concept : cell yield - uma...concept : cell yield glucose, mm 0 50 100 150 200 250 300 0 10 20 30 40...

20
Concept : Cell Yield Glucose, mM 0 50 100 150 200 250 300 0 10 20 30 40 Slope = 7.2 μg/ml per mM Experimental observation – Cell mass is proportional to available substrate

Upload: others

Post on 25-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Concept : Cell Yield - UMA...Concept : Cell Yield Glucose, mM 0 50 100 150 200 250 300 0 10 20 30 40 Slope = 7.2 µg/ml per mM Experimental observation – Cell mass is proportional

Concept : Cell Yield

Glucose, mM

0

50

100

150

200

250

300

0 10 20 30 40

Slope = 7.2 µg/ml per mM

Experimental observation –

Cell mass is proportionalto available substrate

Page 2: Concept : Cell Yield - UMA...Concept : Cell Yield Glucose, mM 0 50 100 150 200 250 300 0 10 20 30 40 Slope = 7.2 µg/ml per mM Experimental observation – Cell mass is proportional

Cell Yield – Formal Definition

dS

dXY s/x =

Cell Yield is:

ConsumedSubstrate

MassCellinChangeY s/x =

Page 3: Concept : Cell Yield - UMA...Concept : Cell Yield Glucose, mM 0 50 100 150 200 250 300 0 10 20 30 40 Slope = 7.2 µg/ml per mM Experimental observation – Cell mass is proportional

Cell Growth in Batch Culture

Page 4: Concept : Cell Yield - UMA...Concept : Cell Yield Glucose, mM 0 50 100 150 200 250 300 0 10 20 30 40 Slope = 7.2 µg/ml per mM Experimental observation – Cell mass is proportional

Typical Growth RatesGrowth

RateDoubling

timeµ [h-1] [h]

E. coli 2 0.35Yeast 0.3 2.3Hybridoma 0.05 13.9Insect Cells 0.06 11.6

Organism

Page 5: Concept : Cell Yield - UMA...Concept : Cell Yield Glucose, mM 0 50 100 150 200 250 300 0 10 20 30 40 Slope = 7.2 µg/ml per mM Experimental observation – Cell mass is proportional

Nature of Specific Growth

SK

S

s

m

+

µ=µ

S, g/ L

µ , 1

/h

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25

Monod Kinetics

Monod Kinetics. Dependence of Growth Rate onLimiting Substrate. Specific growth rate reaches amaximum value of 0.5 h-1. Value of KS here is 0.5 gL-1. Note that when S = 0.5 g L-1, µ is half of itsmaximum.

How does one experimentallydetermine cell parameters?

Population Growth Rate?

Page 6: Concept : Cell Yield - UMA...Concept : Cell Yield Glucose, mM 0 50 100 150 200 250 300 0 10 20 30 40 Slope = 7.2 µg/ml per mM Experimental observation – Cell mass is proportional

Expresión y producción de proteínas

Sistemas de expresión• Bacteriano• Hongos/levaduras• Animales• Plantas• Insectos• Otros

Recuperación de proteínas• Etiquetas de His• Fusiones MBP

Page 7: Concept : Cell Yield - UMA...Concept : Cell Yield Glucose, mM 0 50 100 150 200 250 300 0 10 20 30 40 Slope = 7.2 µg/ml per mM Experimental observation – Cell mass is proportional

Objectivos de la expresión deproteínas en producción industrial

Fermentación segura y bajo control

Barata

Alto nivel de proteína recombinante (g/L nomg/L)

Facilidad de recuperar proteínas expresadas

Que la proteína expresada no se degrade

Page 8: Concept : Cell Yield - UMA...Concept : Cell Yield Glucose, mM 0 50 100 150 200 250 300 0 10 20 30 40 Slope = 7.2 µg/ml per mM Experimental observation – Cell mass is proportional

Huespedes de expresión microbiano – E. coli

VENTAJAS

Gran cantidad de vectores a usa(fago λ phage y plásmidosderivados de pUC)

