conformations of cyclopentasilane stereoisomers control

40
1 Supporting Information Conformations of Cyclopentasilane Stereoisomers Control Molecular Junction Conductance Haixing Li, 1 Marc H. Garner, 2 Zhichun Shangguan, 3 Timothy A. Su, 4 Madhav Neupane, 4 Panpan Li, 3 Alexandra Velian, 4 Michael L. Steigerwald, 4 Shengxiong Xiao,* 3 Colin Nuckolls,* 3,4 Gemma C. Solomon,* 2 Latha Venkataraman* 1,4 1 Department of Applied Physics and Applied Mathematics, Columbia University, New York 10027, USA 2 Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark 3 The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Optoelectronic Nano Materials and Devices Institute, Department of Chemistry, Shanghai Normal University, Shanghai 200234, China 4 Department of Chemistry, Columbia University, New York 10027 This version of the ESI replaces the previous version that was published on 13th June 2016. Some references in Part IV on Page 8 and 21 are corrected and updated. Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2017

Upload: others

Post on 19-May-2022

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Conformations of Cyclopentasilane Stereoisomers Control

1

SupportingInformation

ConformationsofCyclopentasilaneStereoisomers

ControlMolecularJunctionConductance

HaixingLi,1MarcH.Garner,2ZhichunShangguan,3TimothyA.Su,4Madhav

Neupane,4PanpanLi,3AlexandraVelian,4MichaelL.Steigerwald,4

ShengxiongXiao,*3ColinNuckolls,*3,4GemmaC.Solomon,*2Latha

Venkataraman*1,4

1DepartmentofAppliedPhysicsandAppliedMathematics,ColumbiaUniversity,NewYork10027,USA2Nano-ScienceCenterandDepartmentofChemistry,UniversityofCopenhagen,Universitetsparken5,2100CopenhagenØ,Denmark3TheEducationMinistryKeyLabofResourceChemistry,ShanghaiKeyLaboratoryofRareEarthFunctionalMaterials,OptoelectronicNanoMaterialsandDevicesInstitute,DepartmentofChemistry,ShanghaiNormalUniversity,Shanghai200234,China4DepartmentofChemistry,ColumbiaUniversity,NewYork10027

ThisversionoftheESIreplacesthepreviousversionthatwaspublishedon13thJune2016.SomereferencesinPartIVonPage8and21arecorrectedandupdated.

Electronic Supplementary Material (ESI) for Chemical Science.This journal is © The Royal Society of Chemistry 2017

Page 2: Conformations of Cyclopentasilane Stereoisomers Control

2

TableofContents

TableofContents..............................................................................................2

I.Syntheticproceduresandcharacterizationofcompounds.........................4

II.STM-BreakJunctionexperimentdetails.....................................................6

III.AdditionalData..........................................................................................7

IV.ComputationalDetails................................................................................8

1.ConformationalStudyandNomenclature...........................................................8

2.VacuumBoltzmannPopulations.........................................................................9

3.Creatingjunctionstructures...............................................................................16

4.Comparisonoflinearandcyclicsystems:junctiongeometriesand

transmission...........................................................................................................18

5.Analysisofvacuumstructures............................................................................23

6.Analysisofjunctionstructuresandcalculatedtransmissions..........................26

Ortho/Ortho......................................................................................................................27

Anti/Ortho.........................................................................................................................29

Anti/Anti.............................................................................................................................31

V.NMRspectrafortrans-Si5andcis-Si5........................................................34

VI.SinglecrystalX-raydiffraction..................................................................37

VII.References:...............................................................................................38

Page 3: Conformations of Cyclopentasilane Stereoisomers Control

3

Page 4: Conformations of Cyclopentasilane Stereoisomers Control

4

I.Syntheticproceduresandcharacterizationofcompounds

Allreactionswereperformedinanoven-driedorflame-driedroundbottomflask,unlessotherwisenoted.Theflaskswerefittedwithrubberseptaandreactionswereconductedunder apositivepressureofnitrogenor argon,unlessotherwisenoted.Anhydrousandanaerobic solvents were obtained from a PureSolv MD5 solvent purification system.Commercialreagentswereusedwithoutfurtherpurification.Silicontetrachlorideand18-crown-6 were purchased from Aladdin Reagent. Tetrahydrofuran and potassium tert-butoxidewerepurchasedfromJ&KChemicalLtd.LithiumgranuleswerepurchasedfromAlfa Aesar. Toluene was purchased from Sigma-Aldrich. All other chemicals werepurchasedfromTCI.

1H, 13C, and 29Si NMR spectra were recorded on a Bruker DRX300 (300 MHz),Bruker DRX400 (400MHz), or a Bruker DMX500 (500 MHz) spectrometer. ChemicalshiftsforprotonsarereportedinpartspermilliondownfieldfromtetramethylsilaneandarereferencedtoresidualprotiumintheNMRsolvent(CHCl3:δ7.26).Chemicalshiftsforcarbon are reported in parts per million downfield from tetramethylsilane and arereferenced to the carbon resonances of the solvent (CDCl3 δ 77.16).Chemical shifts forsiliconarereportedinpartspermilliondownfieldfromtetramethylsilaneandreferencedtothesiliconresonanceoftetramethylsilane(TMSδ0.0).Dataarerepresentedasfollows:chemical shift (δ in ppm),multiplicity (s = singlet, d = doublet), and integration. Themass spectroscopic data were obtained at the Columbia Universitymass spectrometryfacilityusingaWatersXEVOG2XSQToFmassspectrometerequippedwithaUPC2SFCinlet, electrospray ionization (ESI) probe, atmospheric pressure chemical ionization(APCI)probe,andatmosphericsolidsanalysisprobe(ASAP).Tetrakis(trimethylsilane)silane1

Athree-neckedflaskwasequippedwithadroppingfunnel,arefluxcondenser,and

a thermometer. The dropping funnel was charged with a mixture of tetrachlorosilane(79.0g,0.465mol,1.00equiv.)andchlorotrimethylsilane(247.6g,2.28mol,4.90equiv.).Theflaskwaschargedwithlithiumshot(27.1g,3.91mol,8.40equiv.)andtetrahydrofuran(THF,560mL).The flaskwascooled to0˚Cwithan ice-waterbathand themixtureofchlorotrimethylsilane and tetrachlorosilane from the dropping funnel was added

SiTMS

TMSTMS TMS

1

Li

THFSiCl4 + SiMe3Cl

Page 5: Conformations of Cyclopentasilane Stereoisomers Control

5

dropwise to the flask over 6 hours.During addition, a gold-brown suspension formed.The reactionwas stirred for 16hat roomtemperature, refluxed for2h,quenchedwithwater and extractedwith hexanes. The organic layerwas separated, dried overNa2SO4and concentrated in vacuo. Recrystallization from ethanol yieldedtetrakis(trimethylsilyl)silane 1 as a white solid (104 g, 70% yield). The NMRcharacterizationmatchespreviousreportsfromtheliterature.1

2,2,3,3-tetramethyl-1,1,1,4,4,4-hexakis(trimethylsilyl)tetrasilane2

This procedurewas adapted from the literature.2 At room temperature, 1 (20.0 g, 62.3mmol, 2.00 equiv.) and potassium tert-butoxide (7.34 g, 65.4 mmol, 2.10 equiv.) weremixed together in a flaskwith 60mlTHF.The solution immediately adopted a yellowcolor. The mixture was then stirred overnight. The THF was removed in vacuo andtoluene(80mL)wassubsequentlyadded.Thereactionmixturewascooledto-78˚Cwithadryice-acetonebathand1,2-dichlorotetramethyldisilane(5.83g,31.2mmol,1.00equiv.)intoluene(40mL)wasaddedover30min.Afterstirringfor2hatroomtemperature,thereactionmixturewas subjected to an aqueousworkupwith 2MH2SO4, extractedwithdiethyl ether, then dried over sodium sulfate. After removal of the solvent, the whiteresiduewas recrystallized from acetone/ether to obtain 2 as a white solid (16.2 g, 26.5mmol, 85% yield). The NMR characterization matches previous reports from theliterature.21,1,3,3-tetrakis(trimethylsilyl)hexamethylcyclopentasilane3

