Serdar SARICIFTCILinz Institute for Organic Solar Cells (LIOS),

    Physical Chemistry, Johannes Kepler University LinzAustria

    Introduction to

  • Scope

    “The electronics of the 20th century is based

    on semiconductor physics. The electronics of

    the 21st century will be based on molecular

    chemistry/physics”

    F. L. Carter

  • Small MolecularOrganic Solar Cells

    “Tang- Cell“

    C. W. TangAppl.Phys. Lett. 48(86)183

  • Improving Molecular Cells

    Dieter Meissner, Yasuhiko Shirota et al

    Solar Energy Materials and Solar Cells

    61 (2000) 1 and 87; ibid 63 (2000) 37.

    Mixed InterlayerZnPc mixed with C60

  • Organic Single Crystals

    Single crystalline

    Pentacene, about

    7 mm2, halogen doped

    AM 1.5, 100 mW /cm2,

    η= 1.9 - 2.4 %

    J. H. Schön, Ch. Kloc, E.

    Bucher, B. Batlogg, Nature

    403 (2000), 408

  • Photoinduced Charge Generation

    An ultrafast e- transfer occurs between Conjugated Polymer / Fullerene composites upon

    illumination. The transition time is less than 40 fs. The Internal Quantum efficiency of

    charge generation is therefore ~100%.

    MDMO PPV 3,7 - dimethyloctyloxy methyloxy

    PPV

    PCBM1-(3-methoxycarbonyl) propyl-1-phenyl [6,6]C61

    O

    O n

    DONOR ACCEPTOR

    N. S. Sariciftci et al., Science 258, 1474 (1992)

  • Transient Photoconductivity

    Peak Photocurrent as well as the lifetime of the charge carriers are enhanced upon increasing the C60content in the composite.

    Changhee Lee et al., Phys. Rev. B 48, 15425 (1993)

  • Enhanced Photoconductivity

    Steady state photoconductivity of conjugated polymer is enhanced by several orders of

    magnitude upon adding C60. Changhee Lee et al., Phys. Rev. B 48, 15425 (1993)

  • Light Induced Electron Spin Resonance

    LESR of Poly(3-octylthiophene) + C60(1:1 weight %), Ar+ Laser 488nm 100mW/cm2, 80 K

    N. S. Sariciftci, et al., Int. J. Mod. Phys. B8, 237 (1994)

    Integrated LESR Intensities

  • PCBMMDMO-PPV

    +-

    Light

    ITO

    Plastic foil

    Aluminum

    P EDOT-PSS

    Device Geometries

    PCBM

    +-

    MDMO-PPV

    Light

    ITO

    Plastic foil

    Aluminum

    PEDOT-PSS

    BILAYER BULK HETEROJUNCTION

  • Bilayer Heterojunction Devices

    • Rectification ratio in the dark 104

    • Short circuit current linear up to 1W/cm2

    • Efficiency under monochromatic light ≈ 10-1 %

    N. S. Sariciftci et al., Appl. Phys. Lett. 62, 585 (1993)

  • Plastic Solar Cell Device Geometry

    Device structure

    Al contacts

    MDMO-PPV2:PCBM1 (1:3)

    PEDOT:PSS3

    Glass substrate

    Indium-tin-oxide (ITO)

    1 [6,6] - phenyl-C61-butyl acid-methylester2 3,7 - dimethyl-octoxy-methyloxy-poly(phenylene-vinylene)3 poly-ethylene-dioxythiophene doped with polystyrene sulphonic acid

    Interfacial Layers

  • Bulk Heterojunctions

    e-

    e-

    P+

    e-

    e-

    e-

    e-

    e-

    P+

    e-

  • 3-D Percolation

    Strong luminescence quenching occurs at appr. 1 mol% of PCBM in alkoxy-PPV.

    Photocurrent onset at appr. 17 mol% PCBM, in accordance with percolation theory.

    0,1 1 10 1000,0

    0,3

    0,5

    0,8

    1,0 Lu

    m In

    tensity [a. u.]

    Isc

    I sc

    [a.

    u.]

    Concentration of PCBM [mol%]

    0,0

    0,3

    0,5

    0,8

    1,0 Luminescence

  • Schematic Band Diagram

    π∗ MEH-PPV

    Eg

    ITOAl

    4.3 eV4.7 eV

    LUMO C60

    π MEH-PPV

    HOMO C60

    2.8 eV

    3.7 eV

    5 eV

    6.1 eV

    π∗ MEH-PPV

    Eg

    ITO Al

    LUMO C60

    π MEH-PPV

    HOMO C60

    EF

    Metal-Insulator-Metal (MIM) picture implies the field of assymetric metal electrodes

    (All interface effects neglected!)

  • Plastic Solar Cells

    Production Scheme

    Plastic Solar Cells

    Production Scheme

  • Plastic Solar Cells - SUBSTRATES

    Substrates are available in any scale. They are flexible and transparent

    We use Indium Tin Oxide (ITO)

    coated polyester foils or glasses.

