computer simulation of compression-ignition engine processes v ganesan bn.pdf

Upload: mijail-celin-mercado

Post on 01-Jun-2018

261 views

Category:

Documents


4 download

TRANSCRIPT

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    1/110

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    2/110

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    3/110

    CONTENTS

     P n fa cc   xi

     L ü l o f if tn io U   ziv

    Ch»pt«r 1 INTRODUC TION1.t SindUlon1.2 Advuilt| et of compaUr ilmBUtio*1.3 Obj«ctiv« ef lU i book1.4 SU p-by- «t«p pproadi

    C h a pU r 2 R E A C T I V E P R 0 C E S 3 E 32.1 Inlrodactios2.2 Heit oí r«»etba2.3 Mcuoremeot of 2.< MíunrtmtBt oí B, f 

    2 i Cilcnk tloB of h!|litr tnil iower L«tt vilae of fatliEnrcii*

    C h ap tM S A D I A B A T I C r L A M E T E M P E R A T U R B3.1 Introdactioa

    3.2 CompfcU combttrtlon io C/ H /O /N iyit«mi3.3 Con*tuit>voluai« adUbttU comb iutbn ÍA   CoftttuiUpretittn iJitbtllc combutton3.( CklcnUUon oí »dUb«(lc flun* Itmpt rttart3.6 SolYíd cxamplet

    Sxtrcbe

    Chapla- l   I 3 E N T R 0 P I C C HA N C E S OT   STATE4.1 Introdacdon4.2 SammiTy

    ExereáeC h ap le r E C O M P R ES S IO N - IG N IT I ON E N C IN E S

    5.1 Intixxiaction5.2 Somc bu le dctt lb tnd DomcscUtart5.5 Cylioder preMurt iadictlor dUg mn6.4 IndicaUd poww 40

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    4/110

    vUl CompoUt SlmüUltoa oí d  Eaíli»  Pto cM itt

    Chapter

    Cbapter

    Cbaptcr

    C b t p t c r 9

    iS B r^ powcr«1

     j  «iJt Working principie

    41i j

    S.7 Eagioc kiaem^icsExcrcac

     AA«

    a CI ENGINE 8IMULATION WITH A m A S W OH KI NG M E DI U M 47

    0.1 btrodsclloa 47

    e j Uctl DUm I cyck 4S

    OJ SlmuUlíon wUh *Sr u the workim médium 49

    S.4 Dtvi^ioa betmea utaU ta i IdeU cycli51

    t s Solvtd «xunple* 62S4Cxtrcke

    T C 1 E N G IN E S I M U I ^ I O N W I T H A D IA B A T IC C OM B US TI ON S5

    7.1 laUodaction ss

    7.2 Engíae detul* -65

    7J Nu vti ly uptraied openiioa 66

    7.< Work ontput u d «Sciency cak oUliou 62

    T i Supercbirgcd open iioa 66

    Exiutitt 72

    6 C I E N G I N E 8 I M U L A T I 0 N W I T HPHOGUESSIYE COMBUSTION 7}

    t, l laUodactioa . 73

    ta lf*rogrtuivi comboftioQ 75

    Combuilloii iiiodilEfi{ SI

    &.Í 7->nw

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    5/110

    ))

    )

    PREFACE

    laUnikl Combnitiea Eailnti c u bt broully cU tiiled iato ipuk-i(aitiaB (SI)u>d comprttiIoD-lfnhloB (CI) Tb t ipvk*l(oUtoB eafint datci bu kto 1878 «he n Ao fiiit Otto GM derttoped the SI tafln t u d comprcatlon-iinitloB cB(ine to 1S92 whtB R«dolf Dlettl iavtB(*d tlie C1 capae. O m tbelu í OBC eeatnry, eaginet coatianed to devtlop, u onr kaowledie of engíoeproce*««< b u bc r«u «d . N

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    6/110

     jd l Cempatu StaiUth»  • / O Eagia* Ptocmm*

    wlittkcr lk« c

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    7/110

    LIST OF SYMBOLS

    S y m ' b o l D w c r l p t l o n

     Á, Á f t n x  ot ihe piiton A ,x   wide open cxhtiut vilve are&

     Ain  wide open inlet vilvf ir ei AC S   letaxl cydc liraalition Á/F  úr-fatl ritió AL   cotfficient for ibe cdcuUtion of C ,

    Sp  br»ke povfer B   bore

     BD C   bottom deid centre BL   coefficient for the ulcu litio a of Cp 

    mcut pUlon tpMdCp ipecifie beiC tt   coattul preuure

    pcciGc bc*t« of úr

    C(  ̂ tpecific bc*l« of fa«ICr, coMliot volumí tptcific beiti of the reic linl mixture

    c :( r ) meul vUoe of ipecific bett coiut»nt voliitne

    C,  ipe

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    8/110

    .. .. . ....... i ̂ -- - - -

    yvi CoiDpal«rSImBl»» toooíCÍ£i i í ío#P/oe»«M*

    f, Keit rtjKUdQ f tatiTpf   r t k u * at   c o u t u t p n t i o r c

    Qv tntriy ttk u* U conitut vptuB*

    r conprtMioa ntio R  fW coulu il

     RA F   nUliv* air-fatl n lw A« lUyn oU’i Bvinbw

    S  lUol*S  (o(4l «ttlropy

    5, K»v

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    9/110

    l

    INTRODUCTION

    1.1 Simulation

    StmnIittoD ú a broully uied »ad tomcwbtt Ul-dt6oed Urra írom the enji-nc«rin{ po bt of view. Accordiai to Wcbiter'l inUrnUiontl dict!oaary *lolimtlatc'  meizu *(«  fe íi n, te cttain   lAc turnee   «ntAo«{ t kt n M f * .   How-

    evcr, tbc iiznpUtt mcuiing of úmBlitioii ú ‘ ímitatún*. Thcic dictionaryn e u i n p do oot brtng ont • cltu- pkcnn of tbe worti '«tmaUtion* for ca>tinet rb( ^pticat'>oiu. Tbercfore, i definitioa of the word b duired in thucont«xt. W i(h ioroe Ircpidttion, Iht uth or d

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    10/110

      • ________ L ___

    ____  i

    3 Coa pulM SImiUtliea oí Cí Ettíat Pncmtm

    1.2 Advanlagu oí  com putcf stmulation

    In ui iaUroal corabutlion (IC) th« proctue» involvcd u e extmnclycomplcx. Uotil Ihe lu t ¿tc*dt,  lb« dosta of an cngine rtlied farat¡ag adiabatic Same temperatnre calcolatioiu for heatadd itbn/ comb utioB analyi'u. Ib ibis asalytti, ioitead of air, the working

    médium ú auumed to be a mixture of fuel and air. We wiU cali tbi i analyi'uu fuel-air cycle timilation (FCS) . Kere, combiutioa is aaiumed to take placeat coutant preuure and uoder adiabatic conditioa.

    Síep Il¡:  In tbii ttep, tbe adiabatic flame temperatnre calcutationi are modi*fied by asiomlng combuttioa to be progreulve, Le., heit release ii not ÍBstan>taneon» but ipreadi.over a period of time. In otber wordj, the duralion ofcombuition ii taken into account. In CI eaginei, the heat releaje a oalytii canbe done either by meaoj of progreuive combtutk>n at cooitant preuure, oras meani oí tero-, oae- or two-dimeiuioaal heat releau roodeli. In tbij bo okjtwo typei of a nilyili have been explained. The Sn t oae ii the progreaiivecombajtion at cooitut prcuare. The lecond oae is the progreuive combui-tion uiing a iux>-dimetuiaaal lingle -ione modeL Forther, extenaion to oae>or two^tmeuiiona] modeis niing two- or mnlti-ione approach ii alio poMÍbte.We will cali tbii analyiis progreulve combuitba lúnalatlon (PCS). However,io receot yean, attempta bave becn made to uie mnUi-dimeniional models.Thii requirei high ipeed, bigb memory computen.

    SUp IV : In this taal itep, uiing limpUSed auampttoo i, the engine heat trani-fer can be takeo into account by meuu of empirical eqaatioDi. Gaa exchasgepcoceiie» are inlroduced in ordtr to analyie the engine intake and exhaiut.

    We will cali tbii analyiti actual cycle limulation (ACS). In this itep, intakeand exbauit pr oceuei using Suid dynamic equatto u, heat traaifer and frictioaare included by meani of empirical equatioas. -

    By means of thb itep-by-itep limulatioa, the valúes of presture, volomeand temperatnre at lalieat points in the cycle ue calcutated. Work outputai well as thermal eSciency is evaluated; Ptxmiioni have been made in theComputer program for making paramelrtc studics. Thii itep-by-step approach,it b haped, will make the reader appreciate the complexitiei Involvcd in actualengine limulation.

    Compared to other proceitcs, Ihe combustión procesa is not amenableto thermodynamic analysis. However, an attempt has beea made to bríngcombustión analyiis within the purvlew of thermodynamks.