At room temperature,2 (10.0 g, 16.4mmol, 1.00 equiv.), potassium tert-butoxide

(3.68 g, 32.8mmol, 2.00 equiv.) and 18-crown-6 (8.66 g, 32.8mmol, 2.00 equiv.) weremixed with toluene (60 mL). Immediately the solution turned orange. After stirringovernight,asolutionofdichlorodimethylsilane(2.12g,16.4mmol,1.00equiv.)intoluene(10mL)wasaddeddropwisetothereactionmixture.Aftercompleteaddition,theorange

SiTMS

TMSTMS TMS Si Si Si Si

TMSTMS

TMS

TMS

TMSTMS

21

Cl(SiMe2)2ClSiTMS

TMSTMS K

PhMe

KOtBu

THF

Si Si Si SiTMS

TMSTMS

TMS

TMSTMS

1. KOtBu, 18-Cr-6

2. SiMe2Cl2

SiSi

Si SiSi

TMSTMS

TMSTMS

2

3

Page 6: Conformations of Cyclopentasilane Stereoisomers Control

6

color of the silyl potassiate vanished and the reaction mixture turned colorless. Thereactionmixturewasthenstirredatr.t.for4handsubjectedtoanaqueousworkupwithtolueneand2MH2SO4.Afterremovalofthesolvent,thewhiteresiduewasrecrystallizedfromacetone/ethertoobtain3asawhitesolid(6.95g,13.3mmol,81%yield).TheNMRcharacterizationmatchespreviousreportsfromtheliterature.3,4

trans-Si5andcis-Si5

Atroomtemperature,3(500mg,0.96mmol,1.00equiv.),tert-BuOK(214mg,1.91

mmol,2.00equiv.),and18-crown-6(505mg,1.91mmol,2.00equiv.)weredissolvedin5mL toluene. Immediately the solution turned orange and the solution was stirredovernight. ClCH2SMe was added dropwise to the reaction mixture, after which thesolutionturnedcolorless.Thereactionmixturewasstirredatr.t.for4handsubjectedtoanaqueousworkupwith2MH2SO4followedbyextractionwithtoluene.Afterremovalofthesolvent,thecruderesiduewaspurifiedbysilicagelchromatographywithhexanesaseluent,andthefollowingstereoisomerswereseparated.trans-Si5:colorlessoil(10%yield).1HNMR(CDCl3,500MHz)δ2.14(s,6H),1.99(s,2H),1.96 (s, 2H), 0.39 (s, 6H), 0.28 (s, 6H), 0.27 (s, 6H), 0.25 (s, 18H). 13CNMR (126MHz,CDCl3)δ21.99,15.36,1.72,-1.38,-3.17,-4.48.29SiNMR(60MHz,CDCl3)δ-9.86,-28.66,-33.15 , -75.68. HRMS (TOF MS ASAP+) for C16H46S2Si7: calculated = 499.1504 found =499.1492(M+).cis-Si5:whitesolid(15%yield).1HNMR(CDCl3,500MHz)δ2.16(s,6H),2.08(d,J=11.5Hz,2H),2.05(d,J=11.0Hz,2H),0.45(s,3H),0.33(s,6H),0.28(s,3H),0.24(s,18H),0.23(s,6H).13CNMR(126MHz,CDCl3)δ22.06,15.45,1.75,-0.45,-2.22,-3.39,-4.30.29SiNMR(60MHz,CDCl3)δ-9.66,-28.61,-32.68,-74.87.HRMS(TOFMSASAP+)forC16H46S2Si7:calculated=499.1504found=499.1496(M+).

II.STM-BreakJunctionexperimentdetails

We measured the conductance of single molecules bound to gold electrodes using ahome-built modified Scanning Tunneling Microscope (STM). We used a 0.25 mmdiametergoldwire(99.998%,AlfaAesar)astheSTMtipandagold—coated(99.999%,Alfa Aesar) mica surface as the substrate. A commercially available single-axis

SiSi

Si SiSi

TMSTMS

TMSTMS

1. KOtBu, 18-Cr-6

2. ClCH2SCH3

SiSi

Si SiSi

TMS

TMSS

S

3 cis-Si5

SiSi

Si SiSi

TMS

TMSS

S+

trans-Si5

Page 7: Conformations of Cyclopentasilane Stereoisomers Control

7

piezoelectric positioner (Nano-P15, Mad City Labs) was used to achieve sub-angstromlevel control of the tip-substrate distance. The STM was controlled using a customwrittenprogram in IgorPro (Wavemetrics, Inc.) andoperated in ambient conditions atroomtemperature.ThegoldsubstratewascleanedusingUV/Ozonefor15minutespriortouse.Foreachmeasurement,1000traceswerefirstcollectedpriortoaddingmolecularsolutions to ensure that the goldwas clean. Solutions of the targetmolecules at 1mMconcentration in 1,2,4-trichlorobenzene (Sigma-AldrichorAlfaAesar, 99%purity)wereadded to the substrate formolecular conductancemeasurements.Theappliedbiaswas225mV,andthesubstratewasdisplacedataspeedof19nm/sforallmeasurements.Thecurrentandvoltagedatawereacquiredat40kHz.Foreachmolecule,wecollectedover10,000tracestocreate1Dand2Dconductancehistogramswithoutdataselection(Figure2inthemaintext).

III.AdditionalData

FigureS1.Logarithmicallybinned1Dconductancehistogramofcis-Si5(orange),trans-Si5(blue), Si3 (green) and Si4 (purple). Histograms are made without data selection andnormalizedbythetotalnumberoftraces.

Page 8: Conformations of Cyclopentasilane Stereoisomers Control

8

FigureS2.2DconductancehistogramsofSi3andSi4.2Dhistogramsarecreatedbyoverlayingallconductancetracesafteraligningthemtozero-displacementatthepointwhentheconductancecrosses0.5G0.

IV.ComputationalDetails

1.ConformationalStudyandNomenclature

Asdescribedinthemanuscript,wefind86conformersoftrans-Si5and84conformersofcis-Si5.Thoughtheenergybarriersbetweentheconformersmaybesmallinmanycases,5wethinkthe largenumberofconformers isa testament to thevaststructuralvariationandflexibilityofcyclicsilanes.

TheinitialstructureforeachconformerwascreatedwithAvogadro6andpartiallyrelaxedwith theMMFF94 force field7-11 to create a realistic starting-guess for theDFToptimization.Followingtheoptimization,weassessedthestructurestoseewhethertheystill correspond to the conformer of the provisional structure.We have systematicallydeterminedwhether a conformer is a twist (C2) or an envelope (Cs),however, theCH2-SMelinkersandTMSsubstituentsarebulkyandcausestericdistortiononthering.Theconformers we find therefore diverge, in some cases considerably, from the idealizedconformations ofCs andC2 symmetry. Generally, we consider a structure an envelopeconformerifoneoftheSi—Si—Si—Sidihedrals issmallerthan5°,thusformingafour-atomplane.Withthisdefinition,anyconformationthatisnotanenvelopeisdefinedasatwist,giventherewillalwaysbethreeatomsinplane.

Wehaveadaptedthenomenclaturethatwaspreviouslyusedintheliterature,5butthe twistconformationhasalsobeenreferred toas twist-envelope12andhalf-chair.12Tothe best of our knowledge, there is no convention for systematically naming theconformers of di-substituted five-membered rings.As an example, the name 1-twist-a1

Page 9: Conformations of Cyclopentasilane Stereoisomers Control

9

startswiththelabeloftheringconformation“1-twist”,followedbyaletter“a”indicatingthe side of the substituents relative to the ring and a serial number “1” for the linkerorientation.Therearefourdifferentlettersthatcanappearafter“twist”or“envelope”inthename: forenvelopeconformersb represents ‘back-side’and f represents ‘front-side’(ofthe“envelope”);fortwistconformerserepresents‘equatorial’andarepresents‘axial’.Thenameendswithaserialnumber:1-4representconformerswithbothsulfurspointingawayfromthering,numbers5-8representonesulfurpointingtowardstheringandonepointingaway,andnumber9representsbothsulfurspointintothering.

