condensation of excitons in a trap - butov...

15
Condensation of Excitons in a Trap Alex High, Jason Leonard, Mikas Remeika, & Leonid Butov University of California at San Diego Micah Hanson & Art Gossard University of California at Santa Barbara 50 mK 4 K 30 + m T=7 K I (arb. units) 1 0

Upload: others

Post on 29-Jan-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

  • Condensation of Excitons in a Trap

    Alex High, Jason Leonard, Mikas Remeika, & Leonid Butov

    University of California at San Diego

    Micah Hanson & Art Gossard University of California at Santa Barbara

    50 m

    K

    4 K

    30 m

    T=7 K

    I (arb. units) 10

    Emission of Excitons in the Trap

    0 7 140.0

    0.3

    0.6

    Inte

    rfer

    ence

    vis

    ibili

    tyShift x ( m)

    50 mK 2 K 4 K 8 K

    Coherence of Excitons in the Trap

  • • Traps are critical for studies of atomic condensates

    → atomic BEC

    • Traps for excitons can be created through customized external potentials

    goal → exciton condensation in a trap

    MH Anderson, JR Ensher, MR Matthews, CE Wieman, EA Cornell, Science 269, 198 (1995)

    CC Bradley, CA Sackett, JJ Tollett, RG Hulet, PRL 75, 1687 (1995)

    KB Davis, MO Mewes, MR Andrews, NJ van Druten, DS Durfee, DM Kurn, W. Ketterle, PRL 75, 3969 (1995)

    Traps in Low Temperature Physics

  • • An indirect exciton is composed of an electron and hole in separate quantum wells

    An Introduction to Indirect Excitons

    Characteristics of indirect excitons•bosons•long lifetime

    Model system for studies of physics of ultracold bosons in CM materials

    •electronically controllable

    QM1G.7: Yuliya KuznetsovaTransport of Indirect Excitons in a

    Potential Energy GradientMonday, 9:45 AM

    QM2G.7: Mikas RemeikaElectrostatic Lattices for Indirect

    Excitons in Coupled Quantum WellsMonday, 12:15 PM

    QTh4E.4: Alex HighSpontaneous Coherence in

    a Cold Exciton GasThursday, 5:15 PM

  • ﹚• “Quantum gas” when thermal de Broglie wavelength

    comparable to separation between excitons

    • Excitons in GaAs CQW: n = 1010 cm-2, mexciton = 0.2 m0

    Onset of Quantum Degeneracy

    TdB ~ 3 KTX

    Time (ns)

    • Excitons can cool to 100mK within lifetime

    L.V. Butov, A.L. Ivanov, A. Imamoglu, P.B. Littlewood, A.A. Shashkin, V.T. Dolgopolov, K.L. Campman, and A.C. Gossard, PRL 86, 5608 (2001)

    λdB = n-1/2 TdB = mkB2πħ2 n

    λdB = mkBT2πħ2﹙ 1/2

  • +–

    +–

    +–

    Vg

    zx

    y

    Electronic Control of Excitons

    Customized electrode design creates desired potential landscape

    Electrode Voltage Vg

    Exci

    ton

    Ener

    gy (e

    V)

    δE=eFzd

    Indirect excitons are dipoles with energy controlled by electrode potential

    -5 01.52

    1.56

    -2.5

    more info: physics.ucsd.edu/~lvbutov

    lattices

    rampstraps

    transistors

    conveyers

    circuits

  • The Diamond Trap

    Parabolic-like potential along both x- and y-axis

    A. A. High, A. K. Thomas, G. Grosso, M. Remeika, A. T. Hammack, A. D. Meyertholen, M. M. Fogler, L. V. Butov, M. Hanson, and A. C. Gossard, PRL 103, 087403 (2009).

    -10 0 10 y (µm)

    a b

    x (µm)

    h

    0

    E (

    meV

    )

    5

    e

    z

    Ex

    10 m

    y

    -5 0 5

    -10 0 10-10

    0

    E (m

    eV)

    x (µµµµm)10

    e

    h

    xz

    zE

    xy

    xy

    e

    c

    electrode geometry

    simulated potential-10 0 10

    -10

    0

    E (m

    eV)

    x (µµµµm)10

    e

    h

    xz

    zE

    xy

    xy

    e

    c

    xz

    xy

    Vg

  • Diamond Trap Characterization

    • In situ control• Parabolic-like potential• Collection to trap center

    simulated potential

    -20 0 20

    -10

    0

    0

    1

    -2 -3-10

    -5

    0

    Tra

    p D

    epth

    (meV

    )