Altisima eficiencia detransformación

Fermentaciones muy bienconocidas

Recuperación y lisis celular muysencilla

DISVENTAJAS

Problemas de contaminacionescon pirógenos

A veces baja expresión

No glicosilas las proteínas

Proteínas no se exportan

Page 9: Concept : Cell Yield - UMA...Concept : Cell Yield Glucose, mM 0 50 100 150 200 250 300 0 10 20 30 40 Slope = 7.2 µg/ml per mM Experimental observation – Cell mass is proportional

Un vector de E. coli plasmídico

• Cribado por color• promotores de SP6 o T7 RNA polimerasas• Selección de resistencia a Amp

Page 10: Concept : Cell Yield - UMA...Concept : Cell Yield Glucose, mM 0 50 100 150 200 250 300 0 10 20 30 40 Slope = 7.2 µg/ml per mM Experimental observation – Cell mass is proportional

The decision to target the expressedprotein to a specific cellularcompartment, that is, to the cytoplasmicspace, periplasmic space or the culturemedium, rests on balancing theadvantages and disadvantages of eachcompartment

periplasm

cytoplasm

extracellular

[B] Heterologous biological expression systems (in vivo)

1) E. coli

AdvantagesRelatively simple procedureRapid Very high expression level

DisasdvantagesCodon usageSolubility (inclusion body, degeneration)Limitation in the length of cDNALacks post-translational modification(glycosylation, phosphorylation etc.)

Subcellular targeting of expression

Two common promoter systems:- T7 promoter- IPTG (isopropyl thiogalactoside) inducible promoter

+ IPTGLiepman and Olsen (2003)Plant Physiol. 131: 215-227

Page 11: Concept : Cell Yield - UMA...Concept : Cell Yield Glucose, mM 0 50 100 150 200 250 300 0 10 20 30 40 Slope = 7.2 µg/ml per mM Experimental observation – Cell mass is proportional

Huesped de expresión microbiana –Saccharomyces cerevisiae

VENTAJAS

Rendimiento de expresiónmoderado

Glicosilación de Proteínas exp.

Exporta Proteínas exp.

Fermentaciónes muy bienconocidas

Recuperación y lisis celular sencilla

DESVENTAJAS

Eficiencia de transformaciónbaja-media

Un rango limitado de vectores

Genes expresados se debenincorporar de manera estable

Page 12: Concept : Cell Yield - UMA...Concept : Cell Yield Glucose, mM 0 50 100 150 200 250 300 0 10 20 30 40 Slope = 7.2 µg/ml per mM Experimental observation – Cell mass is proportional

Huespedes de espresión microbiana –Pichia pastoris and Kluveromyces sp.

VENTAJAS

Rendimientos deexpresión moderadas

Proteínas glicosiladas

Proteínas exportadas

Recuperación sencilla

DESVENTAJAS

Eficiencia detransformación media-baja

Fermentaciones difíciles

Limitado rango de vectores

Genes de deben deincorporar estable

Uso de codones inusuales

Page 13: Concept : Cell Yield - UMA...Concept : Cell Yield Glucose, mM 0 50 100 150 200 250 300 0 10 20 30 40 Slope = 7.2 µg/ml per mM Experimental observation – Cell mass is proportional

Huespedes de espresión microbiana –Bacillus

VENTAJAS

Rendimientos de expresiónmuy altos (>10 g/L)

Fermentaciones sencillas

Proteínas expoertadas

Sistema de recuperaciónsencilla

Ocurren naturalmente

DESVENTAJAS

Rango limitado de vectores

Los vectores optimizados sonprivados

No glycosila

Sistema de transformaciónvariables

Page 14: Concept : Cell Yield - UMA...Concept : Cell Yield Glucose, mM 0 50 100 150 200 250 300 0 10 20 30 40 Slope = 7.2 µg/ml per mM Experimental observation – Cell mass is proportional

Expresión en células de insecto(Sistema específico huesped-vector; células de insecto en

cultivo Sf9 y vectores de Baculovirus vectors

VENTAJAS Glicosilación

Escalable a volúmenesgrandes

DESVENTAJAS Un sistema de

transformación altamenteespecífico (Baculovirus)

Cultivo fastidioso

Tiempo de crecimiento mylento (tiempo de doblaje es20h)