2.VacuumBoltzmannPopulations

The energies and Boltzmann populations at 300K are listed in Table S1 and S2. Theenergies are theuncorrected0Kenergies. All structures listed inTable S1 andS2 areincludedas3D-rotableweb-enhancedobjectsinxyzfileformat.

TableS1.Boltzmanndistributionofcis-Si5invacuum.Energyisrelativetothemoststableconformer(1—twist—e7).

Conformer E(eV) Degeneracy P(300K)1-twist-a1 0.05 2 2.1%1-twist-a2 0.07 2 0.9%1-twist-a3 0.08 2 0.7%1-twist-a4 0.06 2 1.1%1-twist-a5 0.04 2 2.6%1-twist-a6 0.04 2 2.5%1-twist-a7 0.07 2 0.8%1-twist-a8 0.05 2 1.7% 1-twist-e1 0.04 2 3.3%1-twist-e2 0.00 2 11.2%1-twist-e3 0.05 2 2.0%1-twist-e4 0.03 2 3.7%1-twist-e5 0.13 2 0.1%1-twist-e6 0.11 2 0.2%1-twist-e7 0.00 2 13.3%1-twist-e8 0.03 2 4.3%1-twist-e9 0.12 2 0.1% 1-envelope-b1 0.08 2 0.7%1-envelope-b2 0.10 2 0.3%1-envelope-b3 0.08 2 0.5%1-envelope-b4 0.11 2 0.2%

Page 10: Conformations of Cyclopentasilane Stereoisomers Control

10

1-envelope-b5 0.04 2 2.8%1-envelope-b6 0.04 2 2.9%1-envelope-b7 0.10 2 0.3%1-envelope-b8 0.12 2 0.2%1-envelope-b9 0.20 2 0.0% 1-envelope-f1 0.10 2 0.3%1-envelope-f2 0.12 2 0.1%1-envelope-f3 0.08 2 0.7%1-envelope-f4 0.09 2 0.3%1-envelope-f5 0.21 2 0.0%1-envelope-f6 0.21 2 0.0%1-envelope-f9 0.26 2 0.0% 4-envelope-b1 0.07 2 0.8%4-envelope-b2 0.06 2 1.2%4-envelope-b3 0.06 2 1.5%4-envelope-b4 0.05 2 2.1%4-envelope-b5 0.18 2 0.0%4-envelope-b6 0.16 2 0.0%4-envelope-b7 0.05 2 2.1%4-envelope-b8 0.05 2 1.6%4-envelope-b9 0.14 2 0.1% 4-envelope-f1 0.04 2 2.7%4-envelope-f2 0.15 2 0.0%4-envelope-f3 0.07 2 0.9%4-envelope-f4 0.09 2 0.4%4-envelope-f5 0.03 2 4.6%4-envelope-f6 0.03 2 3.6%4-envelope-f7 0.11 2 0.2%4-envelope-f8 0.14 2 0.1%4-envelope-f9 0.15 2 0.0% 4-twist-a1 0.09 2 0.4%4-twist-a2 0.12 2 0.1%4-twist-a3 0.11 2 0.2%4-twist-a4 0.09 2 0.5%4-twist-a5 0.08 2 0.7%4-twist-a6 0.05 2 1.7%4-twist-a7 0.10 2 0.3%

Page 11: Conformations of Cyclopentasilane Stereoisomers Control

11

4-twist-a8 0.08 2 0.6% 4-twist-e1 0.10 2 0.2%4-twist-e3 0.08 2 0.5%4-twist-e4 0.09 2 0.5%4-twist-e5 0.20 2 0.0%4-twist-e8 0.19 2 0.0% 2-envelope-f1 0.08 2 0.6%2-envelope-f2 0.11 1 0.1%2-envelope-f3 0.10 1 0.1%2-envelope-f4 0.09 2 0.5%2-envelope-f5 0.06 2 1.5%2-envelope-f6 0.21 1 0.0% 2-envelope-b1 0.06 2 1.5%2-envelope-b2 0.11 1 0.1%2-envelope-b3 0.06 1 0.8%2-envelope-b4 0.18 2 0.0%2-envelope-b5 0.16 2 0.0%2-envelope-b6 0.27 1 0.0% 2-twist-1 0.07 2 0.8%2-twist-2 0.06 2 1.3%2-twist-3 0.09 2 0.5%2-twist-4 0.08 2 0.7%2-twist-6 0.03 2 3.8%2-twist-7 0.14 2 0.1%2-twist-8 0.16 2 0.0%2-twist-9 0.14 2 0.1%

TableS2.Boltzmanndistributionofthetrans-Si5invacuum.Energyisrelativetothemoststableconformer(1—envelope—b3).

Conformer E(eV) Degeneracy P(300K)1-envelope-b1 0.08 2 1.0%1-envelope-b2 0.08 2 0.8%1-envelope-b3 0.00 2 20.9%1-envelope-b4 0.02 2 9.3%1-envelope-b5 0.09 2 0.7%

Page 12: Conformations of Cyclopentasilane Stereoisomers Control

12

1-envelope-b6 0.03 2 6.3%1-envelope-b7 0.12 2 0.2%1-envelope-b8 0.08 2 0.9% 1-envelope-f1 0.05 2 3.0%1-envelope-f2 0.06 2 1.9%1-envelope-f3 0.06 2 2.3%1-envelope-f4 0.05 2 2.5%1-envelope-f5 0.13 2 0.1%1-envelope-f6 0.17 2 0.0%1-envelope-f7 0.13 2 0.2%1-envelope-f8 0.08 2 0.9%1-envelope-f9 0.16 2 0.0% 1-twist-a1 0.10 2 0.4%1-twist-a2 0.13 2 0.1%1-twist-a3 0.08 2 1.0%1-twist-a4 0.10 2 0.5%1-twist-a5 0.12 2 0.2%1-twist-a6 0.08 2 0.9%1-twist-a7 0.13 2 0.1%1-twist-a8 0.10 2 0.4% 1-twist-e1 0.06 2 2.1%1-twist-e2 0.05 2 3.6%1-twist-e3 0.08 2 1.1%1-twist-e4 0.05 2 3.0%1-twist-e5 0.14 2 0.1%1-twist-e6 0.17 2 0.0%1-twist-e7 0.11 2 0.3%1-twist-e8 0.07 2 1.5%1-twist-e9 0.19 2 0.0% 2-envelope-1 0.05 2 3.2%2-envelope-2 0.12 2 0.2%2-envelope-3 0.06 2 2.0%2-envelope-4 0.14 2 0.1%2-envelope-5 0.10 2 0.4%2-envelope-6 0.19 2 0.0%2-envelope-7 0.11 2 0.3%2-envelope-8 0.19 2 0.0%2-envelope-9 0.11 2 0.3%

Page 13: Conformations of Cyclopentasilane Stereoisomers Control

13

2-twist-u1 0.09 2 0.8%2-twist-u2 0.09 2 0.6%2-twist-u3 0.09 2 0.6%2-twist-u4 0.16 2 0.0%2-twist-u5 0.15 2 0.1%2-twist-u6 0.22 2 0.0% 2-twist-d1 0.14 2 0.1%2-twist-d2 0.13 2 0.1%2-twist-d3 0.16 2 0.0%2-twist-d4 0.12 2 0.2%2-twist-d5 0.12 2 0.2%2-twist-d6 0.06 2 2.0% 4-envelope-b1 0.11 2 0.3%4-envelope-b2 0.12 2 0.2%4-envelope-b3 0.12 2 0.2%4-envelope-b4 0.12 2 0.2%4-envelope-b5 0.15 2 0.1%4-envelope-b6 0.15 2 0.1%4-envelope-b7 0.20 2 0.0%4-envelope-b8 0.21 2 0.0%4-envelope-b9 0.25 2 0.0% 4-envelope-f1 0.12 2 0.2%4-envelope-f2 0.11 2 0.4%4-envelope-f3 0.09 2 0.6%4-envelope-f4 0.11 2 0.4%4-envelope-f5 0.09 2 0.6%4-envelope-f6 0.09 2 0.6%4-envelope-f7 0.09 2 0.6%4-envelope-f8 0.07 2 1.4%4-envelope-f9 0.04 2 4.1% 4-twist-e1 0.04 2 4.3%4-twist-e2 0.08 2 1.1%4-twist-e3 0.06 2 1.9%4-twist-e4 0.07 2 1.4%4-twist-e5 0.17 2 0.0%4-twist-e6 0.13 2 0.1%4-twist-e8 0.10 2 0.5%

Page 14: Conformations of Cyclopentasilane Stereoisomers Control

14

Asthemoleculeisstericallycongested,thelackofpropertreatmentofdispersion

interactionwiththePBEfunctionalmayinfluencetheresults.Totestthis,theVander

WaalscorrectiontothevacuumenergysuggestedbyTkatchenkoandScheffler13(TS09)is

applied.Thevacuumenergiesofthe20highestpopulationconformersofeachisomerare

includedintableS3andS4.Ingeneral,therelativeenergiesareswitchedsystematically.

