conference board of the mathematical sciences · kahler manifolds 26 (a) kahler geometry 26 (b)...

18

Upload: others

Post on 19-Aug-2020

14 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Conference Board of the Mathematical Sciences · Kahler manifolds 26 (a) Kahler geometry 26 (b) Calabi's problem and Kahler-Einstein metrics 27 (c) Another variational problem 31
Page 2: Conference Board of the Mathematical Sciences · Kahler manifolds 26 (a) Kahler geometry 26 (b) Calabi's problem and Kahler-Einstein metrics 27 (c) Another variational problem 31

Conference Board of the Mathematical Sciences REGIONAL CONFERENCE SERIES IN MA THEM A TICS

supported by the National Science Foundation

Number 57

PRESCRIBING THE CURVATURE OF A RIEMANNIAN MANIFOLD

by Jerry L. Kazdan

Published for the Conference Board of the Mathematical Sciences

by the American Mathematical Society

Providence, Rhode Island

http://dx.doi.org/10.1090/cbms/057

Page 3: Conference Board of the Mathematical Sciences · Kahler manifolds 26 (a) Kahler geometry 26 (b) Calabi's problem and Kahler-Einstein metrics 27 (c) Another variational problem 31

Expository Lecture s

from th e CBMS Regional Conferenc e

held a t th e Polytechni c Institut e o f Ne w York

January 6-10 , 198 4

Research supporte d i n par t b y Nationa l Scienc e Foundatio n Gran t MC S 82-01140.

1980 Mathematics Subject Classifications. Primar y 35Jxx , 53Cxx .

Library o f Congres s Cataloging in Publication Dat a

Kazdan, Jerry L. , 1937 -

Prescribing th e curvatur e o f a Riemannian manifold .

(Regional conferenc e serie s in mathematics; no. 57 )

"Expository lecture s fro m th e CBM S regional conferenc e hel d a t th e Polytechni c

Institute o f Ne w York, January 6-10 , 1984" —

Bibliography: p .

1. Riemannia n manifolds . 2 . Curvature. I . Conference Boar d of th e Mathematica l

Sciences. II . Title. III . Series.

QA1.R33 no . 57 [QA649 ] 510 s [516.3'62 ] 84-2827 4

ISBN 0-8218-0707-2 (alk . paper )

Copying an d reprinting . Individua l reader s of this publication , an d nonprofit librarie s actin g for them , are permitted t o make fai r us e of the material , suc h as to copy an article for use in teaching or research. Permissio n is granted to quote brief passages from thi s publication in reviews, provided the customary acknowledgemen t o f the source is given.

Republication, systemati c copying , or multiple production o f any materia l i n this publication (in-cluding abstracts ) i s permitted onl y unde r licens e from th e American Mathematica l Society . Request s for suc h permissio n shoul d b e addressed t o the Executive Director , America n Mathematica l Society , P.O. Box 6248, Providence, Rhode Island 02940.

The owner consents to copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provide d tha t a fee of $1.00 plus $.25 per page fo r each cop y b e paid directl y t o the Copyright Clearance Center , Inc. , 21 Congress Street , Salem , Massachusett s 01970 . Whe n payin g thi s fee please use the code 0160-7642/85 to refer t o this publication . Thi s consen t doe s not extend t o other kind s of copying, suc h a s copying fo r general distribution , fo r advertising o r promotion purposes , fo r creatin g new collective works, or for resale.

Copyright © 1985 by the American Mathematical Society Reprinted with corrections 1987

Printed in the United States of America All rights reserved except those granted to the United States Government

The paper used in this book is acid-free and faUs within the guidelines established to ensure permanence and durability. @

Page 4: Conference Board of the Mathematical Sciences · Kahler manifolds 26 (a) Kahler geometry 26 (b) Calabi's problem and Kahler-Einstein metrics 27 (c) Another variational problem 31

Contents

Preface v

Notation vi i

I. Gaussia n Curvature 1

1. Surfaces i n R3 1 2. Prescribing the curvature form o n a surface 3 3. Prescribin g the Gaussian curvature on a surface 3

(a) Compact surface s 4 (b) Noncompact surface s 6

II. Scala r Curvature 9 1. Topological obstructions . . 9 2. Pointwise conformal deformation s an d th e Yamabe problem 1 1

(a) Mn compac t 1 2 (b) M" noncompac t 1 5

3. Prescribing scalar curvature 1 6 4. Cauchy-Riemann manifold s 1 7

III.Ricci Curvature . 1 9 1. Loca l solvability of Ric(g ) = R ij 2 0 2. Loca l smoothnes s of metrics 2 1 3. Global topologica l obstructions 2 1 4. Uniqueness , nonexistence 2 3 5. Einstein metrics on 3-manifolds 2 3 6. Kahler manifolds 2 6

(a) Kahler geometry 2 6 (b) Calabi's problem and Kahler-Einstei n metric s 2 7 (c) Another variationa l problem 3 1

IV. Boundary Value Problems 3 3 1. Surfaces with constant mean curvature and Rellich' s problem 3 3 2. Some other boundary value problems 3 6

(a) Graphs with prescribed mean curvature 3 6 (b) Graphs with prescribed Gauss curvature 3 8

