concept kit:pwm boost converter transients model

33
Concept Kit: PWM Boost Converter Transients Model All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 1 Power Switches (Semiconductor) Filter & Load PWM IC (Voltage Mode) V REF + - V OUT L 1 2 C Rload Vo ESR OSC REF E / A Comp + - - + PWM_IC FOSC = 52K VP = 2.5 VREF = 1.23 pwm + - + - S1 S RON = 100m D1 DIODE

Upload: tsuyoshi-horigome

Post on 17-May-2015

1.106 views

Category:

Technology


0 download

DESCRIPTION

Concept Kit:PWM Boost Converter Transients Model

TRANSCRIPT

Page 1: Concept Kit:PWM Boost Converter Transients Model

Concept Kit:PWM Boost Converter

Transients Model

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 1

Power Switches(Semiconductor)

Filter & LoadPWM IC (Voltage Mode)

VREF

+-

VOUTL1 2

C

Rload

Vo

ESROSC

REF

E / A

Comp

+

-

-

+

U?PWM_IC

FOSC = 52K

VP = 2.5VREF = 1.23

pwm

+ -

+ - S1S

RON = 100m

D1DIODE

Page 2: Concept Kit:PWM Boost Converter Transients Model

Contents

1. The PWM Boost Converter Topology

2. Power Switches (Semiconductor)

3. Boost Converter Design Workflow

Setting PWM Controller’s Parameters

Setting Output Voltage: Rupper, Rlower

Inductor Selection: L

Capacitor Selection: C, ESR

Setting the Compensator Parameters

4. Boost Converter Simulation (Example)

4.1 Switching Waveforms

4.2 Power State Switches Voltage and Current

5. Load Transient Response Simulation (Example)

6. Boost Converter Reliability Testing (Example)

7. Converter Efficiency

7.1 Converter Efficiency vs. MOSFET, Rds(on)

7.2 Converter Efficiency vs. DIODE, VF

8. Simulation Using Real Device Models (Example)

8.1 Switching Waveforms (Real Device Models)

8.2 Converter Efficiency (Real Device Models)

9. SpicePark of MOSFET Model

Simulation Index

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 2

1

2

3

4

5

Page 3: Concept Kit:PWM Boost Converter Transients Model

C

D1DIODE

+

-

+

-

S1 S

RON = 0.01R

v out

pwm

OSCREF

E / A

Comp

+

-

-

+

U1PWM_IC

FOSC = {f osc}

VP = {Vp}VREF = {Vref }

C1

C2

R1R2

C3

RLs

Rlower

Vin

ESR

Rupper

L

0

0

err

1.The PWM Boost Converter Topology

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 3

Power Stage: Boost topology

Error Amplifier

Type 3 Compensator*

* Please see appendix B for the detailVoltage Mode

Page 4: Concept Kit:PWM Boost Converter Transients Model

D

BOOST_SW

D

VIN

+

-

VOUT

+

-

IIN IOUT• A Near-Ideal DIODE can be modeled by

using SPICE primitive model (D), which

parameters are : N=0.01 RS=0 CJO=1p.

• A near-ideal MOSFET can be modeled by using PSpice VSWITCH that is voltage

controlled switch. (the default parameters are Roff=1e7 Ron=0.01 Voff=1.47V

Von=1.5V)

D1DIODE

+

-

+

-

S1 S

RON = 0.01

pwm

2.Power Switches (Semiconductor)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 4

(MOSFET)

The parameter RON represents Rds(on) characteristics of MOSFET (usually provide by the manufacturer datasheet).

D

BOOST_SW

D

VIN

+

-

VOUT

+

-

IIN IOUT

D

BOOST_SW

D

VIN

+

-

VOUT

+

-

IIN IOUT

D

BOOST_SW

D

VIN

+

-

VOUT

+

-

IIN IOUT

Page 5: Concept Kit:PWM Boost Converter Transients Model

3.Boost Convertor Design Workflow

The Purpose of the Circuit Simulation

• To Evaluate and Verify the Design of the PWM Boost Converter.