Theenergydifferencesbetweentheconformersbecomelarger,andasaresultthe

Boltzmannpopulationchanges.However,asthechangeisfairlysystematicitonlyhas

minoreffect0nouranalysisofthetransmissionresults.InFigureS3,theTS09dispersion

correctedenergiesandvacuumpopulationsareplotted.Comparedtoitsequivalentfigure

inthefigure5ainthemanuscript,thepeakshapeinpanelachangesbutisqualitatively

verysimilar,whilepanelbisalmostunaffectedbythecorrection.Thereforeweproceed

withthenon-correctedenergiesinmanuscript,notingthatalthoughourresultsare

subjecttothemethod,theconclusionsremainunaffected.

TableS3.Boltzmanndistributionofthe20highestpopulatedconformersofcis-Si5in

vacuum.UncorrectedenergiesaretheenergiesfromtableS1(PBEwithnocorrection).

CorrectedenergiesarecalculatedwithPBEandtheTS09correctionscheme.Energyis

relativetothemoststableconformer(1—twist—e7).

4-twist-a1 0.11 2 0.4%4-twist-a2 0.13 2 0.2%4-twist-a3 0.07 2 1.5%4-twist-a4 0.09 2 0.8%4-twist-a7 0.18 2 0.0%4-twist-a8 0.13 2 0.1%

Conformer Euncorrected(eV) Ecorrected(eV) P(300K)

1-twist-e7 0.00 0.00 20.3%1-twist-e2 0.00 0.02 11.0%1-twist-e8 0.03 0.03 6.3%4-envelope-f6 0.03 0.04 4.6%4-envelope-f5 0.03 0.04 4.6%2-twist-6 0.03 0.04 4.5%1-twist-e4 0.03 0.04 3.6%1-envelope-b6 0.04 0.04 3.6%

Page 15: Conformations of Cyclopentasilane Stereoisomers Control

15

TableS4.Boltzmanndistributionofthe20highestpopulatedconformersoftrans-Si5in

vacuum.UncorrectedenergiesaretheenergiesfromtableS2(PBEwithnocorrection).

CorrectedenergiesarecalculatedwithPBEandtheTS09correctionscheme.Energyis

relativetothemoststableconformer(1—envelope—b3).

1-twist-a8 0.05 0.05 3.2%4-envelope-b7 0.05 0.05 3.1%1-twist-a7 0.07 0.05 2.8%1-twist-a6 0.04 0.05 2.7%1-twist-e1 0.04 0.05 2.7%4-envelope-b8 0.05 0.06 2.1%1-twist-a1 0.05 0.06 2.1%1-envelope-b5 0.05 0.06 2.1%1-twist-a5 0.04 0.06 1.9%4-twist-a6 0.05 0.06 1.7%1-twist-e3 0.05 0.07 1.2%4-envelope-b4 0.05 0.07 1.1%

Conformer Euncorrected(eV) Ecorrected(eV) P(300K)

1-envelope-b3 0.00 0.00 32.1%1-envelope-b4 0.02 0.02 12.3%4-envelope-f9 0.04 0.04 6.0%1-envelope-b6 0.03 0.04 5.7%4-twist-e1 0.04 0.06 3.0%2-envelope-1 0.05 0.06 2.7%2-twist-d6 0.06 0.07 2.6%1-envelope-f1 0.05 0.07 2.4%1-envelope-f4 0.05 0.07 2.1%1-twist-e2 0.05 0.07 2.1%1-envelope-b8 0.08 0.07 1.9%1-twist-e1 0.06 0.07 1.9%4-twist-a3 0.07 0.07 1.9%4-twist-e3 0.06 0.07 1.8%2-envelope-3 0.06 0.08 1.7%1-envelope-f3 0.06 0.08 1.5%1-twist-e8 0.08 0.08 1.4%1-twist-e4 0.05 0.08 1.4%1-twist-a3 0.08 0.09 1.2%1-envelope-f2 0.06 0.09 1.0%

Page 16: Conformations of Cyclopentasilane Stereoisomers Control

16

FigureS3.Equivalenttofigure5inthemanuscriptbutthedispersioncorrectedenergies(and populations) for all conformers are used. Caption of Figure 5 follows here:LogarithmicallybinnedhistogramoftransmissionatFermienergyofthe91trans-Si5and74 cis-Si5 conformers. The horizontal stack lines in the bars indicate the vacuumpopulation of each conformer. The histogram is normalized to sum up to 100%. (b)Transmission at Fermi energy plotted against the Au—Au junction distance for eachtrans-Si5 and cis-Si5 conformer bridged between four-atom Au pyramids. For easiervisualization, the size of each dot has been scaled by 1/(1+E), where E is the relativevacuumenergyofeachconformerinunitsofkTat300K,seetableS1andS2inSI.Black+are the calculated transmissions for the two configurations of the linear Si3 with bothterminal Au—S—CH2—Si dihedrals in ortho conformations. Black circles and lineshighlight the difference between the two isomers. (c) S—S (upper panel) and C—Cjunction distance (lower panel) plotted against the Au—Au junction distance for eachtrans-Si5andcis-Si5conformer.Sreferstosulfur;CreferstotheCH2-groupthatbridgesthesiliconringandthemethylsulfidegroup.Allthreeplotssharethesamecolorscheme:orangeforcis-Si5andbluefortrans-Si5.

3.Creatingjunctionstructures

To capture the large structural variation for non-rigid saturated molecules whencalculating the transmission,we created a full set of junctions based on the optimizedvacuum structures. We built junctions based on idealized contact geometries andoptimizedthejunctionbeforecalculatingthetransmission.

Page 17: Conformations of Cyclopentasilane Stereoisomers Control

17

Below we describe the automated procedure for generating a large number ofjunctionsinasystematicwayfromasetofvacuumconformers.

1. The optimized vacuum structure is loaded into the Atomic SimulationEnvironment.

2. For each sulfur, an Au atom is placed in the transoid (±170°) or ortho (±90°)dihedralposition,withaC—S—Auangleof 110°andaS—Audistanceof2.525Å(transoid)or2.55Å(ortho)asshowninFigureS4.WiththeAuatomintransoidposition,theterminalmethylgroupsarerotatedtotheoppositeorthoposition.

3. Three Au atoms are placed ‘below’ the Au tipatoms, along the Au—Au axis (defined as the z-axis), and furthermore a4×4×4Au(111) fcc slab isplaced under one of the pyramids as shown inFigureS5.

4. Themolecule is rotated around the Au—Au axistothepositionwheretheterminalmethylgroupsare furthest away from the nearest two Au atoms at the bottom of the Aupyramids,therebygivingtheinitialstructuretheleaststerictensionatthecontact.

5. A series of tests are run todetermine if the initial junction structure is feasible.Most notably the Au—Au distance must be at least 8 Å, and no atom in themoleculeiswithin1.8ÅdistancetotheAuatoms.