3. The C 2 + a estimat e at the boundary 3 9

Some Open Problems 4 7

References 5 1

iii

Page 5: Conference Board of the Mathematical Sciences · Kahler manifolds 26 (a) Kahler geometry 26 (b) Calabi's problem and Kahler-Einstein metrics 27 (c) Another variational problem 31

This page intentionally left blank

Page 6: Conference Board of the Mathematical Sciences · Kahler manifolds 26 (a) Kahler geometry 26 (b) Calabi's problem and Kahler-Einstein metrics 27 (c) Another variational problem 31

Preface

These notes were the basis fo r a series of te n lectures given from Januar y 6-10 , 1984 a t Polytechni c Institut e o f Ne w Yor k unde r th e sponsorshi p o f th e Con -ference Boar d o f th e Mathematica l Science s an d th e Nationa l Scienc e Founda -tion. Th e lecture s wer e aime d a t mathematician s wh o knew eithe r som e differen -tial geometr y o r partia l differentia l equations , althoug h other s coul d hopefull y understand th e lectures.

Ostensibly, th e primar y proble m addresse d her e i s t o understan d th e variou s curvatures o n a Riemannia n manifold . Often thi s questio n ca n b e reduce d t o solving som e nonlinear partia l differentia l equations . But fro m th e viewpoin t o f a geometer, thes e question s ar e onl y portal s t o see k a deepe r understandin g o f Riemannian manifolds . On th e other hand , a n analys t may find th e geometry dul l and stil l be delighted with the nonlinear partia l differentia l equation s one is led t o understand. Th e questions are rich enough to serve as motivation fo r man y varie d tastes.

One goa l o f thes e lectures was to state what i s currently known an d no t know n about a variety of problems tha t involv e the curvature of a Riemannian manifold . My ow n inclinatio n wa s especially t o emphasize areas of curren t ignorance . Wit h this i n mind , a t th e end o f thes e notes I have collected a partial lis t o f som e ope n questions tha t ar e drawn fro m th e main body of the lectures.

Generally, I trie d t o giv e th e essentia l idea s behin d variou s proofs , an d hav e given references bu t certainly not detailed arguments . The only places where ther e are detaile d discussion s ar e wher e th e materia l i s eithe r difficul t t o extrac t fro m the literature , or where it has not bee n written down . This is especially true of th e last sectio n o f thes e notes, where I give Caffarelli's simplificatio n o f a n importan t recent estimat e o f Krylo v concernin g th e boundary regularit y fo r som e nonlinea r elliptic equations . While thi s material i s a bi t technical , i t appear s nowher e in th e literature an d ma y hel p spee d progres s i n resolvin g variou s boundar y valu e problems tha t aris e in geometry .

There i s a considerabl e overla p betwee n thes e note s an d a serie s o f lecture s I gave i n Japa n i n Jul y 1983 . Bu t thes e note s hav e a muc h greate r emphasi s o n geometric issues , whil e th e note s [K4 ] fro m th e lecture s i n Japa n gav e a mor e detailed an d elementar y expositio n o f th e idea s fro m partia l differentia l equa -tions. Becaus e of thos e earlier notes—which wer e distributed a t th e NSF/CBM S

v

Page 7: Conference Board of the Mathematical Sciences · Kahler manifolds 26 (a) Kahler geometry 26 (b) Calabi's problem and Kahler-Einstein metrics 27 (c) Another variational problem 31

VI PREFACE

lectures—I wa s less inhibited abou t using ideas from differentia l equations . The books [Au4, GT], and the appendix to [Be2] may help fill this gap.

I wil l be pleased if these lectures make the problems and ideas discussed more accessible to nonexperts.

It is a pleasure to thank Craig Evans and Neil Trudinger for generously sharing their idea s on th e boundary regularit y in th e last section , and t o Lui s Caffarell i for the use of his contributions in that same section. I also benefited fro m Denni s DeTurck's many suggestions for improvements.

Many people helped make this conference enjoyable and rewarding to me. The main organizationa l detail s wer e superbl y execute d b y Edwar d Miller , Rober t Sibner, and especially Lesley Sibner. I am grateful to them.

Finally, I would like to thank Frank Warner for getting me interested in these problems fifteen year s ago.

Page 8: Conference Board of the Mathematical Sciences · Kahler manifolds 26 (a) Kahler geometry 26 (b) Calabi's problem and Kahler-Einstein metrics 27 (c) Another variational problem 31

Notation

All manifolds ar e assumed to be smooth and connected. The notation we use is generally standard . C k+a, 0 < a < 1, is the space of function whos e /cth deriva-tives satisfy a Holder condition with exponent a, C" is the space of rea l analytic functions, an d th e Sobole v spac e HQ(SI) i s the completio n o f smoot h function s with compac t suppor t i n fl i n th e nor m (/a|Vw| 2)1/2. Ou r Laplacian , A , o n real-valued function s ha s the sign so that Aw = +u" o n R 1. The Ricci curvature of th e standard uni t spher e S" with metric g in R n+1 i s (n - l)g , an d it s scalar curvature i s n(n — 1) . If a is a one-form o n a Riemannian manifold , the n a* i s the dua l vecto r field . I n classica l tenso r notatio n w e use a semicolon t o denot e covariant differentiation. u„ is the volume of the unit sphere S" in R" +1.

vu

Page 9: Conference Board of the Mathematical Sciences · Kahler manifolds 26 (a) Kahler geometry 26 (b) Calabi's problem and Kahler-Einstein metrics 27 (c) Another variational problem 31