• To Optimize the Parameters of the PWM Boost Converter.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 5

Setting PWM Controller’s Parameters: FOSC , VREF, VP1

Setting Output Voltage: Rupper, Rlower2

Inductor Selection: L3

Capacitor Selection: C, ESR4

Setting the Compensator Parameters: R2, C1, C25

Continue next slide

Page 6: Concept Kit:PWM Boost Converter Transients Model

Boost Convertor Design Workflow

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 6

Evaluations:

• Switching Waveforms,

• Power State Switches Voltage and Current,

• Load Step Transient Response,

• and so on

Reliability: L sweep (example)

Evaluations:

• Converter Efficiency vs. MOSFET, Rds(on)

• Converter Efficiency vs. Diode, VF

Evaluations Using Real Device Models (as an Option)

Page 7: Concept Kit:PWM Boost Converter Transients Model

C

D1DIODE

+

-

+

-

S1 S

RON = 0.01R

pwm

OSCREF

E / A

Comp

+

-

-

+

U1PWM_IC

FOSC = {f osc}

VP = {Vp}VREF = {Vref }

C1

C2

R1 R2

C3

RLs

Rlower

Vin

ESR

Rupper

L

0

0

err

v out

Boost Convertor Design Workflow

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 7

1

2

3

4

5

Type 3 Compensator*

5

Voltage Mode

Page 8: Concept Kit:PWM Boost Converter Transients Model

Design Specification (Example)

A boost converter is designed to deliver 12V, 1.5A from a 3.3 V battery

Step-Up (Boost) Converter :

• Vin,max = 3.63 (V)

• Vin,min = 2.97 (V)

• Vout = 12 (V)

• Vout, ripple = 180mVP-P (1.2%)

• Io,max = 1.5 (A)

• Io,min = 0.2 (A)

Control IC :

• Part # TPS43000 (PWM Controller IC)

• Switching Frequency – fosc = 300 (kHz)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 8

Vin = 3.310%

Page 9: Concept Kit:PWM Boost Converter Transients Model

OSCREF

E / A

Comp

+

-

-

+

U1PWM_IC

FOSC = 300K

VP = 2.2VREF = 0.8

Setting PWM Controller’s Parameters

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 9

comp

PWM

FB

1

• FOSC, Oscillation frequency (frequency of the

sawtooth signal).

• VREF, feedback reference voltage, value is

given by the datasheet

• VP = the sawtooth peak voltage.

• If VP does not provided, it could be calculated from:

VP = VFB /d

VFB = VFBH – vFBL

d = dMAX – dMIN

where

vFBH is maximum FB voltage where d = 0

vFBL is minimum FB voltage where d =1(100%)

dMAX is maximum duty cycle, e.g. d = 0(0%)

dMIN is minimum duty cycle, e.g. d =1(100%)

The Comparator compares the error voltage

(between FB and REF) with a sawtooth signal

(frequency = FOSC, peak saw voltage =

VP) to generate PWM signal, as shown in the

figure below.

Time

V(PWM)

V(osc) V(comp)

0V

2.0V

3.0V

SEL>>VP

Duty cycle (d) is a value from 0 to 1

f = FOSC

If vFBH and vFBL are not provided, the default value, VP=2 could be used.

(eq.1)

Page 10: Concept Kit:PWM Boost Converter Transients Model

Setting PWM Controller’s Parameters (Example)

So we’ve got

VREF = 0.8

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 10

The VREF value is given by the datasheet

TPS43000 electrical characteristics

1

The switching frequency 300kHz constant is chosen

Input

FOSC = 300k

Page 11: Concept Kit:PWM Boost Converter Transients Model

Setting PWM Controller’s Parameters (Example)

from the (eq.1)

VP = VFB /d

• from the datasheet , VFB = (2-0) = 2V, and d = (0.9-0) = 0.9

VP = 2 / 0.9

= 2.2

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 11

The VP ( sawtooth signal amplitude ) can be calculated from the characteristics below.

TPS43000 electrical characteristics

1

Page 12: Concept Kit:PWM Boost Converter Transients Model

• Use the following formula to select the resistor values.

Example

Given: Vout = 12V

Vref = 0.8

Rlower = 10k

then:

Rupper = 140k

Setting Output Voltage: Rupper, Rlower

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 12

lower

upperREFOUT

R

RVV 1

2

REF

lowerREFOUTupper

V

RVVR

)(

(eq.2)

Page 13: Concept Kit:PWM Boost Converter Transients Model

Inductor Selection: L, RLS

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 13

Inductor Value

• The output inductor value is selected to set the

converter to work in CCM (Continuous Current

Mode) for all load current conditions.

• Calculated by

• with

Where

• LCCM is the inductor that make the converter to work in CCM.