    T r ap V oltage (V )

    5 ! m

    0

    1

    a

    h1550

    1545

    1540

    0

    -10

    r

    -20 0 20 -20 0 20

    -10

    -100

    -20 0 20

    -10

    0

    0

    1

    -2 -3-10

    -5

    0

    Tra

    p D

    epth

    (meV

    )

    T r ap V oltage (V )

    5 ! m

    0

    1

    a

    h1550

    1545

    1540

    0

    -10r

    -20 0 20 -20 0 20

    -10

    -100

    -20 0 20

    -10

    0

    0

    1

    -2 -3-10

    -5

    0

    Tra

    p D

    epth

    (meV

    )

    T r ap V oltage (V )

    5 ! m

    0

    1

    a

    h1550

    1545

    1540

    0

    -10r

    -20 0 20 -20 0 20

    -10

    -100

    x-y emission

    x-Energy emission

    Trap OFF Trap ON

    10

    0

    10

    -10

    0

    -20 200x (μm)

    -20 200

    y (μm

    )

    x (μm)

    1540

    1545

    1550

    ener

    gy (m

    eV)

    ener

    gy (m

    eV)

  • Remote Excitation Schematic

    • Excitons are created 6μm from trap center

    -10 0 10 y (µm)

    a b

    c

    x (µm)

    h

    0

    E (m

    eV)

    5

    e

    zE

    Laser excitation

    x

    10 µm

    y

    -5 0 5

    d

    -15 0 15

    d

    c 5

    E (m

    eV)

    x (µm)

    laser excitation

    0

    zE

    sample inside dilution refridgerator

    movable stage

    CCDspectrometer Beam

    Splitter

    Mirror 1

    Mirror 2

    BeamSplitter

    Arm 1

    Arm 2

    HeNeLaser

    IF

    sample inside dilution refridgerator

    movable stage

    CCDspectrometer Beam

    Splitter

    Mirror 1

    Mirror 2

    BeamSplitter

    Arm 1

    Arm 2

    HeNeLaser

    IF

    b 10 µm

    xy

    -404-15 0 15

    e I1 (arb. units)

    x (µm)

    y (µ

    m)

    -15 0 15

    h

    I12

    (arb. units)f

    x (µm)

    ae

    1

    0

    emission

    • Remote excitation reduces laser heating at the trap center

    -10 0 10 y (µm)

    a b

    c

    x (µm)

    h

    0 E

    (meV

    )

    5

    e

    zE

    Laser excitation

    x

    10 µm

    y

    -5 0 5

    d

  • 50 m

    K

    4 K

    30 m

    T=7 K

    I (arb. units)

    10

    Emission of Excitons in the Trap

    0 7 140.0

    0.3

    0.6

    Inte

    rfer

    ence

    vis

    ibili

    ty

    Shift x ( m)

    50 mK 2 K 4 K 8 K

    Coherence of Excitons in the TrapEmission of Excitons in the Trap

    Sharp peak at trap center emerges with decreasing temperature

  • Coherence Measurements with M-Z interferometer

    Shift interferometry measures the first-order spatial coherence function

    40

    -4

    S ampleDetector y

    (µm

    )

    x = 4µm

    I2

    40

    -4-10 0 10

    I1

    x (µm)

    y (µ

    m)

    I12

    -10 0 10

    I inte

    rf

    x (µm)

    +0.4

    -0.4

    1

    Em

    issi

    on(a

    rb. u

    nits

    )

    0

    Iinterf vs. δx → g1(x)

  • Coherence Measurements: Temperature Dependence

    • Excitons condense at the trap bottom• Exciton spontaneous coherence emerges with lowering temperature

    0 2 4 6 8

    0.07

    0.15

    0.22

    0.29

    0.36

    0.44

    1

    2

    3

    4

    5

    6

    -10 0 100

    1

    -4 0 40

    1-4 40

    1

    Inte

    rfere

    nce

    visi

    bilit

    yat

    shi

    ft !x

    = 4"m

    HW

    HM

    of e

    xcito

    n cl

    oud

    (µm

    )

    T (K)-10 0 10

    x (µm)-10 0 10

    0

    0

    0

    0

    0

    0

    0

    y

    1K

    7K

    x (µm)

