conceptual llrf design for 1.3ghz superconducting cavity

17
Conceptual LLRF design for 1.3GHz superconducting cavity Qiu Feng ( PH.D Student ) LLRF members : Wang Guang wei, Sun YI Liu Rong, Zeng Ri hua, Qiu Feng Lin Hai ying, Wang Qun yao Mini-workshop of 1.3GHz/9cell superconducting cavity IHEP Dec. 2 2009

Upload: drake-banks

Post on 03-Jan-2016

74 views

Category:

Documents


5 download

DESCRIPTION

Conceptual LLRF design for 1.3GHz superconducting cavity. Qiu Feng ( PH.D Student ) LLRF members : Wang Guang wei, Sun YI Liu Rong, Zeng Ri hua, Qiu Feng Lin Hai ying, Wang Qun yao Mini-workshop of 1.3GHz/9cell superconducting cavity IHEP Dec. 2 2009. Content. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Conceptual LLRF design for 1.3GHz superconducting cavity

Conceptual LLRF design for1.3GHz superconducting cavity

Qiu Feng ( PH.D Student )LLRF members :

Wang Guang wei, Sun YI Liu Rong, Zeng Ri hua, Qiu Feng Lin Hai ying, Wang Qun yao

Mini-workshop of 1.3GHz/9cell superconducting cavity

IHEP Dec. 2 2009

Page 2: Conceptual LLRF design for 1.3GHz superconducting cavity

• 1. Target and the whole Block Diagram

• 2. Signal and Clock

• 3. RF Down-Conversion and Up-Conversion

• 4. Algorithm

Content

Page 3: Conceptual LLRF design for 1.3GHz superconducting cavity

• 1. Requirements on field stability (approximately RMS requirements)

0.1% for Amplitude and 0.1° for Phase

• 2. Chain secure

• 3. Take fully advantages of DSP technology

1. Target and the whole Block Diagram

Page 4: Conceptual LLRF design for 1.3GHz superconducting cavity

1. Target and the whole Block Diagram

LO

Vref

IF

DA

1

Am

p&P

hase

NC

O1

outp

ut

NC

O2

outp

ut

RF

LO

Sample

1300MHz

10M

Hz

refe

renc

e

1301MHz

240MHz

FPGA

NET ROMUSB

PC

ADC

ADC

ADC

ADC

120MHz

Vcav_in-

Vcav_in+

Sample

Down Conversion

Signal & Clock

Amp&Phase ModulatorRF

LO

Clock

1

2

3

4ADC ClockDAC Clock

120MHz

Cal

ibra

tio

n

Digital Board

Monitor

MotorDriver

M

RF Interlock

Piezo Driver

FeedForward Table

A&P_Set Table

Beam Table Test Table

Interlock Interface

Motor Control

Piezo Control

Vload+

Vload-

Klystron

Vkly-Vkly+

Monitor

ADC

ADC

ADC

ADC

Vcav_in-

Vcav_in+

Vload+

Vload-

Vkly-

Vkly+

Vcav_out

Vcav_out

Vref

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Cavity Model&Tuner

LLRF Switch

30MHz

1330MHz 1300MHz

30MHz 30MHz

1MHz

1MHz

1MHz

Klystron

DA

1

DA

1

5

6

7

8

1

2

3

4

5

6

7

8

Page 5: Conceptual LLRF design for 1.3GHz superconducting cavity

• 1. Super-Sampling

• LO: 1301MHz

• Sampling Clock: 100MHz

• 2. RF signal and Sampling Clock

• RF signal source: 8663A

• (0.1MHz~2560MHz).

• Sampling Clock: 33220A

• Reference signal : 10MHz

2. Signal and Clock

Page 6: Conceptual LLRF design for 1.3GHz superconducting cavity

2. Signal and Clock

• How to generate the Local Frequency?

• The AD9858 can generate the 101MHz signal with its Clock(1300MHz RF signal).

• After twice frequency Mixing, we can get the 1301MHz Local signal, then we can obtain the 1MHz IF signal by mixing the RF and LO.

Page 7: Conceptual LLRF design for 1.3GHz superconducting cavity

2. Signal and Clock

The overall diagram of Clock structure

8663A

33220A

AD9858

RF

LO

Sample/ADC Clock

1300MHz

10MHz

10M

Hz

refe

renc

e

101MHz

1301MHz

1300MH

z

100MH

z

33220A12MHz

240MHz

120MHz DAC Clock

120MHz

TA1077A(1420M)

TA0840A(1300M)

Page 8: Conceptual LLRF design for 1.3GHz superconducting cavity

3. RF down conversion and up conversion

• Analog down conversion

ADC

ADC

ADC

ADC

Monitor

ADC

ADC

ADC

ADC

Vcav_in-

Vcav_in+

Vload+

Vload-

Vkly-

Vkly+

Vcav_out

Vref

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Monitor

Page 9: Conceptual LLRF design for 1.3GHz superconducting cavity

3. RF receiver

• Analog up conversion

DA

1

DA

2

RF RF

Amp Control

Phase Control

NCO1 output

NCO2 output

30M(BLP30+) 30M(BLP30+)

1330M(TA0375A)

SAW SAW

1300M(TA0840A)

Page 10: Conceptual LLRF design for 1.3GHz superconducting cavity

4. Algorithm

• Digital down conversion

• How to generate IQ?

• Scheme1(experienced)

Page 11: Conceptual LLRF design for 1.3GHz superconducting cavity

4. Algorithm

• Feedback Algorithm

Page 12: Conceptual LLRF design for 1.3GHz superconducting cavity

4. Algorithm

Simulink of 500MHz experiment

Page 13: Conceptual LLRF design for 1.3GHz superconducting cavity

4. Algorithm

• Feedforward Compensation

• The feed forward can supplement the feedback. it can suppress the known repetitive error.

Page 14: Conceptual LLRF design for 1.3GHz superconducting cavity

4. Algorithm

• Digital up Conversion

• Scheme1(experienced)

Cordic

NCO1

NCO2

Amp Word

Pha Word

DA1

DA2

I

Q

PI

PI

Page 15: Conceptual LLRF design for 1.3GHz superconducting cavity

4. Algorithm

• Digital up Conversion

• Scheme2

DA1

PI

PI

NCO1IF

Page 16: Conceptual LLRF design for 1.3GHz superconducting cavity

4. Algorithm

• Tuner control

Error Source speed solution

Micro-Phonics

slow feedback

Beam Loading

slow feed forward + feedback

Lorentz De-tuning

fast feedback

The cause of de-tuning

Page 17: Conceptual LLRF design for 1.3GHz superconducting cavity

4. Algorithm

• Tuner control

• For CW working mode , the diagram above is appropriate , for pulse working mode, the table test need to be done in the near future.