    In order to get a bisic undcnlindbg of the comboitioo pcocets pertainisgto engines, tbe next two chapten are devoted to providing a bockground foranalyiing the combustión pheo omcni using thcrmodyaamics. These chaptertdeal with reactive processes and adiabitic Sune temperalure calculatioos,

    reipectivelyj

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    11/110

    )

    )

    )

    REACTIVE PROCESSES

    2.1 Iniroducüon

    When k fuel come» iaU) contul with oxygea or ur nndex tke properenvironmcat, t ekesücil rMc(io& ttke« plice. "^e r eictioa c»n be íioíAtnníc,whtre heit esersy ii rekued; or loinettme* ««¿otAírmiV, where Keit energyii ilMOfbed. The híU esergy releued In ta  exothamic rcKtion cin be oie4,for ex&mpk, to nm ta  iatemil combaition entine. In the ui üy iú of intenitlcombiutioa eagiae proctuet, we ire interated u tKe itody of cxo them ic re-actioni involviflg th o« m bitancci th»t cu i be nied u fntU. In olbtr wofdi,We woold like to mqotfe into cliemic«l reactiotu opto the extent ihit ibeíe

    reactioni *tt  i tonrce of he»t cscrgy for h'eU enginet, e«pec¡ally the íat«rat]

    combnitioa Bafine*.

    M uy booki ttlk about nactive proctuet. L«t tu ice what it meut by» reaefiM froten. A pr octíi mvolvLag eAtmúoi rtwtíon c&n be coiuidered u

    reactive proceu. Then, whU ii a chemIcU rtaction? A ekemüí] rcatlwnmt y be deEoed is < rMiruigement of the atoms of

    the reactanta dne to the redUtríbation of etcctrou lo form producía that aredlfereot froto rtacta«U. The iroplicatíoa of Ihit dcSnitioD ii tbat the namberof atomi of euh element partidpatlng is a reactun remami nachauged, i-«.,the coue ivat bn o f matter. Thú principie willbe oaed in writing the eqm tiou

    for chemical reactiou.

    It ti known that a cheniicaliy correct or itoiduooietric mixture of hydro-carbón fuel aad air reacU to produce oaly HjO or COj or both.

    Fot  example;

    Ha + 0.5 0 } — H,0,

    CO + 0.5 0 , - C 0 „

    CH« + 2.0,0, -> COi + 2 H ,0 ,

    C , U „ + 12.6 0 , - 8 COj + 9 H , 0 ,

     ÍU i£tl n P to ctM t

    C,oHn

    CHjOH

    CiHiOH

    +++

    15.S O,

    hí O, —

    J.0 O, —

    10 CO,

    CO,

    I C O ,

    +++

    11 H ,0.

    2 H3O.

    S H , 0 .

     No te;  All the above fatU cao be a»»d ia IC cofiaca.

    1 2 Heat of reaction

    Ueder conditioni that promott eomboitloDi tha active cotutilueala of a furtac l witk oxy feo . Thia comboitio n proceaa bvohres the ooddatioii of thcarboB aad bydrogea preteal in lk« fatL The com butioa proce u ¡a a complereaction or, more exaclly, a rapldly occorting atriea of rtactiotu.

    Whenever comboatioa occnn, the energy aasociiled wilh the chemicabon di ia the foel and oxyges molecnte* b releaaed. The chemica) energy

    ' coaverled into heat energy and appeart Snt u a heatbg effect in the pto ds cgue«. The final lemperaisra of the prodocta of combution dependa on nnmber of faetón. The impoitant onea ara aj foUowi.

    (i) the fuel and Ita compoaitloa,

    (ü) the prtaiora and tempcratorc of the reaelant mixtore,

    (ui) the álate of the fael, «htthtr Uqoid or gueeoa, aad

    (tv) the externa] conatrainta impoaed on the reactlng »yllera, Le. whether thcombuition takea place at conatast volome or al conatant prcaaort.

    la order to ulccJate the &bi1(«mp entor* o f the ptodscla of combaiUonthe energy characteriilica of the fail ihonld bt known. The energy characteritlica of fnela are Tariouly knova aa talKaipici of  comlailton, JteaKn; «o/vet Ktal of eomitution uí i ktút «f ncctian. In thiabook, the tenn heat o/nactionwiü be uaed.

    2.2.1 Oelinhton of heat of reicüon

    The leal of  rtaclún at  coiuUnC tofinu, tnJ  a ( ceiutant pm ivr t , Hrp

    M áefineii lu lAc t n t r f f t i i t i i o (rín; (X< prodvtU 0 / comU >l>on to the   inih'aJ

    Umptratun,  m . 198 K, vktn   > anít gMiiliry o f f nt l m i u m c t

    OTfjen  (u m at conitint to ltmt 0t * l uiulant prtii tn , rt iptelítclf .

    The impUcationa of the above definitlon are u foUowi.

    (i) Ur  ̂ and  Ilrp are both negalhre.

    (ü) Uff  and  Hrp are prbperttei of the fneL

    (Si) Urf  and  H,p refer apeclScaQy lo chemlcalty co tm t fueUutygen mixtoreireactlng at 29t K.

    it may be noled that both and i/rp are meunra ble quantltiea.

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    12/110

    ComftUt SüülUilo» •/ Ct SMfiat PntMMt

    Foc t i t Ma iyti t o í (Bfue tombo i l ion, we wi l l dcEnc two rtl^tcd eatr jy

    ’ u n i u , Q , a n d Q,-,  w l i « « tbc U n a < J, . U i u i* f o r e » e r * y w U u t U  c o w t u i tvolomi ud Q „  tht mtrsf  rtUu* al cooiUat pr«uurc.

     Í Í 7   DcSattIoa ol Q ,   «nd Q ,

    T h* t i i t m r t U u t i   «I u u í t i t U 9c h m t ,  o«¡tive. They «rt propertií* oí th« reielmt

    '.tnvtBft, r(ítrr»d to »ny Ump

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    13/110

    i

    8 Coapattc StmaUtha o f CI Eofice Pníeuct

    If Ihe •(«cific «nlliiJpitj of thí vino iu cotutUuenlt »r« kaown, t/,p cu befrom «j.(2.7).

    2.4 Mcasurement of 

    The he»l of ríiclkm it coiut»nt prewure, i/rp, U meunied in t lUuly-aowcilorimtter. The detüb tliown in Fig.2.2 »it refaced to the b»r« eueotiJj.Fuel tnd »ir ¡n txcttt oí the ehemiciUy torree» rcqnirement enter the re»clioathimbtr it 298 K, md Ihe producU trt cookd to the inlet temp«r»tore by

    the wxter circuUtiog La Ihe lorrounding jidcet.

    Ccxitrol volume

    Futí Air298 K ‘

    Products‘ 298K 

    WiZír

    Flg.3.3 SUa íj-flot) ealorímtltr

    If the chingei in (he kínetic u d potentiil caergie* are Degligible, u Uuíuillythe e i« , for a ittadjr-fiw ceaiervilion of ener?y

     /í. (2 98 ) + / f , ( t „ ) = ffp( 29 8) + i/ .(í

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    14/110

    „:í i....

    10 ComputtíSin^UtioñctCitMglauPi

    » b t ( «  R ii th« onivinal ( u coajUnt, úace tbc «atliaJpy Ti «ad iatcnial caersyD v « la BuU ptr mo b. For tiqúiU kwl lolid*

    K - 0 w 0.

    Th« difftnac* b«lw*«a Ihe cotu iut-p rcuo n u d coiutuiU\'olaiiie k«at oíntctloa mijr (bta b« wirUUa u

    u „ - v „ [N ,-N ,)R r . (2.18)

    With  R =  t.SU kJ/kmol-K tsd T « 29$ K, lb« vilne of (he prodact JtT  willbe 2477.S7, wkicb cu b« kpjiradmUtd to 2480. Tliiu,

    *» 2 480(A V -/r ,), (2.19)

    wbtr* Nf  u d  Nf  dto oU , re*pc«tiv«l/, the mole niunber in the product w d islh< nictutl mutu« U  thi | m ou ip«ciei for &ckemluUy correet fie)

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    15/110

    13 CompoUr Siniii/ítfcB of C/E afíae ProceM*»

    Hrp -   = /l̂ K,0 X íl/.ÍH jO).

    Witk A/, (H ,0 ) = 43956 kJ/kmol, we h»ve

    = 11 X 43955 = 483516 kJ/kmol.

    Thcn.

    - M 1 2 3 00 - «3 5 1 6

    « -e795SI6 kJ/knioI,

    t chuije of more {h»n 7.0%.

    Similuly, it « n be «hown tliit Ibc cBinge in th< ü,p v»lue will ilf o be

    of Ihe tune onler.Tte ibort cilcnUtbai «how lli»t wUl* Mcorint htxt of reMlion i^ae»

    from publálied t»ble*, greite tt « r e muit be txíKÚ ed to note ihe con

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    16/110

    H Compatu Simulitloa ol Cí Eaflot en cta ttt

    T*bl« 3.4 Utf  coutul-pnwBr* btU oT nulloa for Uie cut ot (UMU HaO U U « pnxlMt

    FbnauU UoL wt.

    T í ü í s r "EtkMtProp»a«fvBulu*tv-P«ntuen-Hexu>«n-Htptuen-Octwi<n-NoBueiv-DccueMttbuolEtbksolB«aiutt

    CiH,C,H,C«HioC»Bu

    C«Hu0 , H „C»Hu

    C»HmCioH»ca,ouC,H»OH

    C.H.

