computer vision for robotic navigation and augmented reality applications

Upload: rigoberto-juarez-salazar

Post on 01-Jun-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    1/44

    Introduction

    Computer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    References

    Computer vision for robotic navigation and augmentedreality applications

    Dr. Rigoberto Juarez Salazar

    1Instituto Tecnológico Superior de ZacapoaxtlaDivisión de Ingenierı́a Informática

    Congreso Multidisciplinario Ciencia y Tecnologı́a para elDesarrollo Sustentable

    October 15, 2014

    1 / 4 0 Dr. Rigoberto Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    2/44

    Introduction

    Computer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    References

    Content

    1   Introduction

    2   Computer vision by phase encoding methods

    3   Developed phase-based measurement systemNormalización de patrones de franjasFourier fringe-normalized analysisInhomogeneous phase-shiftingDesenvolvimiento de fase

    4   Conclusions

    5 References

    2 / 4 0 Dr. Rigoberto Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    http://find/http://goback/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    3/44

    Introduction

    Computer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    References

    Introduction

    Figura :  Metrology is a very important task in most of human task. It increases our senses,particularly, vision sense. Vision is about discovering from images what is present in the scene and

    where it is. It is our most powerful sense.

    3 / 4 0 Dr. Rigoberto Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    4/44

    Introduction

    Computer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    References

    What is computer vision?

    In computer vision a camera (or several cameras) is linked to a computer. Thecomputer automatically interprets images of a real scene to obtain useful information(e.g., 3D reconstruction) and then acts on that information (e.g. for navigation or

    manipulation).

    4 / 4 0 Dr. Rigoberto Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    5/44

    Introduction

    Computer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    References

    What is computer vision?

    In computer vision a camera (or several cameras) is linked to a computer. Thecomputer automatically interprets images of a real scene to obtain useful information(e.g., 3D reconstruction) and then acts on that information (e.g. for navigation or

    manipulation).

    It is not:

    Image processing.   Image enhancement, image restoration, image compression. Takean image and process it to produce a new image which is, in someway, more desirable.

    Pattern recognition.  Classifies patterns into one of a finite set of prototypes.

    4 / 4 0 Dr. Rigoberto Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    6/44

    Introduction

    Computer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    References

    Applications of computer vision

    Automation of industrial processes: object recognition, visual inspection, robothand-eye coordination, robot navigation.

    Space and military: remote sensing, surveillance, target detection and tracking(traffic, aircraft, etc.), UAV localization.

    Human-computer interaction: Face detection and recognition. Mobile-phoneapplications, augmented reality.

    3D modeling.

    5 / 4 0 Dr. Rigoberto Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    I t d ti

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    7/44

    Introduction

    Computer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    References

    A proposed computer vision-based robotic navigation

    6 / 4 0 Dr. Rigoberto Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    Introduction

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    8/44

    Introduction

    Computer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    References

    Computer vision-based robotic navigation

    7 / 4 0 Dr. Rigoberto Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    Introduction

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    9/44

    Introduction

    Computer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    References

    Approaches in computer vision

    There are two main approaches to obtain three-dimensional information of a scene.

    Amplitude or intensity modulation

    The information is obtained from variations of intensity of the object, for example,

    shadows, illumination conditions, surface color, etc. It is simple to implement and easythe experimental setup. However, it is very sensitive to noise sources.

    Phase modulation

    The information of interest is encoded into a phase distribution, for example, by phaseshifting, or frequency carrier. The experimental setup is lightly more complex than

    amplitude modulation approach. The data processing is more complex. The mainadvantages is that phase modulation have a very high robustness to noise sources. Itallows to reach a high resolution.

    8 / 4 0 Dr. Rigoberto Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    Introduction

    http://find/http://goback/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    10/44

    Introduction

    Computer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    References

    Phase-based measurement systems

    !"#$%&'(

    *'+',-.-+ /-0$%01

    2-3%&-

    40*5.$ 65.*5.$ 7+%01-8

    *'9-+0$

    :-$5+'02

    !"#$%&'$()*+ -$).#

    /%&(0$ *(*+1-&-

    /; /< /= />/?