Page 15: Concept : Cell Yield - UMA...Concept : Cell Yield Glucose, mM 0 50 100 150 200 250 300 0 10 20 30 40 Slope = 7.2 µg/ml per mM Experimental observation – Cell mass is proportional

Cultivo de células de plantas

VENTAJAS Suspensiones celulares

Se requiere baja aireación

Protein dirigidas a lavacuola

DESVENTAJAS Rango restringido de sistemas de

transformación• Agrobacterium para dicots• Biolistica para monocots• Virus de plantas específicos

Crecimiento muy lento (d.t. 15h –48h)

Muy sensible a estrés Crece de manera heterotrófica

pero requiere luz paracrecimiento óptimo

Page 16: Concept : Cell Yield - UMA...Concept : Cell Yield Glucose, mM 0 50 100 150 200 250 300 0 10 20 30 40 Slope = 7.2 µg/ml per mM Experimental observation – Cell mass is proportional

Cultivo de células animales

VENTAJAS Glicosilación exacta

Se pueden tranformar enlineas celulares

Algunas crecen ensuspensiones (p.e. célulasCHO)

Algunas céulas derivadas decarcinoma (p.e. célulasHeLa) crecen muy rápido

Expresión extracelular

DESVENTAJAS La mayoría crecen

adheridas

Requerimientos complejospara crecimiento

Tiempo de crecimiento muylento (t.d. 15-25h)

Muy susceptible acontaminación

Muy sensible a estreses

Page 17: Concept : Cell Yield - UMA...Concept : Cell Yield Glucose, mM 0 50 100 150 200 250 300 0 10 20 30 40 Slope = 7.2 µg/ml per mM Experimental observation – Cell mass is proportional

Otros sistemas de expresión

Sistema de expresión de tabaco Usa TMV Promotores específicos de tejido Se puede escalar

Sistema de expresión en animal completo Transformación de embrion sin fertilizar Uso de promotores específicos de tejidos (p.e. promotor específico

de la lactosa para la expresión sólo en la leche)

Page 18: Concept : Cell Yield - UMA...Concept : Cell Yield Glucose, mM 0 50 100 150 200 250 300 0 10 20 30 40 Slope = 7.2 µg/ml per mM Experimental observation – Cell mass is proportional

Desarrollo de sistemas de expresión

Plásmidos multicopia

Múltiples marcadores de selección (ampicilina,

tetraciclina, kanamicina…)

Promotores diferentes (ITPG, Trp, inducible por

temperatura, Tet)

Multiples secuencias ori

Etiquetas N o C terminal tags (p.e., poli-His) con sitios de

ruptura

Page 19: Concept : Cell Yield - UMA...Concept : Cell Yield Glucose, mM 0 50 100 150 200 250 300 0 10 20 30 40 Slope = 7.2 µg/ml per mM Experimental observation – Cell mass is proportional

Vectores designados para la recuperaciónde proteínas: Etiquetas de His

Vectores contienenpoliGCA

Proteínas tienen polyHis

Recuperación conproteínas de afinidad Ni-NTA

Page 20: Concept : Cell Yield - UMA...Concept : Cell Yield Glucose, mM 0 50 100 150 200 250 300 0 10 20 30 40 Slope = 7.2 µg/ml per mM Experimental observation – Cell mass is proportional

Recombinant protein expression

[A] Cell free systems (in vitro)

- Rabbit reticulocyte lysate translation system

- Wheat Germ Extract

Contain the cellular components necessary for protein synthesis (tRNA, ribosomes, amino acids, and initiation, elongation and termination factors).

- Coupled transcription/translation systems

High protein yields to continuous-exchange cell-free (CECF)technology. A semi-permeable membrane separates twochambers that contain a reaction compartment for coupledtranscription/translation from an enhanced E. coli lysate, and afeeding compartment for substrates and energy components.Protein synthesis can continue for up to 24 hours as substratesand energy components continuously diffuse across the membraneinto the reaction compartment while inhibitory reaction by-productssimultaneously diffuse away, into the feeding compartment. As withother open systems, researchers can add detergents, chaperones,labeled amino acids, cofactors, and protease inhibitors during thereaction and monitor protein quantities at any time. If desired,investigators can co-express multiple proteins by using several DNAtemplates in one reaction