    1»904458

    72sa

    100lU12814232

    4678

    H^ttid íuel

    Tj/fcaot í m r

    Gutatu  fae)yy tmoi í's/k¡ 

    -2019900-2622800

    -Í228200-3884600

    -4441100-5047800-5654700-62lnt ?uel HiO In Üie product

    Co utu t volsme Liquid Liqoid

    Co njtu t volutne Ltquid Gaieouj

    C ou tu t volutae Gaieona Gatepuj

    Cou tast volume Gaieooi Liquid

    Co&itut preuure Liquid LIquid

    Conitaal preuure . Liquld Gaseous

    Conttut prtuure Gueoui Gaieoui

    Comlant preuure Gueoiu Ltquid

     ADIABATÍCFLAME TEMPERATURE

    3.1 introductíon

     VirtuaUy «v«ty probUm bvotving comb oilion wiQ úrvolvt tbe ctk ok tia n of«dúbatic flime tcmpcnto n. Tli« SsU Ump

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    17/110

    l e Computer SimnIttloB of C1 Ecx/oe Prx eu< »

    at cooíUaVprtJJure. FWther, the reutinC prainre c»n »1ío »ff«t lh« flune

    Umperatu^e. AccQr»t< d ka lit io n of the a im t Umpcratnre inv olra a « ( of conipU-

    ctltd tqaUioo*.  Howívtr, for two reuo iu we wfli confine our alUntion only

    lo a limpie fct of eqaatiou:( ] Accorate caltola tioa Un« done very eaaüy by a lytUma tic teirck

    willi a compatcr. Th» main empliasa in (bii cliapter will b« toward» ttU *nd.

    3.2 Complete combustión In C-H -O -N systems

     AaTOtning complete combuition, we can decide the compo«itton of the conv-bwtio n prodn cli merely by inipectüig the reactant mútnre. For a reactantmUtore (bat contain* C, B, O, N  aloms, we will formoUte the rolíJ ai foUomrj;

    (i) AU bydrogen ú fin t caúdiied to HjO.

    (ü) Alt carbón i* initially ^ .

     N i^ O , 

     ff ,   «  N „c ,

    U 3 = O.SNmH„

    = S.liY,

     A i - r - n c

    (3J)

     Ni   throagh  Nt cao be uied ai lubtcríbed vamblet in the Computer program,10 that the inbtcript* 1 lo $ can be made to denote

    (3.

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    18/110

    IB Computv SimtJtUoB ol Cl Eaflat F n ct tt t

    Rigid. IníuUud   Vcuel

    Flg.S.l Ci>atla»(-faUnu adiaictic Mtnlwiwa

    L«t

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    19/110

    30 CoapnUr Simdithci of CI EnfUe Procttsc»

    The vilue o( //,p whkk ú » po«ilive he»t of re»ction for COj c»n b« found

    from ttimdixd hmdtxxiki to be 282ÍOO kJ/kmoL Tbtrefore,

    (t / ,p)co, = 212*00-2480(1.5-1)

    = 281560 kJ/kmolCO a

    a   281600 kJ/kmatCO i.

    The rtjulls of the two cuta  of Y,  vil, Y >Y, f   »oJ Y  < Ytt,  »re tivínby

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    20/110

    33 CompíU/ Slmtit lha o / d £i (Jce of c

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    21/110

    )

    34 CktmpaUr S lmditba oí CI Eít lm  Pmkmm*

    entrcr {cq.(3.32]| 0"ihetkal vilo* oí lie Hime Unipenture. Thtn, tbe ntw-lune Umperanro b

    cttiined fron

    r . . . T - m z t ó b i i l .c , ( r )

    II thc difTcrtace bítweta T uid To,w  ú witkin, lay, 6 deg na , tbe it«r«tk>iican be i toppcd .

    For cout»&l-preuQr« corabiutioa, iniUul of Vp{T),  the v» ]aet of Hp(T)

    trt com pattd luint the rtUtion given ia Appcndix C.

    For txiniplt;

    For « » < r < l eoo

     X{T) =  AL + B L xT -^ CL h{T ).   ( J ^ )

    For 1000 < r ^ 6000,

     X(T) «  ÁB + B H x T + CB ln[T].   (S.S7)

    SimlUrly, úuteid of ^ (7 ^ the rklati of Z^(T] are compoted nilog the

    relation

    =  BL + CL/T,

    C ; ( T ) =  B H + C H ¡T 

    T b ,w i* ulcoUted aim{ tbe reUtion

    r „ .

    for 400 < r < 1600,

    for 1600

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    22/110

    -ÍUd-S. ....

    30 Com pat tf SUotaltÜoa o í CJ EagU* Pi

    bttwMS ffpC^ u d  N, C, h  Mktom luye .  Á* » cosMijatoc*, it i* UfUinkU*

    to ignora (k* Umj>«rUin varálioa ia u dT]i«a, f or tk« ( ca trd cu e o í cattft>at>volBti>c kdiib«t¡c c cmbutioik witlt

    n t cUsU U T „  ib* flt4au Umptntare á iñc a hf 

    »tic combuUoa

    - F „ - // c o x M 2 S 0 0

    (S.«)

     fo r  (Kt (tstn l ctM, tlti ueceiuor «xp rwio M íor tke Nevtoa-IUphfOBit«r«tlon Mppur sow for cauUat'Volami combu tioi u

    r - B B z M i b S ic , ( n

    ta i  íor coBit*aUprt»iow cambailion tt

    ( j . « )

    ( 5 . « )

    Whüt d«vtlo pbi( a compaUr progrun, wlcttUtíoaf for iTp(T],í/’p{7), C,(7) u d C,(T) c«a bt doat by muju ot fuctioa rabprognnu.

    3.6 Sotved m m plcs %

    1. Com puli tbt Sunt Umjx nture «h tn » cktmktUy correct mixtura ofUquid C|U]f 4ad air úUUUy a 400 K utd 1 Um, bonu U eooiUn t

    volome.

    Tbt rcactul mix(«r« k

    C,Hi, + Y „O j + 3.76Yc.K3,

    wh«r« Ya  ú ti » chtfflktUy com ct cucy êa to íneJ r»tio. Utrt 

     / / * o » í , A i» a i« W i A'm Qi“ 0.

    Tbercfor«,

    n . -

     Ad l^a tic Fl us * Timptntan   3T

    12.5.

    O,

    «.9,

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    23/110

    36 Compottí’SU nalitha af CI Eoglüt Proc^M^

    U¡,{T)  - / f co . ( -4 ^ + ( 5 f f - ^ ) r + < 7 £ f i a ( r ) | c o .

    + /^h . o I/ í h  + ( B f f - • f i ) r+ C H l n ( r ) I i, . o

    +  Nti, [A H + [B B ~R ]T + CH  ln(r)I„,

    = a X  [93048  + (6 8^8 - Í.3J4) X SOOO- :6979 X ln{3000)]

    + 9 X [15

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    24/110

    .ÍJU. ñ____ ....... —~

    80 CompiUr Slmoíttloo o/'C1 £ii(la« Fn>c= 68.2S .

    Tlü* yieldi

    ítAT)  -  N oo M L + B L x T + C ll a (T ]l  

    ^Nu,o[ÁL + B L xT +C L   b ( r ) ]

    + V / « , ( A ¿ + f l L x r + C L k ( r )| .

    For u inl;iil Umperxtox* ot iOO K, i.e. 7 , = c o m p a t t r p r o t ra m l o c i l c o l i t t tb e a d U b u i c & u a e t e m p c ra tu re

    o f u y fu e l f o r u j r g i v t s ¡ o p a l t o n d U b n i .

    2. Uaing the above proprara eakuUte tbe a^Uabatíc &une («np«ritare fortbe fueU CiKtt asd CioH » (rom Y»\e¡   to Vniuci «b crc 1-6 Ytt(tnder conatant-volnme and coutaiil>preaaare comboitioB. Draw a grapbof idiabatic Baine l«raptra(sr« vergas Y  aud dlscuu.

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    25/110

    ISENTROPIC CHANCES

    OF STATE

    4.1 Inífoductlon

    Miny o[ the combnjtion e np a« involva t  tomprtMioa proíeti ind »U of »heminvolve »» «pu u'nj n proceii. The workinj Buid Ma mixture of ju e» . Thetnüo qae«tton b how to eilenlate the lempe ntore oí tbe {uc * U the cnd ofthe próce « oí compreuioii or cjcpuuioa. In the puton tDgisc, la order toulcolUe the wort don* by or oa the g u «, the*« CsaJ t«rap«atoret m t u l  be

    known.

    IdetUy ipetldng, the comprcMtoo u d expuuion procttiei ihoaid tikeplu « npidjyi «ith negC{ib!e hest trttufer^ Reoec, compreo ioa u d cxpiAsionc^ctüitioiu ctQ be mtde on the auamptton of bentioptc bchtvioar.