6. Allpossiblecombinationsofconformers(170)andjunctioncontactgeometries(16per conformer) are created. Among the 2720 possible initial junctions, the onesthatpassthetestarecreatedandrelaxedwithperiodicboundaryconditionsinallthree dimensions, the bottom of the Au slab is thus effectively the top of thejunction.AllAu-atomsarekeptfixedduringtheoptimization.

FigureS4:SchematicofthemoleculeandtheinitialpositionsofthetipAu-atoms.

Figure S5: Example of aninitial junction structurewithunitcell.

Page 18: Conformations of Cyclopentasilane Stereoisomers Control

18

7. Following the relaxation, the final structure is tested to make sure that themoleculehasnot left theAucontact (weusea thresholdof2.8Å for theAu—Sdistance).Ifthemolecularconformationhaschangedintoanotheroneduringtheprocess,thefinalstructureisalsodiscarded.

This procedure leaves us 490 optimized junctions. All structures are included as 3D-rotableweb-enhancedobjectsinxyzfileformat.

211ofthecisisomer

• 74withbothAuatomsinorthocon5uration.• 98withoneAuinorthoandoneinanticonfiguration.• 39withbothAuatomsinanticonfiguration.

279ofthetransisomer

• 91withbothAuatomsinorthoconfiguration.• 140withoneAuinorthoandoneinanticonfiguration.• 48withbothAuatomsinanticonfiguration.

Wecalculatethetransmissionforallthesejunctionsasdescribedinthemanuscript.We note that for the transmission calculation, we place Au slabs on both sides of thejunctionandonlyuseperiodicboundaryconditionsinthexandydirections.

4.Comparisonoflinearandcyclicsystems:junctiongeometriesandtransmission

Cyclicsystemsarestructurallyverydifferentfromlinearsystems.Incyclicsystemscertaindihedralanglesareinherentlyconstrainedtoalimitedrange,whichgivesrisetoalargenumberofconformerswithrathersimilarspatialstructure.Linearsystemsalsohavelargeconformational freedom, but the all-anti/all-transoid conformations dominate at roomtemperature.14, 15 From a structural point of view these conformers are excellent forformingjunctions.Theterminalmethylgroupsarepositionedsuchthatthesulfuratomsare generally quite unprotected as shown inFigure S6B and S6C,where junctions oflinearSi3andSi4areshownwiththeAuatomsinorthoandanticonfigurations.Whenboth the terminal dihedrals are in the ortho configuration, the junction is around 2 Åshorterthantheanticonfiguration,ingoodagreementwithpreviousexperiments.16Wenote that for the linear structures, we have constrained the backbone to the all-anticonfiguration; their transmissions are plotted in Figure S7. The unconstrained all-transoid structures are very similar with almost identical Au—Au length andtransmission.

Page 19: Conformations of Cyclopentasilane Stereoisomers Control

19

Why focus the analysis on junctionswith the terminal Si—CH2—S—Au dihedrals in theortho configuration, when the anti configuration is predominantly observed for linearsystems?

In themanuscript the analysis of the computational results is focused solely onjunctionswithcontactgeometryinorthoconfiguration.Aswillbediscussedinthepart6ofthissection,weseetheclearesttransmissiondifferencebetweencis-Si5andtrans-Si5for thedatawith theortho/orthocontactgeometry,howeverweemphasize that this isnotthereasonbehindourchoice.

Thebackbonedihedralsofcyclicsystemsareconstrainedandasaresultanall-antipathcanneverbeachieved fora stableconformation. Inmanyof thehighlypopulatedconformers,e.g.cis—1—twist—e2showninFigureS9C,oneorbothSi—SiMe2—Si—CH2backbone dihedrals are in ortho or gauche configurations. The cyclic systems that areclosest to the all-anti configuration have backbone dihedrals constrained around 140°.Cis—1—twist—e3, inFigure S6A, is an examplewith Si—SiMe2—Si—CH2 dihedrals of141°and125°.ThismakestheS—Sdistanceofthecyclicsilanesshorterthanalinearall-antichain.However,theorthopositionsoftheterminaldihedralsalmostpointalongtheS—Saxisofthemolecule,thusmakingtheAu—Audistancealmostaslongasall-antiSi3in somecases. For cyclic systems,both terminalmethyldihedrals in anti configurationcansometimesresult inshorterS—Sdistance.Thesearedirectstructuralconsequencesof rotating dihedrals for tetrahedral bonds, and can be recognized by comparing thepositionsoftheterminalmethylgroupsandAuatomsrelativetothesulfuratomsinthestructuresinFigureS6.

Page 20: Conformations of Cyclopentasilane Stereoisomers Control

20

FigureS6.Structuresofrelaxedjunctions.A:cis—1—twist—e3,vac.pop:2.0%,methylgroupsontheringareremovedforclarity.Au—Audistance:12.8Å.B:LinearSi3withterminalSi—C—S—Audihedralsinorthoconfiguration.Au—Audistance:11.5Å.C:LinearSi3withterminalSi—C—S—Audihedralsinanticonfiguration.Au—Audistance:13.6Å.

In vacuum, the terminal methyl groups in anti position are the most stableconfiguration. The ‘initial’ junction configuration is likely with the Au atoms in orthopositionandtheterminalmethylgroups inantiposition.This isalsowhywethinktheterminal methyl group position is important for controlling junction formation asdiscussedinpart3ofthissection.

Afullassessmentofthedynamicsofcontactgeometriesandhowtheycanswitchfromone to theother isbeyond the scopeof this study.Whilewecannot ruleout thepossibility that one or both terminal dihedrals can be in anti configuration in theexperiment, we think the ortho configuration is the majority. We emphasize that bymainly focusing on the ortho configuration, we are making an assumption that mayrestrictthebroaderapplicabilityoftheseresults.

Doestheshortorthelongthrough-bondpathdominatethetransportincyclicsystems?

Page 21: Conformations of Cyclopentasilane Stereoisomers Control

21

Tosupporttheanalysisoftheexperimentaldatainthemanuscript,wehavecalculatedthetransmissionoflinearSi3andSi4.Thebackbonedihedralsarevariedsystematicallybyapplyingaconstraintintheoptimizationprocedure.Otherwisethemethodisthesameasforthecyclicsystems.InFigureS7A,ConeSi—SiMe2—Si—CH2backbonedihedralisvariedforSi3.Thetransmissionisthehighestfortheanticonfigurationanddecreaseasthedihedralanglebecomessmaller.WhentheterminaldihedralSi—C—S—Auisinthestronglycoupledantipositionthechangeinthetransmissionwiththebackbonedihedralisverysystematic.WhenthedihedralSi—C—S—Auisintheweaklycoupledorthopositionthetransmissionisgenerallylowerandthechangeislesssystematic—probablybecausethrough-spacecouplinginthemoleculebecomessignificantwhenthebackbonetransmissionislowandthejunctionsareinherentlyshorter.

Similarly,thebackboneSi—SiMe2—SiMe2—SidihedralisvariedforSi4inFigureS7B,D.ThetrendiscomparabletotheSi3,buttheall-silicondihedralseemstohavealargereffectonthetransmission.Whenthebackbonedihedralisconstrainedto60°orless,thetransmissionislowerthanthatfortheSi3.Thereforeweconcludethatthelongfour-siliconpathisnotsignificantforthetransmissioninthecyclicsystem.