    R ~ 10-100 Ω/cm2

    Substrates are cut

    in the desired sizeand cleaned in common organic solvents in a ultrasonic bath.

    6 cm

    6 cm

    ITO

    PolyesterInsulating String

  • WHY Plastic Solar Cells - MATERIALS

    The electroactive compounds can be already bought from companies. Prices are appr. 300 - 500 US$/gram for the polymers, fullerenes are appr. 20 - 50 US$/gram.

    Polymers and Fullerenes are dissolved in common organic solvents. 1 gram yields appr.~ 200 ml solution

    Different colors of the solutions correspond to different spectral sensitivities - Band Gap Tuning

  • Plastic Solar Cells - FILM PREPARATION

    Spin Casting is a easy coating technique for small areas. Materialloss is very high. Doctor Blade Technique

    was developed for large area coating

    Doctor Blade Technique has no material loss

    FILM THICKNESS IS ~ 100 nm

  • Production - Large Area

    Large Area Thin Film Production using Doctor/Wire Blading

    1 2

    a)

    b)

  • Laminated Polymeric Solar Cells

    ••Au/PEDOT/POPT:MEH-CN-PPV (19:1)laminated at 200 C onto the ••MEH-CN-PPV:POPT (19:1) /Ca

    Power conversion efficiency around 4.8 % at 480nm irradiation.Calculated AM1.5 efficiency around 1.9 %

    Large scale large area fabrication potential!

    M. Granström, K. Petritsch, A. Arias, A. Lux, M. Andersson and R. H. Friend, Nature 395, 257 (1998).

  • WHY Plastic Solar Cells - SUMMARY

  • Voc vs LUMO of Acceptor

    -0,70 -0,65 -0,60 -0,55

    0,55

    0,60

    0,65

    0,70

    0,75

    0,80

    0,85

    S1 = 0.95

    Vo

    ltag

    e [V

    ]

    E1Red [V]

    PCBM

    azafulleroid 5 C60

    ketolactam 6

    (a)

    Brabec et al., Advanced Functional Materials (2001), 11, No.5, 374-380

    .

  • Voc vs Metal Work Function

    2,5 3,0 3,5 4,0 4,5 5,0 5,50,50

    0,55

    0,60

    0,65

    0,70

    0,75

    0,80

    0,85

    0,90

    S2 ~ 0.1

    Vo

    ltag

    e [V

    ]

    Work function [eV]

    (b)

    Brabec et al., Advanced Functional Materials (2001), 11, No.5, 374-380.

  • Anomalous Temperature Dependence

    Eugene Katz, David Faiman, et al

    Journal of Applied Physics, Vol 90, (2001), 5343-5350

    Outdoor Experiment in Negev Desert Israel

  • Property Optimization

    Structure Property

    Morphology

    Self OrganizationInterchain

    (Intermolecular)Interactions

    Molecular StructureMolecular Engineering

  • Morphology Effects

    Toluene cast film

    Cholorobenzene cast film

    b

    0.5 µm

    0.0 0.5 1.0 1.5 2.0 2.5-4

    0

    4

    8

    Su

    rfa

    ce H

    eig

    ht

    (nm

    )

    Distance (Pm)

    (a)

    0.0 0.5 1.0 1.5 2.0 2.5-4

    0

    4

    8

    Su

    rfa

    ce H

    eig

    ht

    (nm

    )

    Distance (Pm)

    (b)

    a

    0.5 µm

  • Morphology Effects

    ff0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    -6

    -5

    -4

    -3

    -2

    -1

    0

    from toluene from chlorobenzene

    C

    urre

    nt D

    ensi

    ty (

    mA

    /cm

    2 )

    Voltage (V)

    400 450 500 550 600 650 7000

    102030405060

    IPC

    E (%

    )

    Wavelength (nm)

    50

    60

    70

    80

    90

    100

    Tran

    smis

    sion

    (%)

    The efficiency is strongly enhanced by using cholorobenzene in MDMO-PPV/PCBM mixture

    S. E. Shaheen, et al. Appl Phys. Lett, 78, 841 (2001).

  • Intensity Dependence of Photocurrent

    Scaling Coefficient αα ~ 0.92

    1 10 1001E-5

    1E-4

    D

    D

    D

    Pho

    tocu

    rren

    t [A

    /10

    mm

    2 ]

    Am 1.5 Intensity [mW/cm2]

  • Post Production Treatment

    400 450 500 550 600 650 7000

    10

    20

    30

    40

    50

    60

    70

    IPC

    E [

    %]

    Wavelength [nm]

    Rittberger et al, 2002, Patent filed by QSEL

  • Optimization

    Possible Improvements

    ηeff = Isc * Voc * FF / Iinc

    Isc Tuning of the Transport Properties - Mobility

    Optimization of Cell Geometry in Dependence of the Cell Thickness

    Voc Tuning of the Electronic Levels of the Donor Acceptor System

    Voc of ~2 V observed in polymeric Donor - Acceptor systems

    FF Tuning of the Contacts and Morphology

    Lowering of Serial Resistivities - Interpenetrating Network?