    Where the process ii not benlropic, e.g. b compreMon u d torbmci,

    the ñeatropic tímpírtto re comp otílioo ii »{ill retn»Uy, Cf   »nd C,  is ae ue iríth tempertture, while k decreuu. Since C, indC, dlffer by t c oni tinl iroonnt, the chtnje ¡n i wUh temperUure tt not verypredominant. However, the ippb'cxtioa oíe

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    26/110

    s i Com pttu SlmaUtloM ot C! BagU* F nctua t

     f o t »a y   | u ,  4i{ T)  U Ibe caUopy p«r mole kt tcm pcnto re T  u d 1 «t m .TkbU C.4 ú App«Bdix O glvu  A t  v^lac* oí ^ for (U«* Uut tr« camioo»(y

    íound in comb utioa pro4ucU.T»bl«* 3.1 u lT )- -^ -¥ V L  

    CH 

    4 0 0 á T S l « 0 0 .

     4   “  B H h { T ) - ~ + DH   I 6 0 0 < r < í 0 0 0

    Ti ú foaad by *oIvía| thi cqa&tiosj

    á S   « 0.

    li,Tj)wkicb u a h* cJcpudcd te

     AS- (̂ (r,) - f,(r,)|- iví uFor lb« lolatlos oí tb« abovt c

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    27/110

    )

    )

    )

    )

    COMPRESSION IGNITION ENGINES

    5.1 Iníroducilon

    In order to umolate the compreubs ¡sq Uío d   (Cl) eogtne oa &digital com<pater, Gnt of tU it tt necmvy to know the vtríoat proccuci of thc CI engioe,wtd iu workiBg príocíple u well u the nomencUinre us oci it«d with it. lathLi ch»pt«r we wiil rcview brícSy tbe wofkiai principk of a fonr-itroke CI

    eagine.

    5.2 Some baste dcUiIs and nomenclature

    U t IU fint deEiic a cycfc. A cfcle ii a complett leqoenc* of eríct» «tuiintftom o nt it ate and rctttnúiig to the lame (tat « ii^the unt e «ray. For exunple,it may b« an intcnral or a períod of time occapíed by ene round or conne of

    cvent* repeating in the Hjne order in a «trie», loth u the cycle of fe uon i, withipring, lummer, anlumn aad winter foUowing ctch other and thea recnrring.

    Similtrly, an IC tnjint cfcle i« a »eríet of eveat* that aa iotem al comhs**tion engine undergoe* whSe it ij operating aad deliveríng power. Stace thcieeveoti occuT in a certaia xquence, they are MÍd to be tímed.

     Al already tt ated, cor intereft lie* ia revicviag the worktng priacipteof a four-ilroke Cl engine. The com prtuia a ignítion cngine wu orífinalJydevetoped by Rndolf Diuel la Gtnn any in 1892. Moit o f the reciprocatisgengine* oper ite on a foBMtroke five-event eyd«. There are foo r itroket oíthe púton, two op and two down, for each engine operating cyc k. The baiiepower-developing compoaeati of a typical Cl engine are ihown in Fig,5.1.

    They are:

    (i) the cylinder,

    (ü) the piitOB,(iü)

    (iv)

    the connecting tod,

    the craakihaft.

    Camp nmk» ¡ftlIloM Eaíl ntt ÍT

    Pto»««lBDC

    CxuMtlng n i

    Creakilnfl

    Fig.S.l  BatU fOwt r-dtft lofÍBf com font nlt   o / » CI tnfint

    The cyllader ha* a imooth inrface *o that thc piitoa, with the aid of pi*-

    ton tingi aad i labricu t, caá cRit< i ital todi (hU do |U uq tia p< bctwMS

    tbe piiton aad the cyCnder walb. The p btoo ti eonaected to the craalahaftby meanj of a eonnectbig rod *o that the redprocaitag moiton Si converUd torotaiy tnotion by mtaaa of the coBoeeting rod and «raak auembly.

    Tbo pctition of the workiag pliton aad the moving pane, whkh are inft-dhanicaQy conneeted to the piitoa, at the moment when the dircction of itimotbn u revened at either oí the cnd polnta d  the atroke, m called tbe deadcentre. There are two dead centre*, vii ,, lo p dead centre (TDC ) aa d bol-kom dead centre (BDC). The limit of travel to which the p'utott can move,u calJed TOO and the limit to «hich it more* in the oppoeite directloa iicalkd BDC. For each revoloiba of the craok

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    28/110

    iS CoapaUe SUaatillon ol aEat l t * Ptoi

     As cogio e ba vliig » bore eqaU l o tEe itroka ii o lUtd » «aji ne. lítti< »troV« is lu í thu » iL t boce, U i» t«lled «a ovei^»

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    29/110

    be cilculatd. The dUpun ninrtr»Ui tbe prt«ar« _r«K dnriag the tompre^«ion itrokí »ad comtiat prmnre daría* he»! «ddilion. Further, ¡l »howí thepríMUm drop wilb the expiniioa of the c « « duriag the povfer itroke u weü

    u doricg he»t rejecfion.

    ComputUioM oí tle indicUed power ir» loniewhit «únplified bjr oiinj

    »he avenje prewure iít b j o q  the píiton thniBghont the wor kk í »troke, T hi.

    »ver»ge preunre, ofUn oU td the nwia effetlivt prw ort , tt Qormally obtuntd

    frotn thú indic»lor dUpim.

    ^0 CompatiT Simalithn of CI Espine ProccMÉ

    Flg.6.4 Prtn«re-»olum« {náiator ¿t’ajmm

    5 . < IndJ c a t d p o w t r

    IndicUed power b defiaed u the t«tal pw er convertid by tbe engine fromhe»t energy to mechwicil energy. It á tuniBy »bbrc viutd u «>.

    If the chtnclerótici of la engine u t  knoirn, the indicited power ritingc»n be CMÍly tilcoUted. The tot»l forcé «cting on the pUton in e»ch cyliaderti the product of tbe indkited mein effective preMure (K/ra’ ) uid «•«», Á, 

    of the pbton hetd in

    The prodact of the totul forcé uid the dtitifice through which it act» i?one íecond give» the wMk done per tetond. Thii product mntlipUed by ti

    ncmber of cyliaden on oper^ioa |ive* the work done by the catire engineper Krcoad, in WitU.

    Indicited power b then given by

    ¡\^SAnK 

    CompntsloD !fi ilíha EaglneM   4

    •F   " (S.3

    whert  A ' K 

    « X » 0

    u-et of the pUton ianomber of cyliaden

    n » Btunber of workiaf (troke* per miaute (rpm/2) per cyliodef l* » ladieited m eu effecthre prtuur* ta N/m’S  = length of the itrok* la m

    5.5 Brake power

    Br»ke power, ip, ii the Mt uJ power delivered by an engine tt the e r»a bh iítIt ii the dlfference between the indicited power, i>, ind the frietion power /p . FVictioa power is thtt pir t o f the tota l power aec eut ry lo overeome thftictbn of the moving pirU ia the engine «Jid lu acce»»oríe*. The relitioajhipbetween them m»y be exprttted u

    »> - /p - (5.<

    It m»y tlio be ttU«d thU hp ti (hit pirt of ihe tolü power developed bythe engine which cía be nied to perfortn work.

    5.6 Wo fklna principie

    Id 1  four'itroke cytk eofine, th i cytle of opcratb a U compitted tn four ttroke*of (he piitoa, tnch u lactioa, comprtuioa, expuuion lad exhisat. £ich

    •troke coQittt« of one revolnlbn of (he crinbhift or 180* of crink rotitíon»nd henee a cyde co n« il« of 720* oí craink rotition.

    The vtnotu tlrokei ire illutrated in Fig.5.5 ind (he comtponding idetlcycW p-V d iig rm it iliowa in Fig.5.8.

    The working principie of the engine ii deicribed below.

    $.6.1 Suctbn itroke

    p e inction itroke ii repreaented by 0—1 in Fig.5.6. It itu tj when the p'utonb it TDC, ind ibout lo move downwtrdj. The blet vilve b in Ihe openpoíition lad (he exhioj l nlr e b b the cloied po*ition [Pig.5.5(»)]. DnriagIhb Itroke, dae lo ihe lucking iclion of the pbton, lir from the ilmoapherei] driwn into the cylinder. At (be end of ihe luction itroke, the inlet vilvecloiej.

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    30/110

     42 Co mp ou i SlmiíUtioB o f C¡  Eagla» Ptoctu4t

    ¡tltur

    latekfnimdMn

    (a) SuctioB [b] Coinpres*b&

    CtWtM

    (c) Expauion

    Fig.5.5 KaniM Uroka in C / (n ; tn (

    (d)

    CooiprMiiaa 2{sillaa ¿cf iiiM 43

    S.6.2 ComprosJon itroks

    TKe compresaloo t(roke ú repretentcd by l->2 ia Fíg-5.6. The air tikea inloihe cylmdcr doring the «action itroke, doog «riih tbe producU of comboitionof the previooi eycle, u compreited bjr Ihe return «troke of the púUin l-»2.Durúig the comprtsiioD (troke, b«t h ¡alet u d exhauiC valvet remain clo*ed|Pt{.5.S(b)j. This ú r U compre ued Uto the cleuan ce volume at the tud cí  the alroke. However, joit beíore the esd of the comprtuioa itrokc, the fací úinjected with the help of as b jeetor. Even though combiutioa onght to it vtúnmediately, in actual engiaei, it itarts after a vtiy imall mterval of (¡mecalled the deUy períod.

    Flg.6.0 ¡dtal p-V dii¡rcm

    Durini the combualion proce u, the chemicU energy of the futí b rtleaacd

    is th; f^nii of heat eaer^, prodadog a temperatuje riúe of aboat 1800 Kand the p:t«aan wUl rcmain conitaat (rtpreieated by 2->3 in FIg.5.6).