Onthepossiblequantitativediscrepancybetweenexperimentandtheory

Inexperiment,stereoelectronicconductance-switchingwasreportedforaseriesoflinearsilanes,includingSi3 andSi4,withaswitchingratioaroundafactor2.16Thiswasattributedtoswitchingbetweentheelectrodesbeingintheortho(lowconductance)andanti (high conductance) configurations. However, the computational results discussedhere show a much higher switching ratio: over an order of magnitude. A similarcomputationalresultrecentlypublishedreportedthesamequantitativediscrepancyusingsimilarmethods.17The transmissionwith theelectrodes inanti configuration is slightlyhigherthanreportedinexperiment(cf.Fig.S1andS7).Thisisnotsurprisingconsideringdensity functional theory is known to overestimate the transmission in π-conjugatedmolecules, primarily due to underestimating theHOMO-LUMO gap and poor energy-level alignment between the molecule and the electrodes.18-20 However the weaklycoupledorthoconfigurationhasmuch lowertransmissionthantheexperimentalvaluesthat were assigned to this configuration. It is important to keep in mind that it isunknownexactlywhathappensduringtheswitchinginexperiment,forexampleitcouldbethatthecontactgeometryatoneendofthemoleculechanges.Still,thisdiscrepancydoes suggest that the transmission may be underestimated in the ortho-case. Suchunderestimation may be due to the effects that are not included in the theoreticalapproach,e.g.inelasticeffects.Thisdiscrepancyhowevercallsforcautionintheanalysisandremainsasatopicforfurtherinvestigation.Asaconsequence,wehavenotdirectly

Page 22: Conformations of Cyclopentasilane Stereoisomers Control

22

compared thedata fordifferent contactgeometries.The transmissiondataof junctionswithortho/ortho,anti/ortho,andanti/antigeometryareanalyzedseparately.

FigureS7.Transmissioncalculatedforlinear(A,C)Si3andlinear(B,C)Si4withterminalSi—CH2—S—Audihedrals in(A,B)orthoand(C,D)anticonfigurations.OneoftheSi—SiMe2—Si—CH2 dihedrals is varied systematically for Si3, and the Si—SiMe2—SiMe2—Sidihedral is varied systematically for Si4 by fixing the dihedral during the optimizationprocedure.TheAu—Aulengthofthejunctioniswritteninthelegend.Therelaxedjunction

Page 23: Conformations of Cyclopentasilane Stereoisomers Control

23

structures of the 24 linear molecules are included as web-enhanced objects in xyz fileformat.

5.Analysisofvacuumstructures

While the focus of our study is on the junction structures and the calculatedtransmission,webrieflyhighlightheresomeinterestingtrendsinthevacuumstructures.

As the transmission depends on the dihedrals along the molecular backbone,structuraldifferencesbetweentheconformersofcis-Si5andtrans-Si5maybethereasonwhycis-Si5hasahigherconductancethantrans-Si5.

In Figure S8 the vacuum populations of the significant dihedrals for the twopossiblepathways through the siliconbackboneofcis-Si5 and trans-Si5 areplotted inhistograms.Inthetoppanel,theSi—Si—Si—Sidihedralsofthe4-atomsiliconpathareplotted and they are essentially the same for cis-Si5 and trans-Si5. In both cases thedihedrals are always smaller than 50°, making the 4-atom path unfavorable forconductance.

Inthemiddlepanel,thesumofthetwoS—C—Si—Silinkerdihedralstowardstothe short 3-atom Si path is plotted. These dihedrals are not constrained by the ringstructure and therefore adopt typical values for the tetrahedral structureof around60°and 180°,which therefore sums toaround 120°,240°and360°.Again thedistribution isverysimilarforbothcis-Si5andtrans-Si5.

Inthebottompanel,thesumofthetwoC—Si—Si—Sidihedralsofthe3-atomSipathisplotted.ThesedihedralsareconstrainedbytheringstructureaswellastheTMSgroups and distribute over a range of different values depending on the conformation.Themainpeakofcis-Si5 isslightlyhigherthanthemainpeakof trans-Si5,howeverthisisprobablynotenough toexplain thenotabledifference in themeasuredconductance.Alsothedistributionismuchwiderforcis-Si5,makingtheresultratherunclear.Evenso,thereisanindicationthattheconformersofcis-Si5mayhavesomewhatmorefavorabledihedralsthantrans-Si5.

An interesting conclusion from the experimental 1D and 2D conductancehistogramsisthattrans-Si5appearstobelesslikelytoformstablejunctionscomparedtocis-Si5.While a number of different effects could come in play thatwe cannot readilyassess,particularlytheonesrelatingtothedynamicsofjunctionformationandevolution.However,thereisonestructuraltrendwehavefoundintriguing.Duetothestructurallycrowded nature of the molecule, we find the sulfurs mainly bind to the very under-

Page 24: Conformations of Cyclopentasilane Stereoisomers Control

24

coordinatedAuatoms.IfweassumethatthejunctionsformandevolvealongtheAu—Auaxis,themoleculeitselfshouldnotstericallyblockthesulfurs.

FigureS8:Histogramofthevacuumpopulationsofthedihedralsoftheconformers.Top:Si—Si—Si—Sidihedral,the ‘long’ linker-to-linkerpath.Middle:SumofbothS—C—Si—Silinker dihedrals. Bottom: Sumof bothC—Si—Si—Si dihedrals, the ‘short’ linker-to-linkerpath.All dihedrals are in absolutenumbers (0-180°).Note trans is plotted in transparentblueontopofcisplottedinorange.

The terminal methyl groups may often prevent effective junction formation orevolution. A simple way to assess if the positions of the terminal methyl groups arefeasibleistousethethrough-spaceS—S—MeangleasexemplifiedinFigureS9aandS9b.

Page 25: Conformations of Cyclopentasilane Stereoisomers Control

25

Figure S9:Examplesofvacuumand junctionstructures.Methylgroupsontheringhavebeenremovedforclarity.A: trans—1—envelope—b3optimizedinvacuum.OneS—S—Methrough-space angle ismarkedwith a thick black line. B: cis—1—twist—e2 optimized invacuum.OneS—S—Methrough-spaceangleismarkedwithathickblackline.C:cis—1—twist—e2optimizedinjunction.

If theS—S—Meangle iscloseto 180°, themethylgroupispointingalongtheS—SaxisandwillthusblocktheAuelectrodesfrombindingtosulfur.AnexampleofaconformerwithanunfavorableS—S—MeangleisshowninFigureS9awherethevacuumstructureoftrans—1—envelope—b3isshownwithoneofitsS—S—Meanglesof167.5°.Iftheangleissmall themethylgroupwillpointsomewhatperpendicularly fromtheelectrodesandthe conformermaybe able to effectively forma junction, as the sulfur isnot stericallyblocked.Anexamplethereofiscis—1—twist—e2showninFigureS9b.WithbothitsS—S—Me angles being small (123.1° and 126.5°) it may be a more suitable conformer foreffectivelyformingjunctions.

Page 26: Conformations of Cyclopentasilane Stereoisomers Control

26

Figure S10:Histogramof the vacuumpopulations of S—S—C (through-space) angles oftheconformers.Top:Smallestof the twoangles.Bottom:Largestof the twoangles.Notethattransisplottedintransparentblueontopofcisplottedinorange.

NowwecomparetheS—S—Meangledataforallconformersofcis-Si5andtrans-Si5as

showninthepopulationhistogramsinFigureS10.Becausetherearetwoanglesanditis

notobviouswhichoneismoreimportantforjunctionformation(ifoneangleissmalland

theotherislarge,presumablyonesulfurmaybindmoreeasilythantheother),weplot

thesmallest(toppanel)andthelargest(bottompanel)anglesseparately.Inbothcases

trans-Si5isdistributedatbiggeranglesthancis-Si5.Forthelargestangle(bottompanel),

trans-Si5hasthemajorityintherangeofparticularhighvalues(around150°andhigher),

whichmayconsiderablyhindereffectivejunctionformation.Althoughitisasimplified

assessmentofjunctionformation,itprovidesawell-reasonedstructuralargumentfor

whytheexperimentalconductancecharacteristicsarenotaswell-definedf0rtrans-Si5as

forcis-Si5.

6.Analysisofjunctionstructuresandcalculatedtransmissions

In the manuscript the transmission, junction lengths (Au—Au distance), andintramoleculardistances(S—SandC—Cdistances)areanalyzedforjunctionswithbothAu—S—CH2—Si dihedrals in ortho contact geometry (ortho/ortho).Herewe complete

Page 27: Conformations of Cyclopentasilane Stereoisomers Control

27

setofdataforjunctionswiththeanti/orthoandanti/anticontactgeometriesaswell.All490 junction structures are included as 3D-rotable web-enhanced objects in xyz fileformat. As discussed earlier in this section, we shall refrain from making directcomparisonofresultsfromjunctionswithdifferenttypesofcontactgeometries.