    !"#$%&'

    )*+&"$,

    -&,."*$/

    0"&'

    )"12&,,#$%

    3"*))&/

    )4*,&

    &56"*271$

    8$6&"9&/#*6&

    )"12&,,#$%

    04*,&'

    .$:"*))#$%

    01,6'

    )"12&,,#$%

    Figura :  General scheme of a phase-based measurement system.

    The experimental setup generates fringe-patterns where the encoded phase isassociated with the physical parameter of interest.

    The fringe analysis block extracts the physical information from the givenfringe-patterns.

    9 / 4 0 Dr. Rigoberto Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    Introduction

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    11/44

    Introduction

    Computer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    References

    Computer vision by phase encoding methods

    By the good properties of using phase modulation, we are focused on reconstruction of3D objects by phase-shifting as well as Fourier fringe analysis to robotic navigation andaugmented reality applications.

    The phase encoding approach consist on the following two procedures.

    1. Wrapped phase extraction

    One or more fringe-patterns are processed to obtain the encoded phase in a wrappedformat. For this, the two main methods are

    Phase-shifting method.

    Advantages.  Full resolution is reached, algorithms are simple and very robust.Disadvantages.  More than one image is required. This make it no much available

    for real-time applications.Fourier fringe analysis.

    Advantages  Only one image is sufficient to work, it is appropriate for real-timeapplications.

    Disadvantages.  Reduced resolution, algorithms are complex. Filtering is difficult.

    10 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    Introduction

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    12/44

    Computer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    References

    Computer vision by phase encoding methods

    By the good properties of using phase modulation, we are focused on reconstruction of3D objects by phase-shifting as well as Fourier fringe analysis to robotic navigation andaugmented reality applications.

    The phase encoding approach consist on the following two procedures.

    2. Phase unwrapping

    The synthetic phase jumps induced by the phase extraction must be removed beforethat any useful information can be reached. For this, a phase unwrapping process isapplied in the pipeline.

    .

    11 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    Introduction

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    13/44

    Computer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    References

    Phase demodulation process

    (a) (b) (c)

    !"#$%&'(

    *'+',-.-+ /-0$%01

    2-3%&-

    40*5.$ 65.*5.$ 7+%01-8

    *'9-+0$

    :-$5+'02

    !"#$%&'$()*+ -$).#

    /%&(0$ *(*+1-&-

    /; /< /= />/?

    !"#$%&'

    )*+&"$,

    -&,."*$/

    0"&'

    )"12&,,#$%

    3"*))&/

    )4*,&

    &56"*271$

    8$6&"9&/#*6&)"12&,,#$%

    04*,&'

    .$:"*))#$%

    01,6'

    )"12&,,#$%

    Figura :  General scheme of a phase-based measurement system.

    12 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionNormalización de patrones de franjas

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    14/44

    Computer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    References

    Normalizacion de patrones de franjas

    Fourier fringe-normalized analysis

    Inhomogeneous phase-shifting

    Desenvolvimiento de fase

    Fringe-pattern normalization. . .

    An efficient and automatic processing algorithm.

     I k 

    u2   sat 

     âk 

     LS    +!

    +

     LS 

     b̂2

    k   2   b̂

    k    u v2  u

    ! I k 

      I k 

    13 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionNormalización de patrones de franjas

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    15/44

    Computer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    References

    Normalizacion de patrones de franjas

    Fourier fringe-normalized analysis

    Inhomogeneous phase-shifting

    Desenvolvimiento de fase

    Fringe-pattern normalization

    Let be a set of K  fringe-patterns of the form

    I k (p ) = a k (p ) +  b k (p ) cos Φk (p ),   k  = 0,K  − 1.   (1)

    Then, the background and modulation lights can be recovered by1

    a k   = Aa A†a I k ,

    b 2k   = 2Ab A†b 

    (I k  − a k )2.

    (2)

    Finally, the normalization is carried out by the function sat(·) as

    Ī k   = sat

    I k  − a k 

    b k 

     =  cos Φk (p )   ∀b k (p ) = 0.   (3)

     I k 

    u

    2   sat  âk 

     LS    +!