• Dmin is the minimum duty cycle; Dmin =1- Vin,max /VOUT

• Dmax is the maximum duty cycle; Dmax =1- Vin,min /VOUT

• RLs is load resistance at the minimum output current ( Io,min )

• fosc is switching frequency

• IL is inductor ripple current

min,

2minmin

2

)1(

Oosc

OUTCCM

If

VDDL

3

osc

inL

fL

DVI

maxmin,

C

D1DIODE

+

-

+

-

S1 S

RON = 0.01R

pwm

RLs

ESR

L

(eq.3)

(eq.4)

Page 14: Concept Kit:PWM Boost Converter Transients Model

Inductor Selection: L, RLS (Example)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 14

Inductor Value

from (eq.3)

Given:

• Vin,max = 3.63V (3.3V+10%), Vout = 12V, Io,min = 0.2A

• Dmin = 1- Vin,max /Vout = 0.7

• fosc = 300kHz

Then:

• LCCM 6.4 (uH),

• L = 6.8 (uH) is selected

3

min,

2minmin

2

)1(

Oosc

OUTCCM

If

VDDL

C

D1DIODE

+

-

+

-

S1 S

RON = 0.01R

pwm

RLs

ESR

L

Page 15: Concept Kit:PWM Boost Converter Transients Model

Capacitor Selection: C, ESR

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 15

Capacitor Value

• The minimum allowable output capacitor

value should be determined by

• In addition, the capacitor must be able to handle the current more than

• The ESR of the output capacitor adds some more ripple, so it should be limited by

following equation:

OSCrippleout

o

fV

IDC

,

max,max

C

rippleout

I

VESR

,

4

2,

LRatedC

II

• Where IL is calculated by the (eq.4)

(eq.5)

(eq.6)

(eq.7)

C

D1DIODE

+

-

+

-

S1 S

RON = 0.01R

pwm

RLs

ESR

L

Page 16: Concept Kit:PWM Boost Converter Transients Model

Capacitor Selection: C, ESR (Example)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 16

Capacitor Value

From the (eq.5)

and the (eq.6) and (eq.7)

Given:

• Dmax = 0.75 V

• Io, max = 1.5 A

• Vout,ripple = 0.18 V

Then:

• C 20.9 (F)

In addition:

• IC,Rated ≈ 550mA ESR 27m

C

rippleout

I

VESR

,

4

OSCRippleout

o

fV

IDC

,

max,max

2

LC

II

C

D1DIODE

+

-

+

-

S1 S

RON = 0.01R

pwm

RLs

ESR

L

Page 17: Concept Kit:PWM Boost Converter Transients Model

C

D1DIODE

+

-

+

-

S1 S

RON = 0.01R

pwm

OSCREF

E / A

Comp

+

-

-

+

U1PWM_IC

FOSC = {f osc}

VP = {Vp}VREF = {Vref }

Type 3 Compensator v out

C1

C2

R1R2

C3

RLs

Rlower

Vin

ESR

Rupper

L

0

0

err

• Loop gain for this configuration is

• The purpose of the compensator G(s)

is to tailor the converter loop gain

(frequency response) to make it stable

when operated in closed-loop

conditions.

• The element of the Type 3 compensator (C1, C2 , C3 , R1, and R2 ) can be extracted

by using Boost_Calculator.xls (Excel sheet) and open-loop simulation with the

Average Models (ac models).

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 17

PWMGsGsHsT )()()(

GPWM

Compensator: G(s)

Power stage: H(s)

Stabilizing the Converter5

Remark: The Average Models are not included with this package.

Page 18: Concept Kit:PWM Boost Converter Transients Model

Specification:

VIN = 3.3V 10%

VOUT = 12V

IOUT = 0.2 ~ 1.5A

PWM Controller:

fOSC = 300kHz

VREF = 0.8V

VP1 = 2.2V

Rlower = 10k,

Rupper = 140k,

L = 6.8uH (RLS=10m ),

C = 1410uF (ESR = 27m),

Task:

•Voltage and Current Waveforms Evaluation.

4.Boost Converter Simulation (Example)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 18

Characteristics from Texas Instruments IC: TPS43000.