This page intentionally left blank

Page 10: Conference Board of the Mathematical Sciences · Kahler manifolds 26 (a) Kahler geometry 26 (b) Calabi's problem and Kahler-Einstein metrics 27 (c) Another variational problem 31

48 SOMH OI'l. N PROBLEM S

curvature - i . Whic h function s K(x) ar e Gaussian (o r scalar ) curvature function s of complet e pointvvis e conformal metrics ? This involves solving

A// = - 1 - A'(.v)* 2" o n H\

zAL'L_ZilA„ + S o u - S ( x ) u ( " ' 2)/{" 2) o n H\ n : > 3,

where S {) = ~n(n - 1 ) i s th e scala r curvatur e o f //" . Ne w phenomen a ar e expected sinc e o n H" on e ca n uniquel y solv e th e Dirichle t proble m fo r A w = 0 with continuou s boundar y values , wherea s o n R " th e onl y bounde d harmoni c functions ar e constants. Blan d an d Kalk a [BK] have some results . See also [AvM].

One shoul d als o conside r related boundar y valu e problem s o n compac t mani -folds wit h boundary . Cherrie r [Ch] has some results.

5. Recentl y ther e have been some result s (by Oliker , and Treiberg s and Wei ) on graphs ove r S 2 wit h prescribe d Gaussia n o r mea n curvature . Th e nex t simples t case ma y b e graph s ove r th e torus . T 1 *- > R\ bu t ther e ar e man y ope n question s here.

6. Harmoni c spinor s an d th e Dira c operato r hav e bee n importan t i n findin g topological obstruction s t o compac t (o r complete ) manifold s havin g metric s wit h positive scala r curvatur e (se e [GL1-GL3]) . I s ther e som e wa y t o us e harmoni c spinors t o construct metric s wit h positiv e scala r curvature ? Ther e i s a simila r question concernin g harmonic 1-form s and positiv e Ricc i curvature .

7. Doe s ever y noncompac t manifol d hav e a complet e metri c wit h constan t negative scala r curvature? This is known t o be true fo r compact manifolds .

8. Solv e th e analogu e o f th e Yamab e proble m fo r complet e noncompac t manifolds, a s well as some version on compact manifold s wit h boundary .

9. Doe s ever y compac t M'\ n ^ 3 , admi t a metri c wit h negativ e Ricc i curva -ture? Ga o an d Ya u hav e announce d tha t ther e i s alway s a negativ e Ricc i curvature metri c o n an y compac t M 3. Wha t abou t th e analogou s questio n fo r n > 4 and fo r complet e metrics on noncompac t A/" ?

10. The only know n obstruction s t o Einstei n metric s on compac t manifold s M n

are whe n n < 4 . Ar e ther e an y i n highe r dimensions ? On e expect s th e answe r i s "yes".

11. Whic h symmetri c tensor s R l} ar e locall y th e Ricc i tenso r o f a metric ? DeTurck [D2 ] prove d tha t R lf i s locall y a Ricc i tenso r i f R lf i s invertible , bu t found som e obstruction s i f R {/ i s no t invertible . Th e natura l gues s i s tha t R t/ i s locally a Ricc i tenso r i f ther e i s some metri c g so tha t th e second Bianch i identit y is satisfied locally . This is unresolved eve n i n the real analytic case.

12. I f a compac t M" ha s a metri c wit h positiv e Ricc i curvature , ca n i t b e deformed t o an Einstei n metri c with positiv e Ricci curvature? Hamilton' s theore m [Hal] shows thi s i s true if n = 3 .

http://dx.doi.org/10.1090/cbms/057/05

Page 11: Conference Board of the Mathematical Sciences · Kahler manifolds 26 (a) Kahler geometry 26 (b) Calabi's problem and Kahler-Einstein metrics 27 (c) Another variational problem 31

SOME OPE N PROBLEM S 49

13. I f a compac t M 3 satisfie s th e assumption s o f th e Poincar e conjecture , doe s it admi t a metric with positive Ricci curvature? I f so , then b y Hamilton' s theore m [Hal] the Poincare conjecture i s resolved .

14. Whic h compac t Kahle r manifold s wit h th e Cher n clas s c x > 0 hav e Ein -stein-Kahler metrics ? I s Futaki' s obstructio n [Fl ] th e onl y one ? Thi s i s closel y related t o problem 3 above.

15. Calab i ha s aske d when , o n a compac t Kahle r manifol d m wit h metri c g 0, there i s always a cohomologous metri c g = g () 4 - </>_ minimizing th e squar e o f th e scalar curvatur e J(g) = / S 2(g) dV. Fo r example , i f c\(M) > 0 an d doe s not admit a Kahler-Einstei n metric , the n suc h a metri c minimizin g J i s a candidat e for a "nice " metri c o n M. Levin e [Le ] ha s example s wher e n o minimu m exists . When does the minimum exist ?

16. Minima l surface s hav e recentl y show n thei r valu e a s a n analogu e o f geodesies i n provin g result s i n geometry . I s ther e a fruitfu l generalizatio n o f suc h ideas a s "geodesi c flow" , "compariso n theorems" , o r th e "cu t locus " t o minima l surfaces?