    +

     LS 

     b̂2

    k   2   b̂

    k    u v

    2  u

    ! I k 

      I k 

    Figura :  Block diagram of the proposed fringe-pattern normalization method.

    1Juarez-Salazar, R., Robledo-Sanchez, C., Meneses-Fabian, C., Guerrero-Sanchez, F., and Aguilar, L. A.Generalized phase-shifting interferometry by parameter estimation with the least squares method. Optics and 

    Lasers in Engineering , 51(5):626 – 632 (2013).

    14 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    Introduction

    C i i b h di h dNormalización de patrones de franjas

    http://goforward/http://find/http://goback/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    16/44

    Computer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    References

    Normalizacion de patrones de franjas

    Fourier fringe-normalized analysis

    Inhomogeneous phase-shifting

    Desenvolvimiento de fase

    Example for the two-dimensional caseFringe-pattern normalization

    Video...

    15 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    Introduction

    C t i i b h di th dNormalización de patrones de franjas

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    17/44

    Computer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    References

    p j

    Fourier fringe-normalized analysis

    Inhomogeneous phase-shifting

    Desenvolvimiento de fase

     I !"#

    ! w I 

    ""#%

    ! w

     I 

    &'()*+,-.

    &'()*+,-.

    "/0+),)1 '()*+,-.

    "/0+),)1 '()*+,-.

    234

    254

    "# " !"#

    6

    6

    7).38/89

    :),; ;,1),

    Wrapped phase extraction. . .

    Advanced algorithms for the extraction of wrapped phase byusing spatial and temporal carriers.

    !

    c A

     I    I sw   cos

    !1

     LS 

     LS 

    !cS 

    cos!    ! 

     I 

    !    ! w

    #$% #$$%

     LS 

    16 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    Introduction

    Computer vision by phase encoding methodsNormalización de patrones de franjas

    http://find/http://goback/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    18/44

    Computer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    References

    Fourier fringe-normalized analysis

    Inhomogeneous phase-shifting

    Desenvolvimiento de fase

    Fourier fringe-normalized analysis

    17 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    Introduction

    Computer vision by phase encoding methodsNormalización de patrones de franjas

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    19/44

    Computer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    References

    Fourier fringe-normalized analysis

    Inhomogeneous phase-shifting

    Desenvolvimiento de fase

    Fourier fringe-normalized analysis

    The classical approach considers fringe-patterns of the form

    I (p ) = a (p ) +  b (p ) cos[φ(p ) + 2πf   · p ].   (4)

    The respective spectrum is

     I (µ) = A(µ) + C (µ − f ) + C ∗(µ + f ).   (5)

    If a fringe-pattern normalization is previously applied, both background and modulation

    lights are removed and the respective spectrum is suppressed. Thus, the filteringprocedure is less critical

     I !"#

    ! w I ""#%

    ! w

     I 

    &'()*+,-.

    &'()*+,-.

    "/0+),)1 '()*+,-.

    "/0+),)1 '()*+,-.

    234

    254

    "# " !"#

    6

    6

    7).38/89

    :),; ;,1),

    Figura :  (Top) Analysis scheme with the Fourier method. (Down) Proposed scheme.2

    2Casco-Vasquez, J. F., Juarez-Salazar, R., Robledo-Sanchez, C., Rodriguez-Zurita, G., Sanchez, F. G.,Arévalo Aguilar, L. M., and Meneses-Fabian, C.  Fourier normalized-fringe analysis by zero-order spectrum 

    suppression using a parameter estimation approach. Optical Engineering , 52(7):074109 –074109 (2013).18 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    Introduction

    Computer vision by phase encoding methodsNormalización de patrones de franjas

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    20/44

    Computer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    References

    Fourier fringe-normalized analysis

    Inhomogeneous phase-shifting

    Desenvolvimiento de fase

    Numerical example

    Casco-Vasquez, J. F., Juarez-Salazar,  et. al., Fourier normalized-fringe analys is  by  ze ro -ord er  s p ec tru m suppression using a parameter estimation approach. Optical  Engineering , 52(7):074109–074109 (2013).19 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    Introduction

    Computer vision by phase encoding methodsNormalización de patrones de franjas

    F i f i li d l i

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    21/44

    Computer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    References

    Fourier fringe-normalized analysis

    Inhomogeneous phase-shifting

    Desenvolvimiento de fase

    Numerical and experimental examplesWrapped phase extraction by using the proposed Fourier fringe-normalized analysis.