2

*Analysis directives:

.TRAN 0 10ms 0ms 100n

.OPTIONS ABSTOL= 1.0n

.OPTIONS CHGTOL= 0.01u

.OPTIONS ITL1= 200

.OPTIONS ITL2= 100

.OPTIONS ITL4= 50

.OPTIONS RELTOL= 0.01

D1DIODE

+

-

+

-

S1 S

RON = 0.01

pwm

OSCREF

E / A

Comp

+

-

-

+

U1PWM_IC

FOSC = 300k

VP = 2.2VREF = 0.8

C1

8.259n

C2795p

R1

47.9k

R24.9k

C3

2.826nF

RLs10m

v out

Rlower10k

Vin

3.3

ESR

27m

C

1410u

Rupper140k

L6.8u

0

0

err

R

12

Page 19: Concept Kit:PWM Boost Converter Transients Model

• The simulation results shows waveforms of the boost converter.

• Output ripple voltage (caused by ESR) = 116mVP-P.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 19

Control Voltage

V(PWM)

VOUT, RIPPLE

Inductor Current

I(L)

Switch Current

ID(S1)

Time

9.980ms 9.984ms 9.988ms 9.992ms 9.996ms 10.000ms

v(vout)

11.8V

12.0V

12.1V

12.2V

SEL>>(9.986m,11.970)

(9.982m,12.086)

I(L)

0A

2.5A

5.0A

I(S1:3)

0A

2.5A

5.0A

v(pwm)

0V

5.0V

4.1 Switching Waveforms

Page 20: Concept Kit:PWM Boost Converter Transients Model

Time

9.990ms 9.992ms 9.994ms 9.996ms 9.998ms 10.000ms

1 V(D1:A,D1:C) 2 I(D1)

-16V

-8V

0V

8V

16V1

>>

-5.0A

-2.5A

0A

2.5A

5.0A2

(9.996m,4.3554)

(9.993m,-11.940)

1 V(S1:3,S1:4) 2 I(S1:3)

0V

4V

8V

12V

16V1

SEL>>

0A

1.5A

3.0A

4.5A

6.0A2

SEL>>

(9.996m,4.3125)(9.992m,12.095)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 20

4.2 Power State Switches Voltage and Current

• Switch (MOSFET) has the steady state voltage: VDS, PEAK = 12.095V and

current: ID, PEAK = 4.312A

• Diode has the steady state voltage: VAK, PEAK = -11.940V and current: IF, PEAK

= 4.355A

SW (MOSFET) Voltage VDS

SW (MOSFET) Current ID

Diode Voltage VAK

Diode Forward Current IF

Page 21: Concept Kit:PWM Boost Converter Transients Model

D1DIODE

+

-

+

-

S1 S

RON = 0.01

pwm

OSCREF

E / A

Comp

+

-

-

+

U1PWM_IC

FOSC = 300k

VP = 2.2VREF = 0.8

C1

8.259n

C2795p

R1

47.9k

R24.9k

C3

2.826nF

RLs10m

v out

Rlower10k

Vin

3.3

ESR

27m

C

1410u

Rupper140k

L6.8u

0

0

err

I1

TD = 19m

TF = 10uPW = 2mPER = 1

I1 = 0.2I2 = 1.5

TR = 10u

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 21

The converter are connected with step-load to perform load transient response simulation.

*Analysis directives:

.TRAN 0 26ms 18ms 100n

.OPTIONS ABSTOL= 1.0n

.OPTIONS CHGTOL= 0.01u

.OPTIONS ITL1= 200

.OPTIONS ITL2= 100

.OPTIONS ITL4= 50

.OPTIONS RELTOL= 0.01

Iload = 0.2A step to 1.5A

5.Load Transient Response Simulation (Example)

Page 22: Concept Kit:PWM Boost Converter Transients Model

Time

18ms 20ms 22ms 24ms 26ms

v(vout)

11.8V

11.9V

12.0V

12.1V

12.2V

SEL>>

(21.022m,12.162)

(19.099m,11.912)

I(I1)

0A

0.4A

0.8A

1.2A

1.6A

2.0A

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 22

5.Load Transient Response Simulation (Example)

• The simulation results shows output voltage change waveforms caused by

step load current.

0.2-1.5A Step load current

Output Voltage Change

Page 23: Concept Kit:PWM Boost Converter Transients Model

D1DIODE

+

-

+

-

S1 S

RON = 0.01

pwm

OSCREF

E / A

Comp

+

-

-

+

U1PWM_IC

FOSC = 300k

VP = 2.2VREF = 0.8

C1

8.259n

C2795p

R1

47.9k

R24.9k

C3

2.826nF

RLs10m

v out

Rlower10k

Vin

3.3

ESR

27m

C

1410u

Rupper140k

0

L{L}

0

err

R

60

PARAMETERS:

L = 6.8u

Specification:

VIN = 3.3V 10%

VOUT = 12V

IOUT = 0.2 ~ 1.5A

PWM Controller:

fOSC = 300kHz

VREF = 0.8V

VP1 = 2.2V

Rlower = 10k,

Rupper = 140k,

L = Swept parameter (RLS=10m ),

C = 1410uF (ESR = 27m),

Task:

•To check that the converter still work in CCM

after 15% reduction of the inductor value.