17. B y considering th e Dirac operator o n auxiliar y vecto r bundle s over compac t manifolds, Gromo v an d Lawso n [GL1 ] extende d Lichnerowicz' s positiv e scala r curvature obstruction s t o a muc h large r clas s o f manifolds . Ca n on e als o us e harmonic 1-form s o n auxiliar y vecto r bundle s t o exten d Bochner' s classica l obstructions t o positive Ricc i curvature ?

18. (a ) I n th e recen t wor k o f Brezi s and Coro n [BC ] on th e Rellic h proble m o n surfaces wit h constan t mea n curvature , they onl y conside r map s fro m th e uni t disc. Wha t ca n on e sa y i f on e seek s surface s o f othe r topologica l typ e an d removes th e assumption tha t th e mean curvature i s a constant?

(b) Ther e ar e tw o spherica l cap s i n R 3 tha t spa n a circl e an d hav e constan t mean curvatur e H < 1 . Thes e ar e th e tw o obviou s solution s o f th e Rellic h problem. Ar e these the only solutions ?

19. Minima l graph s oi codimensio n on e are fairl y wel l understood . Lawso n an d Osserman [LO ] hav e foun d tha t fo r highe r codimensio n ne w phenomen a aris e concerning th e homotop y clas s o f th e boundar y values . On e shoul d understan d this muc h better . Surel y thes e same issues arise fo r th e Dirichle t proble m fo r mor e general quasilinea r ellipti c systems, but nothin g i s known.

http://dx.doi.org/10.1090/cbms/057/05

Page 12: Conference Board of the Mathematical Sciences · Kahler manifolds 26 (a) Kahler geometry 26 (b) Calabi's problem and Kahler-Einstein metrics 27 (c) Another variational problem 31

This page intentionally left blank

http://dx.doi.org/10.1090/cbms/057/05

Page 13: Conference Board of the Mathematical Sciences · Kahler manifolds 26 (a) Kahler geometry 26 (b) Calabi's problem and Kahler-Einstein metrics 27 (c) Another variational problem 31

References

[Ab] U . Abresch , Constant mean curvature tori in terms of elliptic functions, J . fu r di e rein e und angewandt e Math . 37 4 (1987) , 169-192 .

[Aul] T. Aubin, Metriques riemanniennes et courbure, J. Differentia l Geom . 4 (1970), 383-424. [Au2] , Meilleures constantes dans le theoreme d'inclusion de Sobolev et un theoreme de

Fredholm non lineaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal. 32 (1979), 148-174.

[Au3] , Equations du type Monge-Ampere sur les varietes kahleriennes compactes, C. R . Acad . Sci. Pari s Ser . A 283 (1976), 119.

[Au4] Nonlinear analysis on manifolds, Monge-Ampere equations, Di e Grundlehre n de r Math. Wissenschaften , vol . 252, Springer-Verlag, New York , 1982.

(Au5) , Reduction du cas posit if de / ' equation de Monge-Ampere sur les varietes kahleriennes compactes a la demonstration d* une inegalite, J. Funct. Anal . 57 (1984), 143-153.

[Au6] , Equations du type Monge-Ampere sur les varietes kahleriennes compactes, Bull . Soc . Math. Franc e 10 2 (1978), 63-95.

[Ave] A . Avez , Valeur moyenne du scalaire de courbure sur une variete compacte. Applications relativistes, C R . Acad . Sci . Paris Ser. A 256(1963), 5271-5273.

[Av] P . Aviles , Conformal complete metrics with prescribed nonnegative Gaussian curvature in R 2 (t o appear).

[AvM] P . Avile s an d Rober t McOvven , Conformal deformations of complete manifolds with negative curvature (to appear) .

[Az] D . G . Azov , On a class of hyperbolic Monge-Ampere equations, Uspckh i Mat . Nauk . 3 8 (1983), 153-154; Englis h transl . in Russian Math . Survey s 38 (1983), 190-191 .

[Ba] Alfred Baldes , personal communication . [BaC] A. Bar i e t J . M. Coron, Une theorie des points critiques a Vinfini pour Vequation de Yamabe et

le problem de Kazdan- Warner, C. R . Acad. Sci . Paris (to appear). [BB] L . Berard-Bergery , La courbure scalaire des varietes riemanniennes, Seminair e Bourbalci ,

Lecture Note s i n Math. , vol . 842, Springcr-Verlag, Berlin an d Ne w York, 1980 , pp. 225-245. [B] Melvy n Berger , On Riemannian structures of prescribed Gaussian curvature for compact 2-mani-

folds, J . Differentia l Geom . 5 (1971), 325-332. [Bel] Seminair e Arthu r Besse , Geometrie riemannienne en dimension 4 , CEDIC/Fernan d Nathan ,

Paris, 1981. [Be2] Arthu r Besse , Einstein Manifolds, Ergebniss e de r Math. , 3 Folge , Ban d 10 , Springer -

Verlag, 1987 . [BK] J. Bland an d M . Kalka , Complete metrics conformal to the hyperbolic disc (io appear). [BI] D . Bleecker , The Gauss-Bonnet inequality and almost geodesic loops, Adv. i n Math. , 1 4 (1974),

183-193. [Bo] J. P . Bourguignon. A review of Einstein metrics. Lectures in China (to appear) . [BE] J . P . Bourguigno n an d J . P . Ezin , Scalar curvature functions in a conformal class of

metrics and conformal transformations, Trans . Airier . Math . Soc . 30 1 (1987) , 72 3 736 . [BC] H . Brezi s an d J-M . Coron , Multiple solutions of H-systems and Rellich's conjecture, Comm .