    6K

    5K

    4K

    3K

    2K

    10 µ

    m

    Tbath= 50mK

    0

    f

    ca

    Em

    issi

    on (a

    rb. u

    nits

    )

    x (µm)

    Tbath

    = 50mK 3K 7K

    bI1 (arb. units)10

    I12 (arb. units)1.30

    e

    y (µm)

    d

    -10 0 10 y (µm)

    a b

    c

    x (µm)

    h

    0

    E (m

    eV)

    5

    e

    zE

    Laser excitation

    x

    10 µm

    y

    -5 0 5

    d

  • Coherence Measurements: Density Dependence

    • Asymmetry in coherence due to laser heating

    • Peak in coherence corresponds to minimum exciton cloud width

    laser excitation(weak coherence)

    cold excitons(strong coherence)

    0.1

    0.2

    0.3

    0.4

    1 10 100

    2

    4

    6

    -6 -3 0 3 6 9 120.0

    0.2

    0.4

    0.6

    Tbath= 50mK 4.5K

    Inte

    rfere

    nce

    visi

    bilit

    yat

    shi

    ft !x

    = 4"m

    Tbath= 50 mK 4.5K

    HW

    HM

    of e

    xcito

    n cl

    oud

    (µm

    )

    Pex (µW)

    c

    b

    Inte

    rfere

    nce

    visi

    bilit

    yshift !x (µm)

    Pex = 0.31 µW 2.2 µW 88 µW

    a

    0.1

    0.2

    0.3

    0.4

    1 10 100

    2

    4

    6

    -6 -3 0 3 6 9 120.0

    0.2

    0.4

    0.6

    50 mK 4.5 K

    Inte

    rfere

    nce

    visi

    bilit

    yat

    shi

    ft !x

    = 4"m

    HW

    HM

    of e

    xcito

    ncl

    oud

    (µm

    )

    Pex (µW)

    c

    b

    Inte

    rfere

    nce

    visi

    bilit

    y

    Shift !x (µm)

    0.31 µW 2.2 µW 88 µW

    a

    • Non-monotonic dependence on density at 50mK

  • Coherence Measurements: g1(x) vs. T

    0 2 4 6 8 10 12 140.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0 4 82

    4

    6In

    terfe

    renc

    e vi

    sibi

    lity

    shift !x (µm)

    Tbath= 50mK 2K 4K 8K

    a b

    !"(µm)

    T (K)

    Coherence extends over entire cloud at Tbath=50mK

    0 7 140.0

    0.3

    0.6

    0 4 82

    4

    6

    -2 0 2

    -0.2

    0.0

    0.2

    Inte

    rfer

    ence

    vis

    ibili

    ty

    Shift !x (µm)

    50 mK 2 K 4 K 8 K

    a

    c

    !"(µ

    m)

    T (K)

    8K

    b

    I inte

    rf at #

    x=7µ

    m

    y (µm)

    50mK

  • 0

    1

    2

    3

    4

    5

    6

    0 2 4 6 8

    ξ (µ

    m)

    Temperature (K)

    0

    1

    2

    3

    4

    5

    6

    0 2 4 6 8

    ξ (µ

    m)

    Temperature (K)

    F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Tc≈2K

    M. Remeika, J.C. Graves, A.T. Hammack, A.D. Meyertholen, M.M. Fogler, L.V. Butov, M. Hanson, A.C. Gossard, PRL 102, 186803 (2009)

    Estimate of transition temperature

    ΔE = 1.3meV → N = 3000

    ξexperimental ξclassical

    (λdB / π1/2)

    ξexperimental vs. T corrected for optical spatial resolution

    Coherence Length vs. T

    ωx ~ 4 × 109 s-1 ωy ~ 3 × 1010 s-1Trap Frequency:Number of Excitons:

    Tc = ﹙﹚gN 1/2π61/2 ħω2D ω2D = (ωx ωy)1/2BEC temperature in a 2-D harmonic trap:

  • Conclusions

    Observed condensation of excitons in a trap

    • Excitons condense at the trap bottom• Exciton spontaneous coherence emerges with

    lowering temperature

    • Below a temperature of about 1 K coherence extends over the entire trapped cloud

    A. A. High, J. R. Leonard, M. Remeika, L. V. Butov, M. Hanson, A. C. Gossard, Condensation of Excitons in a Trap, arXiv:1110.1337, Nano Lett. DOI: 10.1021/nl300983n (17 April 2012)