    3Casco-Vasquez, J. F., Juarez-Salazar, R., Robledo-Sanchez, C., Rodriguez-Zurita, G., Sanchez, F. G.,Arévalo Aguilar, L. M., and Meneses-Fabian, C.  Fourier normalized-fringe analysis by zero-order spectrum 

    suppression using a parameter estimation approach. Optical Engineering , 52(7):074109 –074109 (2013).20 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    Introduction

    Computer vision by phase encoding methodsNormalización de patrones de franjas

    Fourier fringe normalized analysis

    http://find/http://goback/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    22/44

    p y p g

    Developed phase-based measurement system

    Conclusions

    References

    Fourier fringe-normalized analysis

    Inhomogeneous phase-shifting

    Desenvolvimiento de fase

    Improved efficiency and robustnessFourier fringe-normalized analysis

    Video...

    21 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    Introduction

    Computer vision by phase encoding methodsNormalización de patrones de franjas

    Fourier fringe normalized analysis

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    23/44

    Developed phase-based measurement system

    Conclusions

    References

    Fourier fringe-normalized analysis

    Inhomogeneous phase-shifting

    Desenvolvimiento de fase

    Inhomogeneous generalized

    phase-shifting algorithm

    22 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionComputer vision by phase encoding methods

    Normalización de patrones de franjas

    Fourier fringe-normalized analysis

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    24/44

    Developed phase-based measurement system

    Conclusions

    References

    Fourier fringe normalized analysis

    Inhomogeneous phase-shifting

    Desenvolvimiento de fase

    Inhomogeneous generalized phase-shifting algorithm

    For phase-shifting, it are considered fringe-patterns of the form

    I k (p ) = a k (p ) +  b k (p ) cos[φ(p ) + δk (p )],   (6)

    where the phase shift δk (p ) is, in general, inhomogeneous and unknown .Video...

    xy

       P   h  a  s  e

      s   h   i   f   t         δ

    (a)

    xy

       P   h  a  s  e

      s   h   i   f   t         δ

    (b)

    xy

    (c)

       P   h  a  s  e

      s   h   i   f   t         δ

    xy

    (d)

       P   h  a  s  e

      s   h   i   f   t         δ

    Figura :  Generalized phase shift. Homogeneous: (a) linear, and (b) nonlinear in k . Inhomogeneous:(c) nonlinear in k  but linear in p , and (d) nonlinear in both k  and p .

    23 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionComputer vision by phase encoding methods

    D l d h b d

    Normalización de patrones de franjas

    Fourier fringe-normalized analysis

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    25/44

    Developed phase-based measurement system

    Conclusions

    References

    Fourier fringe normalized analysis

    Inhomogeneous phase-shifting

    Desenvolvimiento de fase

    Algoritmo de corrimiento de fase generalizado inhomogéneoDescripción del algoritmo

    1 Normalización de los patrones de franjas.2 De las cantidades Ak   = Ī k −1 + Ī k   y S k   = Ī k −1 − Ī k  de dos patrones adyacentes,

    el coseno del paso de fase entre esos patrones se obtiene mediante

    c Ak   =  Ac A†c (A

    2k  − 1),   (7a)

    c Sk   =  Ac A†c (1 − S 

    2k ).   (7b)

    3 La función Γ(·) [ver Fig. 8(b)] se usa para seleccionar entre c Ak   y c Sk   comocosαk   = c Sk Γ(ωc k ) +  c Ak Γ(−ωc k ),   (8)

    donde el paso de fase  αk  se obtiene calculando el coseno inverso de  (8).