    Iinc Tuning of the Spectral Absorbance

    Sensitization to the Optical Bandgap

  • Spectral Mismatch to Solar Emission

    400 600 800 1000 12000

    1x1018

    2x1018

    3x1018

    4x1018

    5x1018

    6x1018

    MDMO-PPV/PCBM 1/4

    photon flux AM 1.5

    phot

    ons

    [n m

    -2 s

    -1 n

    m-1]

    Wavelength [nm]

    0

    50

    100

    [%]

    integrated photon flux [%] absorbed photons [%]

  • OUTLOOK - Stability

    0 3 7 100,0

    0,2

    0,4

    0,6

    0,8

    1,0

    - Exponentional Decay Fit Lifetime : 2.6 hours

    Vo

    c [ a

    . u.]

    Time [Hours]

    0 30 60 90 120 1500,5

    0,7

    0,8

    1,0V

    oc [

    a. u

    .]

    Time [days]

    UNPROTECTED

    PROTECTED

  • Stability

    IN SITU FTIR

    ENVIRON-MENTAL

    CELL

  • OUTLOOK - Stability

    C60 1182 cm-1

    MDMO-PPV/ C60 1182 cm-1

    MDMO-PPV 1506 cm-1

    MDMO-PPV/ C60 1506 cm-1

    Time [Hours]

    Rel

    . Pea

    k A

    rea

    C60 slows down degradation of the Conj. Polymer

  • LIOS

    Linz Institute for Organic Solar CellsPhysics of Organic Semiconductors:1.) Photoexcited spectroscopy2.) Photoconductivity3.) Thin film characterization4.) Nanoscale engineering5.) Nanoscale microscopy (AFM, STM...)6.) In situ spectro-electrochemistry

    Plastic Solar CellsMolecular Solar Cells

    Organic/InorganicHybrid

    Solar Cells

    „Incubator“ for small high tech spin-off companies

  • NC-TiO2 with Polymeric Hole Conductor

    Hole conducting polymer

    SnO2:F or ITO

    Au

    nc-TiO2 layer

    Glass

    Adsorbed dye

    0.0 0.2 0.4 0.6 0.8

    -0.4

    0.0

    0.4

    0.8

    1.2

    Cu

    rren

    t de

    nsity

    [m

    A/c

    m2 ]

    Voltage [V]

    -1 0 1

    10- 3

    10- 2

    10- 1

    100

    Cur

    rent

    den

    sity

    [mA

    /cm

    2 ]

    Voltage [V]

    Organic/Inorganic Hybrid Solar CellsDesta Gebeyehu, et al., Synthetic Metals, Vol. 125 (2002) 279-287

    .

  • Hybrid Solar Hybrid Solar CellsCells

    W.U. Huynh, J. Dittmer, A.P. AlivisatosScience, 295 (2002) 2425

    Regioregular Regioregular P3HTP3HT

    CdSeP3HT

  • Functioning Principle Functioning Principle of Hybrid Solar of Hybrid Solar CellsCells

    „Interpenetreting Network“

    4

    44

    4

    ITO p-type n-type Al

  • Synthese der Synthese der CISCIS--NanoteilchenNanoteilchen

    Organic LigandTPP (Triphenyl phosphit)

    To prevent Aggregation

    Bis(trimethylsilyl)-sulfide

    InCl3 + TPP (In -TPP)+3 + 3Cl-

    CuI + TPP (Cu -TPP)+1 + I-

    CuxInySz-TPP + (CH3)3SiCl + (CH3)3SiI

    Nanodimension depends on:• Temperature

    •Rate of dropping•Ligand/Reagenza-Ratio

    Elif Arici et al, 2002

  • Quantization Quantization

    Wannier Wannier Mott Mott Exciton Exciton RadiusRadiusRwm = (εoo/µ). αB

    = 8.1 nm

    εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε oo = Dielectric const.µµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµ = Reduced Massαααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααααα BB = Bohr Radius of H-Atom

    2.3 2.3 eV eV 1.5 1.5 eV eV

    RR CISCIS < R < R WMWM

    **L.E. Brus, J. Chem. Phys. 80, 4403 (1984)

    )(BulkEE gg **

    ¸̧¹

    ·¨̈©

    §�¸

    ¹·

    ¨©§

    hemmR

    h 11

    8 2

    2

    + + Re

    HSH 0

    2

    48.1--

    Coulomb-TermParticle-in-the-box-Term

    Elif Arici et al, 2002

  • Nanocrystalline Nanocrystalline CISCIS

    • Centrifuge

    • Spincoating/Tempering

    120 °C120 °C

    CIS/TPP:

    100 nm100 nm

    ScanningScanning ElectronElectron MicroscopyMicroscopy

    PercolationPercolation

  • Interdisciplinary R & D

    Photophysics Materials Synthesis

    Device Technology

    Upscaling

    Thin Film Techn.Prototypes