Pure Appl . Math . 37 (1984), 149-187 . [BL] H. Brezi s an d E . Lieb , A relation between pointwise convergence of functions and convergence of

functionals, Proc . Amer. Math . Soc . 88 (1983), 486-490.

51

http://dx.doi.org/10.1090/cbms/057/05

Page 14: Conference Board of the Mathematical Sciences · Kahler manifolds 26 (a) Kahler geometry 26 (b) Calabi's problem and Kahler-Einstein metrics 27 (c) Another variational problem 31

52 REFERENCES

[BN] H . Brezi s an d L . Nirenbcrg , Positive solutions of nonlinear elliptic equations involving critical Soholev exponents, Comm . Pur e Appl. Math . 36 (1983), 437-477.

[CNS] L . Caffarclli , L . Nirenber g an d J . Spruck , The Dirichlet problem for nonlinear second order elliptic equations I . Monge-Ampere equation, Comm. Pur e Appl. Math . 37 (1984), 369-402.

[CI] E . Calabi , On Kahler manifolds with vanishing canonical class. Algebrai c Geometr y an d Topology, Princeto n Univ . Press , Princeton, N. J., 1955 , pp. 78-79.

[C2] , Extremal Kahler metrics. Semina r o n Differentia l Geometr y (S . T. Yau , ed.) , Ann. o f Math. Studies , vol. 102 , Princeton Univ . Press , Princeton, N. J., 1982 , pp. 259-290.

[C3] , Extremal Kahler metrics. II , Differential Geometr y an d Comple x Analysi s (Chavcl an d Farkas, eds.) . Springer-Verlag, Berlin , 1985 , pp. 95-114.

(CY] S . Y . Chen g an d S . T . Yau , The real Monge-Ampere equation and a/fine flat structures, Proc. 1980 Beijin g Sympos . o n Differentia l Geometr y an d Differentia l Equation s (S . S . Cher n an d W u Wen-Tsun, eds.) . Vol. 1 , Science Press , Beijing, and Gordo n & Breach, New York . 1982 , pp. 339-370 .

[CYlJ Sun-Yun g A . Chan g an d Pau l C . Yang , Prescribing Gaussian curvature on S 2 (t o appear).

[CY2] , Conformal deformation of metrics on S2 (t o appeal*) .

[Ch] P. Cherrier, Problemes de Neumann non lineaires sur les varieties Riemanniennes, J . Funct . Anal . 57(1984), 154-206 .

[Chi ] Wenxion g Chen , Scalar curvatures on S 2, Trans . Amer . Math . Soc . (t o appear) .

[Ch2] , Scalar curvatures on Sn (t o appear) .

[Del] P . Delanoe , Plongements Radiaux S n «— • Rn+l a courbure de Gauss positive prescrite, Ann. Scient . Ec , Norm . Sup. , 4 eser, 1 8 (1985) , 633-649 .

[Dl] D . DeTurck , Metrics with prescribed Ricci curvature. Semina r o n Differentia l Geometr y (S. T . Yau , ed.) , Ann . o f Math . Studies , vol . 102 , Princeto n Univ . Press , Princeton , N . J. , 1982 , pp . 525-537.

[D2] , Existence of metrics with prescribed Ricci curvature: local theory. Invent . Math . 6 5 (1981), 179-208 .

[1)3] , Nonlinear Douglis-Nirenberg systems in geometry. Lectur e note s Universit a d i Roma , 1982.

[DK] D . DeTurc k an d J . L . Kazdan , Some regularity theorems in Riemannian geometry, Ann . Sci . Ecole Norm . Sup . (4) 1 4 (1981), 249-260.

[DKo] D . DeTurc k an d N . Koiso , Uniqueness and non-existence of metrics with prescribed Ricci curvature, Ann . Inst . H . Poincare Sect . A (N.S.) 1 (1984), 351-359.

[ELI] J . Eell s and L . Lemaire, A report on harmonic maps, Bull . London Math . Soc . 10 (1978), 1-68 . [EL2] , Selected topics in harmonic maps, CBMS-NS F Regiona l Conf . Ser . i n Math. , No . 5 0

Amer. Math . Soc , Providence , R. I. , 1983. [ES] J . F . Escoba r an d R . M . Schoen , Conformal metrics with prescribed scalar curvature,

Inventiones 8 6 (1986) , 243-254 . [E] L . C . Evans , Classical solutions of fully nonlinear convex second-order elliptic equations, Comm.