    S. ( 3 Ejtpans^M tUoke

    The expaniloa lUxjke á lepreM&tcd by  3-»4 ia Fig.S.O. The buming gu«aforcé the piitos towaida botto m dtad centre. During tiiii «troke, botb inlet

    and exhaust v)üvei remún closed [t«e F¡g.5.5(c]|. T hsi, power ii obtim cd only

    during thii «troke. Both preíJiire and temperatnre dec re« e during expajuioa.

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    31/110

    « Computer SImdtlion cf Cí Entiat Peocetta

    S.S.4 Exlutiit strol x

    The cxliiiast ilro le ti rtpreitnlcd by

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    32/110

    i6 CoBpatu  SlfliBUÜM e l « E «fU « Ptottuim

    DispUc(m

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    33/110

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    34/110

    (O Ccwpai u Slat¡iUoB oí Cí Eaila t FnctutM 

      CoBiidcnBf the pr octa S->4, w« Kkvc

    , h - » )

    -

    («.»

    (6.5)

    Rom

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    35/110

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    36/110

    M Cea palt r SlatUÜoM ot Ct Pr

    HtU »ad.

    Thtrtíoi»,

    aci *n>fk doa«,

    tltcmiAl «fficUncy

    L 0 0 4 x ( J « 7 . « - « ( » . i )

    17S9.1 kJ/k i,

    K̂ tnp +

    1109.6 + 7ÍJ~4MJ>

    1455.7 kJ/kj,

    ty..i

    lÍ M 

    U5S.7

    J7J9.1

    m tu t ffecüv* pr tMwrt o . f lS L íL ÍÍ )\ViuJ\ItTxJ\   101305  J 

    14S8.7 101S2S X 6Í9.8 X 10“* 10» X itf* X — — — X 

    SS2.9

    » I B .» b u .

    2S7X300 101S25

     ffotr,   la (U« «z uip it, tk< cat>offntlo  ¡f tmamúd w  4 which ú • iiUla tooUt(c . Hidm, th« «SciicBcy i( ooly SS.lX . NonnkUr, U wül b« b«hr Ma  2 u d

    S. TliSi QliutraU* tkU Ihf cal-oS rU b b ako » de cidkf f tclor in a Dictclcycla.

    Exercise

    WríK » profru n to ilmaltU CI eaglat proccuc* u b | u ideal I>ies«l cycle.C«acn t« tki rM)iür«l daU »t

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    37/110

    S 6Cemp ii l « Sím oUIfoo o f CTEaf be  Pra cet ttt

    Ftg.T.l  Diticl t fclc al tuiiunlly aipiraltá eowíiltsn

    Tkbla r. l Dttalbolthtciitiattortiinslaüoii

     B Bore 80.0 Eun

    S Stroke 110.0 mm L Conaectiai rod lengtb 2J0.0 mm

    T  Compreuioa ritió ie.5

    Kiup DkpUcemeat voldine 552.9 cc

    V  kí.  Volttiae it TDC 35.7 te

     Vuc  Voloine U BDC 68S.( ce

    7.3 Nítura lly asplrated operalion

    Miximum powcr of thc compríMioa-i fni lbu «afiní wM bt obtúned wl i t i i itU n a U fall lotd md tW» condilion, *n hivt,

     Pi  Pi P.

    V,

    imbitnt preMUrt

    V w c

    1 Um{My)

    L«C Tt   unbicnl ur Umperalsre uid

    = ialil* mui/bld tempcritut;

    Tkert wiD be no Umpcratara drop ú Iht icttlu m uifo ld u lliii foci Uúij

    C¡ Enflat SlwaUtloa  irltk Ad/t&il/c Combiulha  5T

    T„ r .. (7.1)

    Lh  «i >o » ikEnt ccrtaía temu thit are lutd qoilc of ua in th« limaUtion.

     Nao  Iflomolt» oí »ir pío» fuel viponr ia a mu tgn coatiia iag1 kmol of fnd.

     Npt  küomolcj oí prodscU formtd from Ibe combu tioa of  ffgto-küomolct of úr tUen In dariot tactioa.

    kQomoIo of fucl iiijKttd.

    tfx  küamolet of retidokl uh ttu l from tk« previooi cycU lo tbecBfíae darías tba compmiioa itroke.

     ffp  kilomolci oí prodocU formed from ibe comboition of  N, + Ni-i- Nt.

    ipocific b«U of tir.

    C ,f   iptcifie b«it oí íuel.

     A/F   ili^foe] rttio.

    7J.1 iMfltropk compftulon pro cai l-*2

    U l M tonada  tbe «ajía e cyele (rij.7 .1) » aí it irt from poiat l. InilUUy,we h»ve to «wi ne tbe vilnet oí  N,   u d Ti,  bolh depead'mg on tbe prtviooicycle, wbkb !n tora, dependí oa tbe cyde before tbit, wid to on. To iltrtwithi let iti uiame

     // , = 0 tad r j B r , ,

     Pi V ^ RTy  •

    (7.2)

    (7.J)

     Al tbe be jian ún of t be comprt$iJon proee*$, there m mole* of tbe workiaf Raid.

    Let Cf,   be tbe coulint-preuurt beU e»p»c¡ty (kJ/kmol K} for tht re-ICtMt ff  ̂+ A , .

    Tbea tbe polytroplc índex for compresjíon  [k

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    38/110

    68 Conpoo]iUan«rCTS»/ia»Ffo«»*«

    r . = T i r ^ - ‘ . (7.5)

    pi =  Pit^'i(7.6)

     Vi = Vtd.. (7.7)

    7 J J AdUbatk combuitloa ̂ oce w 2->3

    Lcl iii uium e tbU tha comb ution pUc« uliibatic&Uy «J>d co ni tu l

    preuore. S ínct Ihm is ao beU (r uuíer , tke cncrgy e« laffixt* r, f and p dcaoU Ike moles oí nactanU, fael *ad

    t]i« prodacti of coabottioii.

    Tka (o la lka oí c^.(7.S) wiU k« U kta np akortljr. By aolvútg ecn,Uf  bi •q.(7.11). W* wiO «valaal* IhtM mok aomb en in Un ni of tbe actsalvaloe* hr  U i « apaa aadar coajIdcxaUoo.

    ?or CI tnfia u aornally dleiel, C ieH », i* tbt fue) iu«d. Ecnc*, Iho

    vitieu prodocU moUi trt m I u

    •  N ,- C O ; N t -C O t;   AT*= K,; » O,.

     L il Y  Kprt wal m olu oí O j per mole oí CtoH j], thea the reactanl foel-air

    mixture i*C,oHn + YO ,+3.7 f lYN j (7.12)

    We bive

    CI Eefüit Süoahtha n iti ÁdUbttíc CoabasUoD 60 

    í f » . - = 1 + 0 9 7 (7.1J)

    (7.14)

    = 17+ 3.70 y, füC 10.5 < y < 15.5

    =  4JS + 4 .7 6 r , í o r Y ¿ l 6 .S

    * From Tibie 2.3 in Cliipter 2, tbe valué of ¿Trp c u be oblaine d, whicb iido»« to -6,796,000 kJ/kfflot oí CioH » v»poiii.

     Han tbe aote nnmbera and tbe vake of Qp r«q

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    39/110

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    40/110

    6 3 C o m p o U r S i a a U l h a o í C t E e f h i t P t o c t M t

    itroke (iq.(7J}|. A lhir4 cyclc c u foUow th« *«x>nd tjid to oa. The costpalk-üoat u t to b« halu d w bu »accc«*>ye cyclo prodnce Umcat tbc um e vtlac*.Gtatri lly , ibt co nvtriwc* b ^oi lc npkl .

    Tibl* 7.3 fivcs lh« rottb* ai  Uii compntuioa (wtlh (cmr decimai kcca-ncjrl] for thc cogin* dt*cjib«

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    41/110

    1

    1

    M Compattr Slmttltiha o( CI EniUit Procttttt

    T^blc T.s EffKt cl r oa m ioo j tuflni pins itUn(re«iltJ Iroia tli* conruted cycU)

    Input eondlUonj tad pwdlcted rerolU

    FVUJo»d open tioa CkemÍHUy «ar ect mixloreF\iel Ci oH u Spe«d 1500 rpmr , SOOK P j   l » t m

    FViclioa »J>d Ji«»l truufer ncglected

    r 12.0000 14.0000 16.5000 18.0000 M.OOOO

    TtT,TiTiTi

     Pi?i Pt

    K1K1

    ¡SI;k iitm]itmj«tmj

     fe K 

     N J [N ,+ N ,}PlkW)

    Pto.f [»»ml

    -í.h \%\

    321.12&8M2.025828I2.58S42127.7612im. l483

    52.2125Í2.2125'.7.7«7'3.8U21.39741.2Í340.M12

    10.2394M.621339.3949

    317.7575907.39712B52.29962054.31931386.5930

    39.975039.9750

    7.45403.62941.39761.24310.9836

    10.9807

    15.67994^7958

    314.S340960.03202397.66721981.39001347.9358

    50.313950.31397.18813.44641J9771.24270.9858

    n.722716.739346.3199

    313.4828989.7369

    2923.W0Í1944.90091328.5470

    56.8301S6.Í3017.04763.3S491.39781.24250.9869

    12.0982

    17.275547.9S6Í

    512.01701027.4467

    2955.36161902.84731306.0485

    6S.85M65A584

    6.88853.24901.39781.24230.9981

    12.540017.906550.0008

    ««mptntu re »nd with = 3.44. Howí w , H Buy b« noted th»t die»*l tniineinonnilíy^ opent « oa lein mixtorc* »nd rtrtly oa chemktJly correct mxtam.