    −3

    −2

    −1

    0

    1

    2

    3

    (a)

     0   π /4   π /2

    Phase step αk 

    3π /4   π −1 −0.5 0 0.5 1

    0

    0.2

    0.4

    0.6

    0.8

    1

    ck 

    (b)

      −3

    −2

    −1

    0

    1

    2

    3

    (c)

     0   π /4   π /2

    Phase step αk 

    3π /4   π

    A2 − 1

    1 − S2

    cos(α

    k ) Γ(−ω c k )

    Γ(ω ck )

    Equivalent data

    cos(αk )

    Figura :  (a) Los datos A2k  − 1 y 1 − S 2k  para estimación de cos αk . Para αk   ∈ [0, π/2] es

    conveniente elegir 1 − S 2k  porque la amplitud del ruido es baja, y  viceversa para αk   ∈ [π/2, π].24 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionComputer vision by phase encoding methods

    D l d h b d t t

    Normalización de patrones de franjas

    Fourier fringe-normalized analysis

    http://find/http://goback/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    26/44

    Developed phase-based measurement system

    Conclusions

    References

    g y

    Inhomogeneous phase-shifting

    Desenvolvimiento de fase

    Algoritmo de corrimiento de fase generalizado inhomogéneo

    4 El corrimiento de fase es recuperado mediante la sumatoria:

    δk   = δ0 +k 

    =1

    α,   k  = 1, 2, · · ·  ,K  − 1.   (9)

    5 finalmente, la fase envuelta es obtenida mediante

    φw   = arctan(ζ/ξ),   (10)

    donde ζ  = sin φ y  ξ  = cosφ son obtenidos mediante:ξζ 

     =  A†

    φ

    I 0   I 1   · · ·   I K −1

    T ,   Aφ  =

    cos δk    − sin δk 

    .   (11)

    !

    c A

     I    I sw   cos

    !1

     LS 

     LS 

    !cS 

    cos!    ! 

     I 

    !    ! w

    #$% #$$%

     LS 

    Figura :  Diagrama de bloques del algoritmo de corrimiento de fase generalizado inhomogéneo

    propuesto.4

    4R. Juarez-Salazar, et. al.,  Generalized phase-shifting algorithm for inhom og ene ou s  pha se  s hi ft  an d 

    spatio-temporal fringe visibility variation. Opt. Express , 22(4):4738–4750 (2014).25 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionComputer vision by phase encoding methods

    Developed phase based measurement system

    Normalización de patrones de franjas

    Fourier fringe-normalized analysis

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    27/44

    Developed phase-based measurement system

    Conclusions

    References

    g y

    Inhomogeneous phase-shifting

    Desenvolvimiento de fase

    Extracción rápida, automática y robusta de fase envueltaAlgoritmo de corrimiento de fase generalizado inhomogéneo

    Video...

    •Corrimiento de fase generalizado   •Visibilidad espacio-temporal   •Solo dos patrones

    26 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionComputer vision by phase encoding methods

    Developed phase based measurement system

    Normalización de patrones de franjas

    Fourier fringe-normalized analysis

    http://find/http://goback/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    28/44

    Developed phase-based measurement system

    Conclusions

    References

    Inhomogeneous phase-shifting

    Desenvolvimiento de fase

    Extracción rápida, automática y robusta de fase envueltaAlgoritmo de corrimiento de fase generalizado inhomogéneo

    Video...

    •Corrimiento de fase no-lineal inhomogéneo   •Visibilidad espacio-temporal   •Solo dos

    patrones

    27 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionComputer vision by phase encoding methods

    Developed phase-based measurement system

    Normalización de patrones de franjas

    Fourier fringe-normalized analysis

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    29/44

    Developed phase based measurement system

    Conclusions

    References

    Inhomogeneous phase-shifting

    Desenvolvimiento de fase

    Desenvolvimiento de fase. . .

    Desenvolvimiento de fase rápido y exacto

    ! !!!    1

    2! round 

     !k  LS 

    !k 2!  

    2!  k 

    ! +round 

      k 

    28 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionComputer vision by phase encoding methods

    Developed phase-based measurement system

    Normalización de patrones de franjas

    Fourier fringe-normalized analysis

    I h h hifti

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    30/44

    Developed phase based measurement system

    Conclusions

    References

    Inhomogeneous phase-shifting

    Desenvolvimiento de fase

    Desenvolvimiento de fase

    Un mapa de fase envuelto  ψ(p ) puede ser descrito como

    ψ(p ) = φ(p ) − 2πk (p ),   k (·) ∈ Z ,   (12)

    donde φ(p ) es el mapa de fase continuo y 2πk (p ) (con k  una función de valor entero)son los saltos de fase.