Pure Appl . Math . 35 (1982), 333-363. [Fl] A . Futaki , An obstruction to the existence of Einstein Kahler metrics, Invent . Math . 7 3 (1983) ,

437-443. [FM] A. Futak i an d S . Morita , Invariant polynomials characteristic to compact convex manifolds and

compact group actions (to appear). [G] L . Z . Gao , The construction of negatively Ricci curved manifolds, Math . Ann . 27 1 (1985) ,

185-208. [GY] L . Z . Ga o an d S . T . Yau , The existence of negatively Ricci curved metrics on three-

manifolds, Inventione s 8 5 (1986) , 637-652 . [GT] D . Gilbar g an d N . S . Trudinger, Elliptic partial differential equations of second order, 2nd ed. ,

Die Grundlehren de r Math . Wissenschaften, Vol . 224, Springer-Verlag, Berlin , 1983. [Gi] E. Giusti , On the equation of prescribed mean curvature, Invent . Math . 46 (1978), 111-137 . [GW] R . Green e an d H . Wu , Whitney's imbedding theorem by solutions of elliptic equations and

geometric consequences, Proc . Sympos . Pur e Math. , Vol . 27 , Par t 2 , Amer. Math . Soc , Providence , R . I., 1975 , pp. 287-296 .

http://dx.doi.org/10.1090/cbms/057/05

Page 15: Conference Board of the Mathematical Sciences · Kahler manifolds 26 (a) Kahler geometry 26 (b) Calabi's problem and Kahler-Einstein metrics 27 (c) Another variational problem 31

REFERENCES 53

[GLl ] M . Cjromo v an d H . B . Lawson , Spin and scalar curvature in the presence of a fundamental

group. I , Ann . o f Math . (2 ) 11 1 (1980) , 209-230 .

[GL2] , The classification of simply connected manifolds of positive scalar curvature, Ann . o f

Math . (2 ) 11 1 (1980), 423-434 .

[GL3] , Positive scalar curvature and the Dirac operator on complete Riemannian manifolds,

Inst. Haute s Etude s Sci . Publ . Math. , 5 8 (1983), 83-196 .

[Gu] H . Guggenehimer , Uber vierdimensionale Einsteinra'ume, Experiment a 8 (T>52) , 420-421 .

[Ha l ] Richar d S . Hamilton , Three-manifolds with positive Ricci curvature, J . Differentia l Geom . 1 7

(1982), 255-306 .

[Ha2] The Ricci curvature equation, MSR I Report , Berkeley , Ca. , 1983.

[ H a 3 ] R icha r d S . H a m i l t o n , Four-manifolds with positive curvature tensor, J . Diff . G eom . 2 4

(1986), 153-179 .

[He] E . Heinz , On the non-existence of a surface of constant rectifiable boundary, Arch . Rationa l

Mech. Anal . 3 5 (1969), 244-252 .

[Hi] S . Hi ldebrandt , On the Plateau problem for surfaces of constant mean curvature, Comm . Pur e

Appl. Math . 2 3 (1970), 97-114 .

[HI ] N . Hitchin , Harmonic spinors. Adv . i n Math . 1 4 (1974) , 1-55 .

[H2] , Compact four-dimensional Einstein manifolds, J . Differentia l Geom . 9 (1974) , 435-441 .

[HTY] W.-Y . Hsiang , Zhcn-huan g Ten g an d Wen- u Yu , New examples of constant mean curvature

immersions of (2k ~ 1 ) spheres into Euclidean Ik-space, Ann . of Math . (2 ) 11 7 (1983), 609-625 .

[JL] D . Jeriso n an d Joh n M . Lee , A subelliptic, nonlinear eigenvalue problem and scalar curvature on

CR manifolds (t o appear) .

[Kl] J . L . Kazdan , Another proof of Bianchi's identity in Riemannian geometry, Proc . Amcr . Math .

Soc. 8 1 (1981) , 341-342 .

[K2] A remark on the preceding paper of Yau, Comm . Pur e Appl . Math . 3 1 (1978) , 413-414 .

[K3] , Deformation to positive scalar curvature on complete manifolds. Math . Ann . 26 1 (1982) ,

227-234.

[K4] , Some applications of partial differential equations to problems in geometry. Survey s i n

Geometry Series . Tokyo Univ. , 1983.

[K5] , Positive energy in general relativity, Seminair e Bourbaki , vol . 1981-1982 , exposc e 593 ,

Asterisque, Soc . Math. France , Paris , 1982 , pp. 92-93 .

[ K p l ] N . K a p o u l e a s , Constant mean curvature surfaces in Euclidean three-space ( t o a p p e a r ) .

[ K p 2 ] , Closed constant mean curvature surfaces in Euclidean three-space ( t o appeal") .

[KVV1] J . L . Kazda n an d F . W . Warner , Curvature functions for compact 2-manifolds, Ann . o f Math .

(2 )99(1974) , 14-47 .

[KW2] Curvature functions for open 2-manifolds, Ann . of Math . (2 ) 99 (1974), 203-219 .

[KW3] , Scalar curvature and conformal deformation of Riemannian structure, J . Differentia l

Geom. 10(1975) . 113-134 .

[KW4] , Existence and conformal deformation of metrics with prescribed Gaussian and scalar

curvatures, Ann . of Math . (2 ) 10 1 (1975), 317-331 .

[KVV5] , A direct approach to the determination of Gaussian and scalar curvature functions.

Invent. Math . 2 8 (1975), 227-230 .

[KW6] , Prescribing curvatures, Proc . Sympos . Pur e Math. , Vol . 27 , Amer . Math . Soc ,

Providence, R . I. , 1975 , pp. 219-226 .

[KVV7] , Remarks on some quasilinear elliptic equations, Comm . Pur e Appl . Math . 2 8 (1975) ,

567-597.

[KN] C . Keni g an d W.-M . Ni, On the elliptic equation Eu - k : + Ke 2u = 0 (to appear) .

[Krl] N . V . Krylov , Boundedly nonhomogeneous elliptic and parabolic equations, Izv . Akad . Nauk .