    Tht-importuit ftUarc fti eq.(7.41) ii the í« t »b»t Ihe coraprewton ntio,

    prtnore, tmper^ urc imd mole ntio quintitin t1i»t apptir oa the rigKt-kud(ide «re iateiuivc paran cten; that U, the ilie of the eogine doet oot mflDcncethem.

     Alí o, e«. Theie two factorsmay improve the fuej vaponiation when the futí i» injected.

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    42/110

    08 Compal*/Sietíillei e/CZ Íi/U * Pa k w w

     VTOC''ol

     VBDC

    Flg.r.S Th* ti Kéut -UUU loof /or an ti U u t H t K  m  tvpenhirgtr 

    Tb« p«titioa ct  tic vilv« detcrmÍAet tke frtclioB ol  the exhaast Sowtbkt  puMU   tkroa|h lb« tu bU t. Thtu, th« povcr ootpat oí  Ui« tarbine !icoDUÓlUbU. TkU (cilurt ii aot avtlUbU b • {u x lm ta lapercbuier. la

    gttiMlrivtn lapcrcbtrgtr, to codUoI tbe poixr mpot to tbe compreuor, t  gt«r box would b« rt

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    43/110

    10 Compattr SIiobIíUoii of C¡ Eaílnt Proctut*

    Tib ie ?. { EíIkí of »ope/ti«x ii>f on Tirloiu enxim piruDíttn(|nr-dthftttli»rt«r)

    laput coadlllooa md predicted reíult*

    F\ül lotd operttion Chíinic illy corrt tl mixtureFtiel CioH jj Sptfd 1500 rpmr „ JOOK r 16.6

    FHctioa and hent truufer neglMted

    Pl 1.1000 1.2000l.SOOO 1.4000 1.6000

    Ti  K  J09.2019 317.S242 325.9474 33J.63S9 340.9414Ti K  M0.6609 964.3538 986.619» 1007.5700 1027.3920

    Ti K  2902.6280 2920.9390 2938.9660 2956.8630 2973.8S40

    Ti K  1966.3790 1970.3440 1974.9880 1980.2970 1985.5200

    Ti K  1351.W70 1360.7770 13704310 1373.7920 1388.7940

    T» K  1351.047S 1360.7ni 1370.3314 1379.7920 1388.7930

    atm 65.2197 60.0797 64.9276 69.7813 74.5816

    Pi atm 65.2167 60.0797 54.927669.7813 74.8816

    P« atm 7.6170 7,9939 8.4M28.9292 9.3866

     Pi 1.0000 1.0000 1.0000 1.00001.0000

     p» 1.1000 1.2000 1.3000 1.40001.5000

    re 3.S157 3.2546 3.2009 3.1534 3.1104

    i . 1.3969 1.3960 1.3951 1.39431.3935

    Jto 1.2«7 1.2425 1.2424 1.2422 1.2421

    +   1.0000 1.0000 1.0000 1.0000 1.0000

    PlkWI 12.3116 13.0984   13.BM7 14.6195 15.3540

    PI-^I latml 17.5B02 1B.7038 19.8009 20.8757 21.9246

    niU  45.4824 45.5938 45.6939 45.7885 45.8660

    íb  power ontpat ii oetrly tke txme for tfce two lyitenu when tJl th« «xh»uitflowi throB|h the turbint,

    Hovcvcr, ‘IVble 7.6 dou not reprcaecC t  trae exunple of ui exhioit tar-biao lyttcra btíiu st it b u been calcnlittd on the uiumption of foU «xliíoi tSoir (broQgb tb< tnrbiae. Thtre it tbe ticit uium ptios tbat tbe raútu jce tbetorbíne offeri to gu flow cin b« kltered by »oroe meini, tbewby »lttriag pr«»-lure p( npstreant from tbe tnrbiae. la tbeory thix could be tccompUihcd bycKuigínt tbe blude lettiag; bowever, in prxctice tbii wouU be diEBcull to do.Wbtt cui be done t« {Uaitnted tn  Fig.7.0. The exiiiuit control nlv e deter-minet tbe qntntity of exb«iut pi ul a; throsgh the tnrbiae, with tbe remimiosdlverted directty to the »tmo»phere.

    U &[rutloa / of the exhiuut pis stt  through the torbine, the equition for

    turbine work oatput ü now given by

    IVjatb = /AfpCpy (T s—T i) íjiu/b- (7.S1)

    T.ble T.8

    CI En flít SbavUtloa witk Ádltb tllc   Combutloa T

    EfKt of igptixhirxisi os nrioo i pu^m«t«n(ezlitait drlrta topcrchtrpr)

    laput condit lona and predicted r «u lts

    Pb U b» d operatioa Chenticilly corrtct mixtnrruel CjoH n Speed J600 rpmr „ JOO K r 18.6FVictian uid bett truufer oeilected

    Pi 1.1000 1.2000 l.SOOO 1.4000 1.5000

    Ti K  809.2019 317.8242325.9474 333.6359 340.9414n K  940.6669 964.3836 986.6198 1007.5700 I027J920

    r . K  2902.6280 2920.9390 2938.9660 2956.8630 2973.8840r . K  1966.3790 1970.3440 1974.9880 1980.2970 1985.5200n K  1332.6730 132S.8850 1320.4380 1316.1500 1312.4820r . K  1351.0476 1390.7771 1370.3314 1379.7920 1388.7936

     Pi  |«m 55.2167 60.0797 64.9276 #9.7613 74.5816 Fi  ¡átra 55.2167 60.0797 64.9276 69.7613 74.8816 PA ¡atm 7.8170 T.9939 8.4642 Í.9292 9J866 Pi 1.0255 1.0505 1.0749 1.0989 1.1225 P* 1.1000 1.2000 UOOO 1.4000 1.5000r< S.S157 3.2546 3.2009 3.1534 3.1104ir 1.3969 1.3960 1J951 1.3943 U935¿p 1.2427 L2425 1.2424 1.2422 1.2421

     f f M + K )   1.0000 1.0000 1.0000 1.0000 1.0000PjkW) 12.3796 13.2400 14.0866 14.9223 15.74J7Pu«f 1atm] 17.6775 18.9059 20.1149 21.3081 22.4812r;ib 45.7337 46.0864 46.4186 46.7369 47JM03

    Then in eq.(7.49), for  f  wül tppew la th* dcnomlmtor of the Mcosdpart of the expreuioD, with > re«allu| In crtiM in p*. The a tl effect on powerü to detreiíe (Fi|.7.5), thtn by decreu laf lh« power outpnt.

    Tbt (nd uiot of tbe futor, / n tb« ttkuUtloa* doet not preieat uycorapatUiontl diffcnlty, ralhtr th« probitm ii «Be of knonring how • reiltorbine opertte* U coajunctiott witb «o exhtnit control v*Ke, which c«n bepoiltioaed u we pleue. Tb t vtive for / ii Exed in iccordance with the reUtiveBow resbtince* o f the torblae u d tbe control valve, and we htve a probiemtn fluid tnechasiu dcUiag with divided flow.

    Note that with increue in p», which wili occur with dccr ctsísg / valnes,not oniy will Wu,tf   be reduced, but alio when earricd to the poiot wherc  pi exce^dj pi, the islike maoifold preasure, the eaglne will no looger Kiveagemid ua] exhaujt gaie* completely. One of the deiírabU featurei of tapet-charged engiaei ii thea loat. AU thii meas i that the tarblne mait be matchedlo tbe enginei and, to aoWe the proWem properly, power ca)culatioat requlrt a

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    44/110

    73 C o api l4i Sim»¡*tion oí Ct S ttlat Procttttt

    d et 4ÍJewut control Tahre

    l e o m c l r y .

    Exerdse

    1. O tvclop » comtiaUr progm a to «tmnUu u C1 «a fb t U ntionU)' u{4>r«Ud u d   fop rnliu fed condilioM. D «v(] ^ »ho Üw po*ligni£cuit effect oa tbe ptiformicce oí tbe eagiae.

    Figure 8.L computa tbe meua red u d cikoU ted power autpat for >.•Ingle cylmder reciprocttiag eogine ntto nUy uplr^ted conditio oi kt fallload. It ii ues tb it peak power occo n troond ISOO rpm. [f IdeiJ Cyd«SimolitioB (ICS) ú cm ied ontwitb idübatie combiutioD for tbe «uaa eagine,

    the oatput versus ipeed plot wül be u tliova m Pis.R.l, » itriigbt Une puiio gtbrougb tbc origm.