Ortho/Ortho

InthemanuscriptthecomputationalresultsarediscussedandrationalizedforthejunctionswithbothterminalAu—S—CH2—Sidihedralsinorthoconfiguration.InFigure5b in the manuscript a couple of important trends can be seen. Most notably cis-Si5generally has a higher transmission than trans-Si5 at any Au—Au distance. However,there is a general Au—Au distance dependence of the transmission: longer junctionssystemicallyhavelowertransmissions.Thesystematicdifferenceintransmissionbetweencis-Si5andtrans-Si5maybeduetoasystematicdifferenceinthebackbonedihedrals.

In Figure S11, we analyze the dihedrals of the 165 junctions with ortho/orthocontactgeometry.Inthetopplot,thetransmissionattheFermienergyisplottedagainstthebackbone and linkerdihedrals.There isno systematic trend indicating thatcis-Si5should have more favorable dihedrals for conductance than trans-Si5. Similar to thevacuum structures, theC—Si—Si—Si dihedrals spread across awider range for cis-Si5thantrans-Si5,andsomejunctionsforcis-Si5havemorefavorabledihedrals.However,this is aweak and somewhatunsystematic trend.As the junction length systematicallyinfluencesthetransmission,weplotthebackboneandlinkerdihedralsagainsttheAu—Audistanceofthe junctioninFigureS11bottomplot.Againthereisnoclear indicationthatcis-Si5hasmorefavorablebackbonedihedralsforjunctionsofthesamelength.

Page 28: Conformations of Cyclopentasilane Stereoisomers Control

28

Figure S11:Backbonedihedralsof 165 junctionswithortho/orthocontactgeometry.Top:TransmissionattheFermienergyplottedagainstthesumofthetwoC—Si—Si(CH2)2—Sidihedrals(top)andthesumofthetwoS—C—Si—Sidihedrals(bottom).Bottom:Sumofthe two C—Si—Si(CH2)2—Si dihedrals (top) and sum of the two S—C—Si—Si dihedrals(bottom)plottedagainsttheAu—Audistanceofthejunctions.

Page 29: Conformations of Cyclopentasilane Stereoisomers Control

29

Anti/Ortho

We then investigate the 238 junctions with the two terminal Au—S—CH2—Sidihedrals in anti and ortho configuration respectively. The results are analyzed andplottedthesamewayasfortheortho/orthoresults.FigureS12correspondstoFigure5inthemanuscript,andFigureS13correspondstoFigureS11.

In Figure S12a, we show the transmission histograms based on the vacuumpopulation of the conformers. Both trans-Si5 and cis-Si5 have peaks with very lowtransmission,whichdoesnotcorrespondtothepeaks intheexperimentalconductancehistograms.Notably,similartoFigure5ainthemanuscript,cis-Si5doeshaveanumberof junctions with transmission in the range of the high conductance peak seen inexperimentjustbelow10-3·G0.InFigureS12bthetransmissionatFermienergyisplottedagainsttheAu—Audistanceofthejunction.Hereweseeanumberofcis-Si5 junctionsthat have short Au—Au distances with high transmission. Both trans-Si5 and cis-Si5haveawiderangedistributionoftransmissions.TheintramoleculardistancesplottedinFigureS12cshowthattheS—SandC—Cdistancesarefairlysimilarfortrans-Si5andcis-Si5.Themaindifferenceisthattrans-Si5doesnotformshortjunctionswiththiscontactgeometry(withthealgorithmwehaveusedhere).

FigureS12:Transmissiondataof140trans-Si5and98cis-Si5withterminalAu—S—CH2—Sidihedralsinanti/orthocontactgeometry.(a)LogarithmicallybinnedhistogramoftransmissionatFermienergy.Thehorizontalstacklinesinthebarsindicatethevacuumpopulationofeachconformer.Thehistogramisnormalizedtosumupto100%.(b)TransmissionatFermienergyplottedagainsttheAu—Aujunctiondistanceforeachtrans-Si5andcis-Si5conformerbridgedbetweenfour-atomAupyramids.Thesizeofeachdotscaleswith1/(1+E),whereEistherelativevacuumenergyofeachconformerinunitsofkT,seetableS1andS2.Green+isthecalculatedtransmissionforlinearSi3withoneelectrodeinorthoandtheotherinanticonformation.(c)S—S(upperpanel)andC—Cjunction

Page 30: Conformations of Cyclopentasilane Stereoisomers Control

30

distance(lowerpanel)plottedagainsttheAu—Aujunctiondistanceforeachtrans-Si5andcis-Si5conformer.Sreferstosulfur;CreferstotheCH2-groupthatbridgesbetweenthesiliconringandthemethylsulfidegroup.Allthreeplotssharethesamecolorscale:orangeforcis-Si5andbluefortrans-Si5.

Thereisnocleardifferenceinthetrendsofthetransmissionsoftrans-Si5andcis-Si5 with anti/ortho contact geometry. The same is true for the dihedrals of thesejunctionsaswell,showninFigureS13.

Page 31: Conformations of Cyclopentasilane Stereoisomers Control

31

FigureS13:Backbonedihedralsof238junctionswithanti/orthocontactgeometry.Top:TransmissionattheFermienergyplottedagainstthesumofthetwoC—Si—Si(CH2)2—Sidihedrals(top)andthesumofthetwoS—C—Si—Sidihedrals(bottom).Bottom:SumofthetwoC—Si—Si(CH2)2—Sidihedrals(top)andsumofthetwoS—C—Si—Sidihedrals(bottom)plottedagainsttheAu—Audistanceofthejunctions.

Anti/Anti

Finally,weshowtheresults forthe87 junctionswithboththeterminalAu—S—CH2—Sidihedralsinanticonfiguration.InFigureS14abothtrans-Si5andcis-Si5haveahigh transmission peak (High-G) that corresponds to systemswith favorable backbonedihedrals,butalsosharehigh-populatedlowertransmissionpeaks(Low-G).WenotethatboththeHigh-GandLow-Gofcis-Si5arehigherthantheonesforthetrans-Si5.

Page 32: Conformations of Cyclopentasilane Stereoisomers Control

32

FigureS14:Transmissiondataof48trans-Si5and39cis-Si5withterminalAu—S—CH2—Si dihedrals in anti/anti contact geometry. (a) Logarithmically binned histogram oftransmissionatFermienergy.Thehorizontal stack lines in thebars indicate thevacuumpopulation of each conformer. The histogram is normalized to sum up to 100%. (b)TransmissionatFermienergyplottedagainsttheAu—Aujunctiondistanceforeachtrans-Si5 andcis-Si5 conformer bridged between four-atomAu pyramids. The size of each dotscaleswith1/(1+E),whereEistherelativevacuumenergyofeachconformerinunitsofkT,seetableS1andS2.Red+isthecalculatedtransmissionforlinearSi3withbothelectrodesinanticonformation.(c)S—S(upperpanel)andC—Cjunctiondistance(lowerpanel)plottedagainsttheAu—Aujunctiondistanceforeachtrans-Si5andcis-Si5conformer.Sreferstosulfur;CreferstotheCH2-groupthatbridgesbetweenthesiliconringandthemethylsulfidegroup.Allthreeplotssharethesamecolorscale:orangeforcis-Si5andbluefortrans-Si5.

Looking at the correlation between junction length and transmission at Fermienergy in Figure S14b, we notice that both trans-Si5 and cis-Si5 show a range oftransmissionvalueswherethelongerjunctionsgenerallyhavehighertransmissions.Thisis because the backbone dihedrals of the molecule are more important to thetransmissionwhen themolecule is in the strongly coupled anti/anti contact geometry.Thesegeometriesmaynotbe fully captured in theexperiment,becausealthough someconductancetracesofcis-Si5showhighconductanceforextended(long)junctions,noorvery few traces of trans-Si5 show an extended (long) junction with this highconductance. But as mentioned earlier, we believe the anti/anti contact geometry, incontrarytothelinearsystems,isnotveryimportantforcyclicSi5.