SSSR Ser . Mat . 46 (1982) , 487-523 ; Englis h transl . i n Math . USSR-Izv . 2 0 (1983), 459-492 .

[Kr2] , Boundedly nonhomogeneous elliptic and parabolic equations in a domain, Izv . Akad .

Nak. SSS R Ser . Mat . 47 (1983), 75-108 ; Englis h transl . i n Math . USS R Izv . 22 (1984), 67-97 .

[LO] H . B . Lawso n an d R . Osserman , Non-existence, non-uniqueness, and irregularity of solutions to

the minimal surface system. Act a Math . 13 9 (1977), 1-17 .

[LP] J o h n M . Le e an d T h o m a s H . Pa rke r , The Yamaha Problem, Bull . Amer . M a t h . Soc .

(NS) 1 7 (1987) , 3 7 - 9 1 .

[Le] Mar c Levine , A remark on extremal Kahler metrics , J . Diff . G e o m . 2 1 (1985) , 73 - 77 .

http://dx.doi.org/10.1090/cbms/057/05

Page 16: Conference Board of the Mathematical Sciences · Kahler manifolds 26 (a) Kahler geometry 26 (b) Calabi's problem and Kahler-Einstein metrics 27 (c) Another variational problem 31

54 REFERENCES

[LI] A . Lichnerowicz , Geometric des groupes de transformations, Dunod , Paris , 1958.

[L2] , Spineurs harmoniques, C . R . Acad . Sci . Paris Scr . I Math . 25 7 (1963), 7 -9 .

[L i l ] C h a n g - S h o u Lin , The local isometric embedding in 72 3 of two-dimensional Riemannian

manifolds with Gaussian curvature changing sign cleanly, C o m m . P u r e Appl . M a t h . 3 9 (198G) ,

867 -887 .

[Li2] , The local isometric embedding in R 3 of 2-dimensional Riemannian manifolds with

nonnegative curvature, J . Diff . G e o m . 2 1 (1985) , 213 -230 .

[Liol] P-L . Lions , Sur les equations de Monge-Ampere. I , Manuscript a Math . (1983) , 1-43 .

[Lio2] , Sur les equations de Monge-Ampere. II , Arch. Rationa l Mech . Anal , (t o appear) .

[ M M ] M a r i o J . Micalle f a n d J o h n Doug la s M o o r e , Minimal two-spheres and the topology of

manifolds urith positive curvature on totally isotropic two-planes ( t o a p p e a r ) .

[ M e l ] R . McOwcn . On the equation A w + Kc lli = f and prescribed negative curvature in R 2, J . Math .

Anal . Appl . 10 3 (1984). 365-370 .

[Mc2] Conformal metrics in R- with prescribed Gaussian curvature and positive total curvature

(to appear) .

[MY] N . Mo k an d S . T . Yau , Completeness of the Kahler-Einstein metric on bounded Riemann

domains and the characterization of domains of holomorphy by curvature conditions, Proc . Sympos . Pur e

Math. , Vol . 39. Par t 1 , Amer. Math . S o c , Providence , R.I. , 1983, pp. 41 -59 .

[M] J . Moser , On a nonlinear problem in differential geometry. Dynamica l System s M . Peixoto , ed.) .

Academic Press , Ne w York , 1973.

[Ni l ] Wei-Min g Ni , On the elliptic equation A w + K(x)e 2u = 0 and conformal metrics with prescribed

Gaussian curvatures. Invent . Math . 6 6 (1982), 343-352 .

[Ni2] On the elliptic equation A w + K(x)u {"*2)A"~2) = 0 , its generalizations and applica-

tions in geometry, Indian a Univ . Math . J . 31 (1982), 493-529 .

[N] L . Nirenberg , The Weyl and Minkowski problems in differential geometry in the large, Comm .

Pure Appl . Math . 6 (1953) , 337-394 .

[O] V . I . Oliker , Hypersurfaces in R" 4 l with prescribed Gaussian curvature and related equations of

Monge-Ampere type, Comm . Partia l Differentia l Equation s 9 (1984) , 807-838 .

[P I ] A . V . Pogorelov , Extrinsic geometry of convex surfaces, " N a u k a " , Moscow , 1969 ; Englis h

transl.. Math . Monographs , vol . 35, Amer. Math . Soc. , Providence, R . I. , 1973.

[P2] , The multidimensional Minkowski problem (Englis h translation ) Winston , 1978 .

[Pok] S . Pokhozaev , Eigenfunctions of the equation A w + A/(w ) = 0 , Dokl . Akad . Nauk . SSS R 16 5

(1965), 3 3 - 3 6 ; Englis h transl . i n Sovie t Math . Dokl . 6 (1965) , 1408-1411 .

[Po] A . Polombo , Nombres characteristiques des varietes riemanniennes de dimension 4 , J . Differentia l

G eo m. 13(1978) . 145-162 .

[R] R . D . Reilly , Mean curvature, the luiplacian, and soap bubbles, Amer . Math . Monthl y 8 9 (1982) ,

180-198 .

[SS] I . Sabito v an d S . Shefel , The connections between the order of smoothness of a surface and its

metric, Sibirsk . Mat . Zh . 1 7 (1976) , 916-925 ; Englis h transl . i n Siberia n Math . J . 1 7 (1976) , pp .

687-694 .