    Enfoque espacial de desenvolvimiento de fase

    En general, los algoritmos de desenvolvimiento de fase se basan en la ecuación deItoh:

    ∇φ(p ) = W [∇ψ(p )].   (13)

    La ecuación (13) se puede resolver para  φ  mediante los métodos de seguimiento de

    trayectoria o de norma mı́nima:

    φ(p ) = φ0(p ) +

     Ω

    W{ψ(p )} dp ,   o mı́nφ

    W [∇ψ(p )] − ∇φ(p ).   (14)

    29 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionComputer vision by phase encoding methods

    Developed phase-based measurement system

    Normalización de patrones de franjas

    Fourier fringe-normalized analysis

    Inhomogeneo s phase shifting

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    31/44

    p p y

    Conclusions

    References

    Inhomogeneous phase-shifting

    Desenvolvimiento de fase

    Desenvolvimiento de fase

    Usualmente, el desenvolvimiento de fase se realiza removiendo los saltos de fase yreconstruyendo el mapa de fase continuo.

    φ(p ) = ψ(p ) + 2πk (p ),   (15)

    Alternativamente, es posible reconstruir los saltos de fase y entonces agregar lainformación de fase envuelta para obtener un mapa de fase continuo.

    φ(p ) = ψ(p ) + 2πk (p ).   (16)

    Algunas ventajas del método alternativo

    ∇ψ(·) ∈ ,   ∇k (·) ∈  D  ={−1,0, 1}   Caso discreto,

    {−∞, 0,∞}   Caso continuo.   (17)

    Esto sugiere algoritmos más simples y robustos debido a que es directo y estableaproximar a un elemento de tres posibles.

    30 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionComputer vision by phase encoding methods

    Developed phase-based measurement system

    Normalización de patrones de franjas

    Fourier fringe-normalized analysis

    Inhomogeneous phase shifting

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    32/44

    Conclusions

    References

    Inhomogeneous phase-shifting

    Desenvolvimiento de fase

    Desenvolvimiento de fase por mı́nimos cuadrados y redondeo

    Se puede mostrar que el gradiente ∇k (p ) satisface la ecuación

    ∇k (p ) = round

      1

    2π∇ψ

    ,   (18)

    donde round(·) indica la operación de redondeo. Entonces, la función k  se puedeestimar desde ∇k  mediante el problema de optimización:

    m ı́nk̃ k x  − k̃LT x 2

    + k y  − Ly k̃ 2F  ,   (19)

    donde k̃  es la función que aproxima a los datos k .

    El problema de optimización (19) es equivalente a resolver la ecuación de Lyapunov[?] Ak̃  + k̃ B  = C , con A  =  LT y  Ly , B  = L

    T x  Lx , y C  = L

    T y  k y  + k x Lx .

    !  !!! 

      1

    2! round  !k   LS 

    !

    k  2!   2!  k 

    ! +round   k 

    Figura :  Desenvolvimiento de fase por mı́nimos cuadrados y redondeo.5

    5R. Juarez-Salazar, et. al.,  Phase-unwrapping algorithm by a rounding-lea st- squ ar es  ap pro a ch . Op t.

    Engineering , 53(2):074109 (2013).31 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionComputer vision by phase encoding methods

    Developed phase-based measurement system

    Normalización de patrones de franjas

    Fourier fringe-normalized analysis

    Inhomogeneous phase-shifting

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    33/44

    Conclusions

    References

    Inhomogeneous phase-shifting

    Desenvolvimiento de fase

    Desenvolvimiento de fase rápido, automático y exactoDesenvolvimiento de fase por mı́nimos cuadrados y redondeo

    Video... •Funcionamiento del algoritmo de desenvolvimiento de fase propuesto

    32 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionComputer vision by phase encoding methods