ThebackboneandlinkerdihedralsinFigureS15shownocleardifferencebetweentrans-Si5andcis-Si5. Itisworthnotingthatcis-Si5canformmanyshorterjunctions—thisisnotamatterofthedihedralsbutofthegeneralstructureofthemoleculeandthealgorithmweuse fordetermining if a junction structure is feasible.The long junctionswithhightransmissionareconformerswithfavorablebackboneandlinkerdihedrals.

Page 33: Conformations of Cyclopentasilane Stereoisomers Control

33

Figure S15: Backbone dihedrals of 87 junctions with anti/anti contact geometry. Top:TransmissionattheFermienergyplottedagainstthesumofthetwoC—Si—Si(CH2)2—Sidihedrals (top)and thesumof the twoS—C—Si—Sidihedrals (bottom).Bottom:Sumofthe two C—Si—Si(CH2)2—Si dihedrals (top) and sum of the two S—C—Si—Si dihedrals(bottom)plottedagainsttheAu-Audistanceofthejunctions.

Page 34: Conformations of Cyclopentasilane Stereoisomers Control

34

V.NMRspectrafortrans-Si5andcis-Si5

1HNMRoftrans-Si5

13CNMRoftrans-Si5

Page 35: Conformations of Cyclopentasilane Stereoisomers Control

35

29SiNMRoftrans-Si5

1HNMRofcis-Si5

Page 36: Conformations of Cyclopentasilane Stereoisomers Control

36

13C NMR of cis-Si5

29Si NMR of cis-Si5

Page 37: Conformations of Cyclopentasilane Stereoisomers Control

37

VI.SinglecrystalX-raydiffraction

DataforallcompoundswascollectedonanAgilentSuperNovadiffractometer

usingmirror-monochromatedCuKαorMoKαradiation.Datacollection,

integration,scaling(ABSPACK)andabsorptioncorrection(face-indexedGaussian

integration21ornumericanalyticalmethods22)wereperformedinCrysAlisPro.23

StructuresolutionwasperformedusingShelXS,24ShelXT,25orSuperFlip.26

Subsequentrefinementwasperformedbyfull-matrixleast-squaresonF2in

ShelXL.24Olex227wasusedforviewingandtoprepareCIFfiles.PLATON28was

usedextensivelyforSQUEEZE,29ADDSYM30andTwinRotMat.Manydisordered

solventmoleculesweremodeledasrigidfragmentsfromtheIdealizedMolecular

GeometryLibrary.31Thermalellipsoidsarerenderedatthe50%probabilitylevel.

Cis-Si5wasfirstdissolvedindiethyletherwithgentleheating.Thesolutionwas

thenbroughttoroomtemperatureandstoredat-30˚Covernight.Whitecrystalsof

Cis-Si5wereobtainedwhichwerethensentforX-raydiffractionandfurther

analysis.

FigureS16.Molecularstructureofcis-Si5.Hydrogenatomsareomittedforclarity.Gray:carbon;green:Silicon;Yellow:Sulfur.

Page 38: Conformations of Cyclopentasilane Stereoisomers Control

38

Empirical formula C16H46S2Si7 Formula weight 499.28 Temperature/K 293(2) Crystal system triclinic Space group P-1 a/Å 9.1609(3) b/Å 10.5066(3) c/Å 16.4935(4) α/° 74.609(2) β/° 82.416(2) γ/° 81.240(2) Volume/Å3 1505.72(8) Z 2 ρcalcg/cm3 1.101 μ/mm-1 4.277 F(000) 544.0 Crystal size/mm3 0.2 × 0.1 × 0.1 Radiation CuKα (λ = 1.54184) 2Θ range for data collection/° 8.796 to 156.304 Index ranges -9 ≤ h ≤ 11, -12 ≤ k ≤ 12, -20 ≤ l ≤ 20 Reflections collected 44944 Independent reflections 5896 [Rint = 0.1342, Rsigma = 0.0635] Data/restraints/parameters 5896/0/240 Goodness-of-fit on F2 1.331 Final R indexes [I>=2σ (I)] R1 = 0.0655, wR2 = 0.1617 Final R indexes [all data] R1 = 0.0736, wR2 = 0.1773 Largest diff. peak/hole / e Å-3 1.26/-0.83

VII.References:

1. M.G.AssadiandN.Golipour,MainGroupChemistry5(3),179-190(2006).

2. S.M.Whittaker,M.Brun,F.Cervantes-LeeandK.H.Pannell,J.Organomet.Chem.499(1),247-252(1995).

3. R.Fischer,D.Frank,W.Gaderbauer,C.Kayser,C.Mechtler,J.BaumgartnerandC.Marschner,Organometallics22(18),3723-3731(2003).

4. T.A.BlinkaandR.West,Organometallics5(1),128-133(1986).

5. V.S.Mastryukov,M.HofmannandH.F.Schaefer,J.Chem.Phys.A103(28),5581-5584(1999).

6. M.Hanwell,D.Curtis,D.Lonie,T.Vandermeersch,E.ZurekandG.Hutchison,JournalofCheminformatics4(1),17(2012).

7. T.A.Halgren,Journalofcomputationalchemistry17(5-6),490-519(1996).

Page 39: Conformations of Cyclopentasilane Stereoisomers Control

39

8. T.A.Halgren,JournalofComputationalChemistry17(5-6),520-552(1996).9. T.A.Halgren,JournalofComputationalChemistry17(5-6),553-586(1996).10. T.A.HalgrenandR.B.Nachbar,JournalofComputationalChemistry17(5-6),587-615(1996).

11. T.A.Halgren,JournalofComputationalChemistry17(5-6),616-641(1996).12. T.A.BlinkaandR.West,Organometallics5(1),133-139(1986).

13. A.TkatchenkoandM.Scheffler,Phys.Rev.Lett.102(7),073005(2009).

14. H.A.Fogarty,C.-H.OttossonandJ.Michl,JournalofMolecularStructure556(1–3),105-121(2000).

15. C.-H.OttossonandJ.Michl,J.Chem.Phys.A104(15),3367-3380(2000).

16. T.A.Su,H.Li,M.L.Steigerwald,L.VenkataramanandC.Nuckolls,Nat.Chem.7(3),215-220(2015).

17. A.PramanikandP.Sarkar,J.Chem.Phys.143(11),114314(2015).

18. I.Tamblyn,P.Darancet,S.Y.Quek,S.A.BonevandJ.B.Neaton,Phys.Rev.B:Condens.MatterMater.Phys.84(20)(2011).

19. M.StrangeandK.S.Thygesen,BeilsteinJournalofNanotechnology2,746-754(2011).

20. C.Jin,M.Strange,T.Markussen,G.C.SolomonandK.S.Thygesen,JChemPhys139(18),184307(2013).

21. E.Blanc,D.SchwarzenbachandH.D.Flack,JournalofAppliedCrystallography24(6),1035-1041(1991).

22. R.C.ClarkandJ.S.Reid,ActaCrystallographicaSectionA51(6),887-897(1995).

23. O.D.CrysAlisPRO,Yarnton,EnglandSearchPubMed(2011).

24. G.Sheldrick,ActaCrystallographicaSectionA64(1),112-122(2008).

25. G.Sheldrick,ActaCrystallographicaSectionC71(1),3-8(2015).

26. L.PalatinusandG.Chapuis,JournalofAppliedCrystallography40(4),786-790(2007).

27. O.V.Dolomanov,L.J.Bourhis,R.J.Gildea,J.A.K.HowardandH.Puschmann,JournalofAppliedCrystallography42(2),339-341(2009).

28. A.Spek,ActaCrystallographicaSectionD65(2),148-155(2009).

29. P.vanderSluisandA.L.Spek,ActaCrystallographicaSectionA46(3),194-201(1990).

30. Y.Le,JournalofAppliedCrystallography21(6),983-984(1988).

Page 40: Conformations of Cyclopentasilane Stereoisomers Control

40

31. I.Guzei,JournalofAppliedCrystallography47(2),806-809(2014).