[Sa] D . H . Sattinger , Conformal metrics in R 2 with prescribed curvature, Indian a Univ . Math . J . 2 2

(1972), 1-4 .

[S] Richar d Schoen , Conformal deformation of a Riemannian metric to constant scalar curvature , J .

Diff. G e o m . 2 0 (1984) , 4 7 9 - 4 9 5 .

[SY1] R . Schoe n an d S-T . Yau , Existence of incompressible minimal surfaces and (he topology of three

dimensional manifolds with non-negative scalar curvature, Ann . of Math . (2 ) 11 0 (1979), 127-142 .

[SY2] , On the proof of the positive mass conjecture in general relativity, Comm . Math . Phys .

65 (1979) , 4 5 - 7 6 .

[SY3] , Proof of the positive mass theorem. II , Comm. Math . Phys . 7 9 (1981), 231-260 .

[SY4] , Complete three dimensional manifolds with positive Ricci curvature and scalar curva-

ture. Semina r o n Differentia l Geometr y (S . T . Yau , ed.) , Ann. o f Math . Studies , vol . 104 . Princeto n

Univ. Press , Princeton , N . J. , 1982 , pp. 209-228 .

[SP] Seminair e Palaiseau , Premiere classe dp Chern et courbure de Ricci, Asterisque , vol . 58 , Soc.

Math . France , Paris , 1978.

[Se] J . Serrin , The problem of Dirichlet for quasi/inear elliptic differential equations with many

independent variables, Philos . Trans . Roy . Soc. London Ser . A. 264 (1969), 413-496 .

http://dx.doi.org/10.1090/cbms/057/05

Page 17: Conference Board of the Mathematical Sciences · Kahler manifolds 26 (a) Kahler geometry 26 (b) Calabi's problem and Kahler-Einstein metrics 27 (c) Another variational problem 31

REFERENCES 55

[Sk] M. Spivak, A comprehensive introduction to differential geometry, Publish or Perish, 1975. fTh] J. Thorpe, Some remarks on the Gauss-Bonnet integrand, J. Math . Mech . 1 8 (1969), 779-786. [T] A. Treibergs, Existence and convexity for hyperspheres of prescribed mean curvature (to appear). [TW] A . Treiberg s an d S . W . Wei , Embedded hyperspheres with prescribed mean curvature, J .

Differential Geom . 18(1983) . [Tr] N . S . Trudinger , Remarks concerning the conformal deformation of Riemannian structures on

compact manifolds, Ann . Scuola Norm . Siup . Pisa CI. Sci. (4) 22 (1968), 265-274. [TU] N . S . Trudinge r an d J . I . E . Urbas , The Dirichlet problem for the equation of prescribed Gauss

curvature. Bull . Austral. Math . Soc . 28 (1983), 217-231. [U] Joh n I . E . Urbas , The equation of prescribed Gauss curvature without boundary conditions , J .

DifT. Geom . 2 0 (1984) , 311-327 . [V] M . Vaugon , Equations differentielles non lineaires sur les varieties riemanniennes compactes. I , II ,

Bull. Sci . Math . (2 ) 10 6 (1982), 352-367; 10 7 (1983). 371-391. [WW] N . Wallac h an d F . W . Warner , Curvature forms for 2-manifolds, Proc . Amer . Math . Soc . 2 5

(1970), 712-713. [WZ] McKenzi e Wan g an d W . Ziller , Existence and non-existence of homogeneous Einstein

metrics, Inventione s 8 4 (1986) , 177-194 . [Wb] S . M . Webster , Pseudohermitian structures on a real hypersurface, J. Differentia l Geom . 1 3

(1978), 25-41 . [Wei] Henr y C . Wente , Large solutions to the volume constrained Plateau problem, Arch . Rationa l

Mech. Anal . 75 (1980), 59-77. [We2] , The Plateau problem for symmetric surfaces, Arch . Rationa l Mech . Anal . 6 0

(1975-76), 149-169 . [We3] , The differential equation A.v = 2H(x u A xr) with vanishing boundary values, Proc .

Amer. Math . Soc . 50 (1975), 131-137. [We4] Counterexamples to a conjecture of //. Hopf, Pacific J . Math . 12 1 (1986) , 193-243 . [W] E. Witten, A new proof of the positive energy theorem, Comm. Math . Phys . 80 (1981), 381-402. [Wu] H . Wu , The Bochner technique, Proc . 198 0 Beijin g Sympos . o n Differentia l Geometr y an d

Differential Equations , vol. 2, (S. S. Chern an d W u Wen-tsun, eds.). Science Press , China, and Gordo n & Breach , New York , 1982 , pp. 929-1072.

[Ya] H. Yamabe , On the deformation of Riemannian structures on compact manifolds, Osaka Math . J. 12(1960), 21-37 .

[Y] S . T . Yau , On the Ricci curvature of a compact K'ahler manifold and the complex Monge-Ampere equation. I , Comm. Pur e Appl . Math . 31 (1978) , 339-411 .

BCDEFGHIJ-8987

http://dx.doi.org/10.1090/cbms/057/05

Page 18: Conference Board of the Mathematical Sciences · Kahler manifolds 26 (a) Kahler geometry 26 (b) Calabi's problem and Kahler-Einstein metrics 27 (c) Another variational problem 31

http://dx.doi.org/10.1090/cbms/057/05