    Developed phase-based measurement system

    C

    Normalización de patrones de franjas

    Fourier fringe-normalized analysis

    Inhomogeneous phase-shifting

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    34/44

    Conclusions

    References

    Inhomogeneous phase shifting

    Desenvolvimiento de fase

    Desenvolvimiento de fase rápido, automático y exactoDesenvolvimiento de fase por mı́nimos cuadrados y redondeo

    Video... •Factibilidad del algoritmo propuesto

    33 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionComputer vision by phase encoding methods

    Developed phase-based measurement system

    C l i

    Normalización de patrones de franjas

    Fourier fringe-normalized analysis

    Inhomogeneous phase-shifting

    http://find/http://goback/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    35/44

    Conclusions

    References

    o oge eous p ase s t g

    Desenvolvimiento de fase

    Desenvolvimiento de fase rápido, automático y exactoDesenvolvimiento de fase por mı́nimos cuadrados y redondeo

    Figura :  Ejemplos de desenvolvimiento de fase. (1ra columna) Datos sintéticos, (2da y 3racolumna) Datos experimentales obtenidos por interferencia, (4ta columna) Datos experimentales

    obtenidos por proyección de franjas.

    34 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionComputer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    Normalización de patrones de franjas

    Fourier fringe-normalized analysis

    Inhomogeneous phase-shifting

    http://find/http://goback/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    36/44

    Conclusions

    References

    g p g

    Desenvolvimiento de fase

    Desenvolvimiento de fase rápido, automático y exactoDesenvolvimiento de fase por mı́nimos cuadrados y redondeo

    Reconstrucción de objetos 3D mediante proyección de franjas usando el algoritmo dedesenvolvimiento de fase propuesto.

    35 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionComputer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    Normalización de patrones de franjas

    Fourier fringe-normalized analysis

    Inhomogeneous phase-shifting

    http://find/http://goback/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    37/44

    Conclusions

    ReferencesDesenvolvimiento de fase

    Desenvolvimiento de fase rápido, automático y exactoDesenvolvimiento de fase por mı́nimos cuadrados y redondeo

    Reconstrucción de objetos 3D mediante proyección de franjas usando el algoritmo dedesenvolvimiento de fase propuesto.

    35 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionComputer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    Normalización de patrones de franjas

    Fourier fringe-normalized analysis

    Inhomogeneous phase-shifting

    http://find/http://goback/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    38/44

    Conclusions

    ReferencesDesenvolvimiento de fase

    Desenvolvimiento de fase rápido, automático y exactoDesenvolvimiento de fase por mı́nimos cuadrados y redondeo

    Reconstrucci´on de objetos 3D mediante proyecci

    ´on de franjas usando el algoritmo dedesenvolvimiento de fase propuesto.

    35 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionComputer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    Normalización de patrones de franjas

    Fourier fringe-normalized analysis

    Inhomogeneous phase-shifting

    D l i i d f

    http://find/http://goback/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    39/44

    Conclusions

    ReferencesDesenvolvimiento de fase

    Desenvolvimiento de fase rápido, automático y exactoDesenvolvimiento de fase por mı́nimos cuadrados y redondeo

    Reconstrucción de objetos 3D mediante proyección de franjas usando el algoritmo dedesenvolvimiento de fase propuesto.

    35 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionComputer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    Normalización de patrones de franjas

    Fourier fringe-normalized analysis

    Inhomogeneous phase-shifting

    D l i i t d f

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    40/44

    ReferencesDesenvolvimiento de fase

    Desenvolvimiento de fase rápido, automático y exactoDesenvolvimiento de fase por mı́nimos cuadrados y redondeo

    Reconstrucción de objetos 3D mediante proyección de franjas usando el algoritmo dedesenvolvimiento de fase propuesto.

    (a) (b) (c)

    36 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionComputer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    41/44

    References

    Conclusions

    General conclusions

    1 A fringe analysis scheme to phase demodulation for fast and automaticapplications was presented.

    2 The simplicity of the developed algorithms, makes possible the implementation ofthe fringe analysis toolbox in dedicated hardware to address real-time

    applications.

    3 By the flexibility of the proposed scheme, it may be implemented in many othermeasurement areas such as machine vision and adaptive optics.