    Oor imiaedute concera U not wUb tbe dtfference in valcej between thetwo curves; tbe c&kulaled p«wer u expected to excecd the meunred perfor-mmce . The ib»pe of tbe weunred p we r curve i< tbe feature of int«re«l. AU natortliy' upl rtle d engines exbibit a. power peak witb retpect to ipet d.Henee, it is cleu tb»t adiib itic combaition utl yt ii miut be tr.odiSed b &

    , lúttbls wiy  to u bkv e clo»er tpproxiinatioo in order to itudy tbe bebkviouroí actual eagins.

    Witbin tbe metbod» and tactic» of tbermodynamícj, modification* can beattempted in tbe foUowing tbree pr«^t*ítt»:

    [i) tbe combuition proceUi

    (ü) tbe g u Mcbaoge proceu , and

    (iii) the beat trmfer proceM.

    We wilt ttJie up the firat modification in thÍ9 cbapter and will ca li it

    prcgreuive combiution limulatios (PCS),

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    45/110

    í

    k

    í

    74 Cooputtf Simal»!»!! oíC I Ent/o«

    Spad(tpm)

    Plg.8.1  PouK r e ulp vt n tpet J  « / an C¡  tnp'íie

    CotnbtulioD ¡At a actax] compreulon-ignition engise a nol iiu Unt uieo u.

    The injeclloa itaxU well befort TOC uid combulion dependí oq   muy fae

    tón, ihc promintnl oaei btln*

    (») the iraount oí fuel injected

    (b) deUy period

    (c) the togise ipeed,

    (d) the injeclor locUíon,

    (e) combiutiott ckimber lUe ind geometry.

    Thennodyaunk* laggetU í  wty lo deil wUh tombo»liott that proceed» Utome Sttile r»t«, dthongh it «hedí no üght whiUoevtr on the centnl quatioAoí the rite itietf. ProgreMÍve combtutíon u whit we »« joi nj to diíCttít ift

    thú chapter.In order to calcsUtc the net wol-k done by the |u«« btlween the il»rt

    of ignition uid (he end o( combiution, iuUUUy, we hrre to deSne thete twoevenl* in the cycle in iddilion to the p-V Irtce dnring

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    46/110

    TO Compattt SlmaUtlot ol Ct Eaflai Pracatc*

    N o n ' w « c u e xu n i n c the t im e n t4 oí biunini, rcprtMotcd by the r&tiodnjdt ,   wrítlni th« qnotúnt in tkc (oQowiot fornu

    dv d> adt

    (í.

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    47/110

    .....

    I

    78 Cc api Ui Simtli-tioa o f Cl Enih* Procetset

    Once ihe bnniiüg r»U rtaclíc* the raiximnm allowibk, In pUce of «¡.(3.7)

     An   -w t A 

     At (8.8)

    for »U üttbMqacnt ¡ncr«menti in lime. Tbí íiit«;ratioa ú completed (j.e. com-

    baittoD tj complete*]] wkeB

     X ;A n = 1 (Í.9)

    4fld the work of expiniion ú ctkulai«il from

    where the lomnutioD ippliei for the «ntire combnjtion pnxeu, and Tj b thetcmper&ture *t the tnil of combo ition.

    Figure 8.3 iliiutntei how the prtuure-volume trice of the CI engbe cytk¡1 iltered when (he mudimim «Uowable boming nt e í i reached. When themudma m »Uow»ble bumln| nt e ñ Urge, i»jr 450 it i> readhed, ia thi»cue, jojt befóte the end of combiutlon; whereu a rate of 500 allowablcboraing rate b reached early in (he combuition proceu, foUowed by i ih updecreaie in preuore and in power OQtpnt.

    60

    50

    .4 0

    | 3 0i?E0.20

    CRsIÓJ

    SpeedsISOOipni

    ,1-----3001/i ydn p-661.45 ct

    TM-300K

    RAF«U

    ' Ctsmbuttion poHx) ioijjcucd

    b)f w IkI Uo c s

    0.2 0.4 0.6 0.8 1 1.2

    C¡  Eofls* SímalilJoa trlli PnfrtttlrÉ   Cbo&utfoa T

    Figure 8.4(a) ii aaother «ray of lookiag at tho lame caknlaCiatuInjection and combiution begúu at TDC.  At (ha maxúnnm tUoirable bom iairate increaae*, ít !i reached latcr and tater m (he combatlioo procet*; tk« total cranluhaft «pan nta tion for combnation decr

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    48/110

    BO Com j» Ur SlmaUtiaa o/ C l PiocMu*

    Fi{ur« S.5 illiutrUtft jnrt bow dnjtktUy th« prenare-voliunt Utct oí thacyck c«n ciita(« u Ib* lUxt oí th» mjc«tioo is du aft d. WUli Miiy !nJ«ctioa,10* bUoR TDC, Uer« ú » n U lts tiil |ua is po «cr boC U (he expense of utqoUiy laUtuitúI iacTC«M ia p«>i prtuorc. On tJU oUitr hud, b)' deUjÍJifUjcctioo ttnin 10* kiUr TOC. puk preuurc ii redacté cooiUtrib))', bat toalto U  p«wcr. H t «karp cb ug u ia tl i « combojtiaa corvo vi th 10* l>«for«TDC , u d TDC iaJactliMi, iadic«U tbat (be mm lmam alWftbIe bo rniaf r»t«

    hu bees reicbed.

    70

    ¿O

    JO

    e < o

    § ■

    r20

    10

    )O

    Coatatk» peiMlaJeaioabctiasM lOCbTDC

    \j^úodbe» l í i «TOC

    [ajcojos bcfiiu tt l(T *TOC

    CR-IUSjxola UOOî av£ipaMI.45CCm - X O K  RAF-W

    - - - - - - - - -   -0.4 0.6

     V_OJ    1 u

    f Í2.8.( Pniiurt-toUmc tracci Jor Ihnt i njutí et timioft

    U^oriunitity, thennodyskmíu doe* not proride nt wi(b (be «mxUett

    (bred of iaícroution t«(wdiag probable vaiuu /or (be mudmum b&roúg rate.Lu(«a d, wt m u t (orn to wbttever cxpertmentil erideace may be availabte.Tbe potat of útr odacisc (be ootioa of • maximam allowable btm is f rat«b u bees to dtm onjlrste 'tbat U caa «xerl a aifnificant ioSneiice oa CI engiaeperformance. Of cootm, tbt notion of *one* maximnm boniing rate k   «a*doabledly an ovenimpCficalion. It b more Iban liU y tbat Uj va]a« cban fciu combusltos proceed«, rtfiecting Ibe d co ta u in Bomben of avsilable oxyges

    molecolei. lí Itiii k lt« « - tbat rnuámoiik buruAf nt« de o«u «f in vilue ucombiutioa proUtdi - tbca the tSect oa  power, uy, nhich ma lu whea themaúniun bo m k i rat« i* itacbed^ wiU be more pronouiced tbas b ng gat edin F i(i .j J and t.4. Note tbat tbe isaxiaiun bsialag rat« i* aot likely to bercaebed ia eUfioca openting at ,nód*nt« ip«ed *or ia engiacj operatiug witbwaal! futí Sow /jo tbat (be dontiou of con ¿ail ioa b ibort, to bcgin witb.

    Cí BafiaM Simsiilfoa witk P/ogrt(tirt Ooobul/a n 81

     Aj » final commcnt, note tbat it ¡J not ne« eu uy to ertKaea of anbnraed carbón, indlcating tbat tbe esgine tnay beoperating at the Umit of maximnis boming rate or at the Umit of avaüableoxygen, or botb.

    8.3 Combustión moddling

    In tbe prevíoui lection we deaii witb progrcuive Datare of combnjtion.Some general obiervation* abont modeli of cugine proceue* provide a contextfor tbe detaili tbat foliow. In cnginea, the proceues tbemielvei are extremetycomplex. Wb ik mncb it Icnown about tbeae proceaaet, tbey are not adeqaatelyunderatood at a fandameatal kvcL At pretent, it is not pouib le to con itructmodeli tbat predict engine operation (rom the bu ic goreming eqaatio u alone.Th u, the objectivei of any modd development «ffort iboold be cleirly defined,and tht ttructnre and tbe detaied coatent of tbe m odd ibonld be appropriateto tbe«e objectivei. It it impractvcal to conit mct modeti tbat attempt todescribe all important atpects of cjg bc operation. Henee, limited objectívcsaze appropriate.

    Dae to tbe complexity of engine processes and our inadeqaate onder-stu din g at a fundamental level, most engine modeli are incoroplete. Emplri-cal reUtions and ad boc  approxlmationi are often needed to btidge gapi in ourundenta adlng of critical pbenomena. SInce nod els wül continne lo developover a period witb greater eompUtenesj, the erapbatit Ln this cbapter ii oathe batic relatiooships oied in engine proceu modeb ratber Iban tbe currentilatus of tbese modeb,

    Tbe progre«ive combustioa model we have di»cussed in the prevíous tec-tion b a littie over^iimplified. In tbe modem ilm ulalion techniques, vaxiousmodeb like tero-, one-, two- and multi- loae/dimetuional modeb are beingatlempted.