6.Boost Converter Reliability Testing (Example)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 23

2

*Analysis directives:

.TRAN 0 20ms 0 100n

.STEP PARAM L LIST 6.8u, 5.78u

.OPTIONS ABSTOL= 1.0n

.OPTIONS CHGTOL= 0.01u

.OPTIONS ITL1= 200

.OPTIONS ITL2= 100

.OPTIONS ITL4= 50

.OPTIONS RELTOL= 0.01

Iload, min

= 0.2A

Page 24: Concept Kit:PWM Boost Converter Transients Model

Time

19.990ms 19.992ms 19.994ms 19.996ms 19.998ms 20.000ms

v(vout)

12.04V

11.98V

SEL>>

I(L)

0A

0.8A

1.6A

I(S1:3)

0A

1.0A

2.0A

v(pwm)

0V

5.0V

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 24

6.Boost Converter Reliability Testing (Example)

• The simulation results shows waveforms of the converter at L=6.8uH and 5.78uH

• At L = 5.78uH(-15%), the converter still work in CCM

A: V(PWM),

D: VOUT, RIPPLE

C: I(L)

B: ID(S1)

the converter works in CCM (no zero current) at L=5.78uH.

L=6.8uH

L=5.78uH

Page 25: Concept Kit:PWM Boost Converter Transients Model

D1DIODE

+

-

+

-

S1 S

RON = {Rdson}

pwm

OSCREF

E / A

Comp

+

-

-

+

U1PWM_IC

FOSC = 300k

VP = 2.2VREF = 0.8

C1

8.259n

C2795p

R1

47.9k

R24.9k

C3

2.826nF

RLs10m

v out

Rlower10k

Vin

3.3

ESR

27m

C

1410u

Rupper140k

L6.8u

0

0

err

R

12

PARAMETERS:

Rdson = 0.1

7.1 Converter Efficiency vs. MOSFET Rds(on)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 25

Perform transient simulation to measure the converter efficiency at Rds(on)= 0.01 and 0.1 .

*Analysis directives:

.TRAN 0 20ms 18.8m 100n

.STEP PARAM Rdson LIST 0.01, 0.1

.OPTIONS ABSTOL= 1.0n

.OPTIONS CHGTOL= 0.01u

.OPTIONS ITL1= 200

.OPTIONS ITL2= 100

.OPTIONS ITL4= 50

.OPTIONS RELTOL= 0.01

Page 26: Concept Kit:PWM Boost Converter Transients Model

Time

19.50ms 19.55ms 19.60ms 19.65ms 19.70ms 19.75ms 19.80ms 19.85ms 19.90ms 19.95ms

100*AVG(W(R))/AVG(-W(Vin))

50

60

70

80

90

100

(19.750m,88.600)

(19.750m,97.343)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 26

7.1 Converter Efficiency vs. MOSFET Rds(on)

• The converter efficiency is decreased from 97.3% to 88.6% when

Rds(on) increase from 0.01 to 0.1.

Efficiency (%)

Rds(on) = 0.01, Efficiency = 97.3 %

Rds(on) = 0.1, Efficiency = 88.6 %

Rds(on) = 0.01

Rds(on) = 0.1

Page 27: Concept Kit:PWM Boost Converter Transients Model

D1DIODE

+

-

+

-

S1 S

RON = 0.01

pwm

OSCREF

E / A

Comp

+

-

-

+

U1PWM_IC

FOSC = 300k

VP = 2.2VREF = 0.8

C1

8.259n

C2795p

R1

47.9k

R24.9k

C3

2.826nF

RLs10m

v out

Rlower10k

Vin

3.3

ESR

27m

C

1410u

Rupper140k

0

L6.8u

0

err

R

12

PARAMETERS:

N = 0.01

7.2 Converter Efficiency vs. Diode, VF

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 27

Perform transient simulation to measure the converter efficiency at DIODE (N) = 0.01 and 0.4

V_V1

0V 0.12V 0.24V 0.36V 0.48V 0.60V 0.72V 0.84V 0.96V 1.08V

I(D1)

0A

0.1A

0.2A

0.3A

0.4A

0.5A

0.6A

0.7A

0.8A

0.9A

1.0A

VF increases when DIODE (N) increases.