    Particular conclusions

    1 Like the Fourier fringe analysis method, the proposed fringe-pattern and thegeneralized phase-shifting algorithms may be extended to more than two spatialdimensions.

    2 For the proposed generalized phase-shifting algorithm, if the optical setup is staticand the object is dynamic, the computed phase shift will correspond to the object.It may be useful to extract the phase object without a phase shift. An application of

    this may be optical coherent tomography.37 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionComputer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    42/44

    References

    References I

    R. Juarez-Salazar, C. Robledo-Sanchez, C. Meneses-Fabian, F. Guerrero-Sanchez, and L. A. Aguilar,

    “Generalized phase-shifting interferometry by parameter estimation with the least squares method,”  Optics and Lasers in Engineering  51, 626–632 (2013).

    Robledo-Sanchez, C., Juarez-Salazar, R., Meneses-Fabian, C., Guerrero-Sánchez, F., Aguilar, L. M. A.,

    Rodriguez-Zurita, G., and Ixba-Santos, V. “Phase-shifting interferometry based on the lateral displacement ofthe light source” Opt. Express ,  21(14):17228–17233 (2013).

    Casco-Vasquez, J. F., Juarez-Salazar, R., Robledo-Sanchez, C., Rodriguez-Zurita, G., Sanchez, F. G.,Arévalo Aguilar, L. M., and Meneses-Fabian, C. “Fourier normalized-fringe analysis by zero-order spectrumsuppression using a parameter estimation approach”  Optical Engineering ,  52(7):074109–074109 (2013).

    Gannavarpu Rajshekhar and Pramod Rastogi “Fringe analysis: Premise and perspectives” Optics and Lasers 

    in Engineering ,  50(8):iii–x (2012).

    J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, ”Digital

    wavefront measuring interferometer for testing optical surfaces and lenses,.Appl. Opt.  13, 2693-2703 (1974).

    K. Creath, ”Phase measurement interferometry techniques,ı̈n ”Progress in optics,”vol. 26, E. Wolf, ed.

    (Elsevier Science Publishers, 1988), pp. 349-393.

    L. L. Deck, ”Suppressing phase errors from vibration in phase-shifting interferometry,.Appl. Opt.  48,

    3948-3960 (2009).

    38 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionComputer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    http://find/http://goback/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    43/44

    References

    References II

    C. J. Morgan, ”Least-squares estimation in phase-measurement interferometry,.Opt. Lett.  7, 368-370 (1982).

    J. E. Greivenkamp, ”Generalized data reduction for heterodyne interferometry,.Optical Engineering  23,

    350-352 (1984).

    G. Lai and T. Yatagai, ”Generalized phase-shifting interferometry,”J. Opt. Soc. Am. A  8, 822-827 (1991).

    L. Z. Cai, Q. Liu, and X. L. Yang, ”Generalized phase-shifting interferometry with arbitrary unknown phase

    steps for difraction objects,.Opt. Lett.  29, 183-185 (2004).

    X. Xu, L. Cai, H. Yuan, Q. Zhang, G. Lu, and C. Wang, ”Phase shift selection for two-step generalized

    phase-shifting interferometry,.Appl. Opt.  50, H171-H176 (2011).

    A. Patil and P. Rastogi, .Approaches in generalized phase shifting interferometry,.Optics and Lasers in

    Engineering 43, 475-490 (2005).

    C. T. Farrell and M. A. Player, ”Phase-step insensitive algorithms for phase-shifting

    interferometry,”Measurement Science and Technology  5, 648 (1994).

    Pramod K. Rastogi. Digital speckle pattern interferometry and related techniques.  John Wiley and Sons, LTD ,2001.

    D. Malacara, ed., Optical shop testing  (John Wiley & Sons, Inc., 2007), 3rd ed.

    39 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    IntroductionComputer vision by phase encoding methods

    Developed phase-based measurement system

    Conclusions

    R f

    http://find/

  • 8/9/2019 Computer vision for robotic navigation and augmented reality applications

    44/44

    References

    Thank you very much for your attention

    Any question?

    40 / 40 Dr. Rigober to Juárez Salazar [email protected]   Computer vision in robotic navigation and augmented reality applications

    http://find/