VF

Diode Forward I – V Characteristics

Diode Forward Voltage vs. Diode model parameter: N

*Analysis directives:

.TRAN 0 20ms 18.8m 100n

.STEP PARAM N LIST 0.01, 0.4

.OPTIONS ABSTOL= 1.0n

.OPTIONS CHGTOL= 0.01u

.OPTIONS ITL1= 200

.OPTIONS ITL2= 100

.OPTIONS ITL4= 50

.OPTIONS RELTOL= 0.01

Page 28: Concept Kit:PWM Boost Converter Transients Model

Time

19.50ms 19.55ms 19.60ms 19.65ms 19.70ms 19.75ms 19.80ms 19.85ms 19.90ms 19.95ms

100*AVG(W(R))/AVG(-W(Vin))

50

60

70

80

90

100

(19.750m,94.663)

(19.750m,97.343)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 28

7.2 Converter Efficiency vs. Diode, VF

Efficiency (%)

DIODE (N) = 0.01, Efficiency = 97.3 %

DIODE (N) = 0.4, Efficiency = 94.6 %

• The converter efficiency is decreased from 97.3% to 94.7% when

DIODE’s parameter N increase from 0.01 to 0.4

Page 29: Concept Kit:PWM Boost Converter Transients Model

pwm

OSCREF

E / A

Comp

+

-

-

+

U1PWM_IC

FOSC = 300k

VP = 2.2VREF = 0.8

C1

8.259n

C2795p

R1

47.9k

R24.9k

C3

2.826nF

RLs10m

v out

Rlower10k

Vin

3.3

ESR

27m

C

1410u

Rupper140k

0

L6.8u

0

err

R

12

U2TPC6005S

D1

M2FM3

8.Simulation Using Real Device Models (Example)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 29

As we can see in the efficiency simulation (topic #7) that’s how the switching devices effect

the simulation result. For the accurate simulation result, the accurate models, that relate to

the real devices characteristics, are needed.

The Real Device Models of MOSFET (Toshiba N Channel MOS Part# TPCP6005)

The Real Device Models of Schottky Diode (Shindengen SBD Part# M2FM3)

Page 30: Concept Kit:PWM Boost Converter Transients Model

• The real device model enable designers to include the spike signal

(caused by the devices’ parasitic capacitance) in the switching

waveforms simulation.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 30

Time

9.980ms 9.985ms 9.990ms 9.995ms 10.000ms

V(VOUT)

11.9V

12.0V

12.1V

SEL>>

I(L)

0A

2.0A

4.0A

6.0A

I(U2:1)

-2.0A

0A

2.0A

4.0A

6.0A

V(PWM)

0V

5.0V

Spike current

8.Simulation Using Real Device Models (Example)

Page 31: Concept Kit:PWM Boost Converter Transients Model

Time

9.0ms 9.1ms 9.2ms 9.3ms 9.4ms 9.5ms 9.6ms 9.7ms 9.8ms 9.9ms 10.0ms

100* AVG(W(R))/ AVG(-W(Vin))

50

60

70

80

90

100

(9.500m,89.973)

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 31

8.2 Converter Efficiency (Real Device Models)

• The converter efficiency is decreased from 97.3% to 89.97% when the

device models are changed from the near-Ideal to the real model.

Efficiency (%)

Efficiency = 89.97 %

Page 32: Concept Kit:PWM Boost Converter Transients Model

• After the device voltage and current condition is simulated (e.g. VDS, PEAK=12.095V and

ID, PEAK=4.312A), The real device models could be picked up from the SpicePark, that

is the resource of device models, provided by Bee Technologies.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 32

Maximum Value Device Models

9.SpicePark of MOSFET Model

Page 33: Concept Kit:PWM Boost Converter Transients Model

Simulation Index

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 33

Simulations Folder name

1. Switching Waveforms......................................................

2. Power Stage Switches Voltage and Current....................

3. Load Transient Response................................................

4. Boost Converter Reliability Testing...................................

5. Converter Efficiency vs. MOSFET Rds(on) ....................

6. Converter Efficiency vs. MOSFET Diode, VF..................

waveforms

powersw

stepload

optimize

efficiency-rdson

efficiency-diode

Libraries :

1. ..\pwmic.lib

2. ..\diode.lib