    Fot the procesies that govem eagine performance and emistions, twobatic types of modeb bave been developed. Tbe te can be cit ego rbe d astbermodyiiamJc or fluid 4ynunJc in nature, depending on whether theequatioM wbich give the model it« predomiuant ttnictur e u « based oa en-

    ergy conservation or on a íuU analyib of the Soid m otion. Other labeb gtvento thermodynainic energy-cooservatioa-based mode b are: tcro>dimenxiona](lince in the absence of any flow modeliag, geometric featuret of tbe fluid mo-tion canoot be predicted], phenomenokigictl (tince additional detall beyondthe energy conservation eqaations b added for eacb phenomenon in tum ), andquasi.dimcasioaal (where tpecific geomctric featurei, e.g., the «pu l'ign itlon

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    49/110

    ...

    )

    )

    8 } CompBlw SlmoiilioB of CI En fkc Pn>ce**u

     Bu ne   o r i h e d i a t l fuel » p r i / t h t p t t ,   ue idded lo the b i«c thenaodynunic

    ipproick). Fluid -dynuiúe-bued roodel» u t   o fun ctlkd mnl lHÜni íni ioD» !

    raodeli due to llicir inherínt ibüity lo  pmride delwkd feom rtñc iafonnUion

    Ott the flow field, b« «d on loIatloD of tlie joYeram* flow eqnakH u.

    rin»Uy, »n importmt tune is «a u y ovtrUl tní ino nwdtl b i l ince ¡a

    compltjQty ind deti í ) u no sp t th» proctn lub-inodeU. A m odd U no more

    nwurUe thia iU weakut Uni . Thiu, cr i l i ct l phenom eoi i l ioold b« dtícri lxd

    i l com p»r»bl í leveh of fop lBl ic i l i jn U> »cUíve better retal t».

    8.4 ZeicMÍlmenslonal combus tión model

    In thU MClion w« will dUcuu Ifct ieri>-dimenjioDtl modcl. Tht loítwwecorretponding to both progmitví combaítioa *i well m   lero-dúnemioiiilmodeú k»ye btta incorporated In ike eompoUr progwa (ivta is ibt Aj>-pcndix . In th« lero -dimciuioBU modcl we klx> tale into accoanC tli< ifnition

    dcUy.Tlii» model b b« ed oo tbe £nl Uw of ihemod yBumc», The •tiitíni

    potnl of íbe ihermodynimlc cüctilUloa u tboten it the inítint ti whkí tbe

    InUl nlv e clotei,

    The «aeriy cquuioa for the clowd cyde period cía be writtea u

    (

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    50/110

    t i CoiapuUt SlauUtlon of CI BAfint Pn cttta

    Bolii u d (B.tT) irc BOB-dimeasioiullic4 eq ot tb u. Eqaatioa y úulu itcrwtk u| t« U tke tt»rt of combniCioa

    kbiucloa. WUb« uxtm ed Ssws ^ O.KQ «ad, henee, a «= 9.90S.

    U ii tb« puuntter cbu^teríitag (be r*tt ol combiution. Tbe«nuU vkluu for m roeisi » hi(b rale »t tbe be{inmn{ ot  conv-biution, wbile lirgt valuu of m meuu » U(b r»t« by tba ead of

    comboitioD.The ploU of tbe fuactioa x u d a   fl-BO) for Mv«r«l

    valoe* ofm tst ihowu la Ftgf.8.6 «ad S,7.

    m

    Fig.t.B  N u t nl cé ie   u «  /« b c’ ío » o / nlaíiet duntien o f  comitulion

    Tb« bcU releue nU  dtp cndt npoa over&U equivalenee rfttio. Kaowmglb« fuel-air ralio, w« c u fix (be miH o( »ir «dmitted. It ibould be &o(«d(b»( Ibt »bove modil e«niio( (»k« cut of premüed tad diínsive combutioo.

    (0-fl ,)/A9

    Fig.S.T  Heal nieat t nl t

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    51/110

    ....

    1

    86 Ccmptttr SlaalUha a[ CI Eaflat PrvctM f 

    Tliú ú the ditxicUn itic oí iKe diatl eogioe wlúcb eonld not be prtdictedby Ibe Fbel Oyele Súnolitioa (FCS). Il » fr*tífym | l on ok tkU »1>* pre

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    52/110

    88 Caapaltr Slatlitioa oí C! Eafbii Ptxtctutt

    dM

    . . . i . . . P-

    )

    wbere Ap u the púton area and dy tt poúttve as ihowo ia Fig.9.1.

    During túne dt, let lorae air dŜ  mole* enler the control volume bringingio eneigy givea by

     Kd N, (y.+Pow.)

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    53/110

    90 ’ CoBjpotaf Súnul»tío« of CTEoflaf P ro« «t«

    E>{uition (9.2) couU htvt hto|h tii»loiJ j'it i, mertly by ncxing thaC tfae gu tb it remúiu iniid e the cyllodcr luder-

     jíx a *a «d ub itic , rerír aiblí e bu ge ol  «lite; wiethqf tht diuit< l i cutMd bypiiU>a mation or by fu flcrwo r by »ome combisUion of tbc two u im mitcm LSince we wüh io [oUotr ennlt  u tb* putos uiove», we wtíu ttrok

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    54/110

    g3 CcmptUt Siathiloa •( a SMfU* Procmtm

    M OTuUppUf oí ikt vtjvu, thea txhiuil valir woold ]i*ve jiut clotedU TO C, umI u lh« pútoa movei, tk* inttic vxlve will btfln to op«A. TbUvoUmt iacrtkM wUl ct«M k redoctioa la tiie preusn m (kt workinf ip&c«,u il U tkc u m « time, *x^4U»t |*« wUl low bwik Uto tkc intiJM muüf otd,d'MpUcíni Ihc (rcib air. T bá b ¡deniified is fig .9.2 u Región I. Tbe oatwardEow ot citliuul vUi coalinn* ontil  p  u rcduced to p .. Wilb (urtlier píslonisoli oa, p wiU f«U bcknr u> tbe intaJie rouúíold wül rctuni to tbc cyl úder, u

    cTÍdeat tn Refioa IL

    iVeib atr will aot begia to CDlcr the cyliodtr notil tU Ihc exba.uit hu betaRliuned to tbe workisf iput .  It ú ntttuuy  to idea'.ify tbe iastut wbcnU  =  Mxit to get thc co m ct reiult from timulUioa. T bu coadttioa mwk* theitart of £tmK air flow ¡ato tb« cyiíadcr. Tbe paipOM ot t  detiíled trtUmcatot thc ¡Btak* itnik* k, Cor tbc ue on tc eompatUion of tbe mau o f (rcih airic tba eafiat at Ib* itart of tbc compreuioB proccM; aad tbis ii «cbievtd byIviun iaj ap ib t «ouU amosaU of írcth air, ¿Af, tb ai flotr ia duríog

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    55/110

    Oi‘ Coiupatt/S/fflTx/*tíofl of CT

    Flg.0.3 fío» chart for inteíntion of ci¡t.(9.3) and fS.Sj [ite ti¡.(9.Il)}

    However, »orae forra of control mtut overiM the inUgrition, A nnifonn Ae kC «»th lUp miy le»d to A P vilae» lh»t rtduce cyllnder pr wn re b«lowpo dming th« eihnut procea», or «bove  Pm duriog the inlike procm.

    On the other hind, with i fixtd AP vilue. MC«wiv«ljr Urge Ai vJuet

     jn»jr rcíull ¡o over»IiootÍDg the ümiti oí puton tnvel .The tcheme describid »bove wUl work lUiifictorily for the «ntire exhiuit

    (troke, u>d for th it portk>& of the inttlie itro lu identified u Repo n III inFig.9.2. Bul it m»y not work doring the eirly per iod of the intake itroke,bec&tue if we lúnlt pretiore cJiuigei to

     Apmt.P - P o

     p cinnot drop below po or, in other wordi, we íuinot uie the relitioa

    Po - Po

    m

    for the inttke itroke untUpbecomeskH lhxn P e Once TDC á re»died on the(jchiust Itroke, the proctdtire ii to decreue p repestedly by emtU, pr«itríbí¿

    OI   5iü)a/At/ofi trítb G ms  EkcJiájige Pioc ets   O

    unountj, ttíiai ef, m ------------- ---------------- .PoK)t.|.

    (9.15)

    (9.18)

    In order to carry out cycle cakalationi that incorpórate detaüi ofth e g uexchange procesi, it b oeceuary to ipecify the variatlon of the effectiye ralreare» A,  that appean in eq».(9.7 ) and (9.B) u a function of the crank angle.Thii vahre aro» calcolation dependí opon the engine geometry and ihould beipeciGed by the reader.

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    56/110

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    57/110

    )

    J

    98 Compíl ff SlmoíitJoii of Cí £oi ¡«e PrwroM»

    T»b1e 9.1 Eff«t of v»1yo »«» . on powtr ind  Yotaia«lric clEcknqr[for tht (le««l by cq.(O.I9])

    Spetd :Cem¿ur :

    1500 rpm50*

    r :Start of injection :

    18.Í  RAF  15J*

    : 1.5

    x « /  Ti  N .. Power Ala (K) «I»  Nu, + N. (kW)

    >7tk

    2,0/2.0 3«.530 «5.116 0.980 3.918 28.882

    2.6/2.S 312.099 90.771 0.9S2 4.586 31.458

    3.0/2.5 311.440 0O.8S3 O.9S0 4.635 31.744S.0/3.0 299.173 94.008 0.950 4.912 32.413J.$/3.S 289.797 96.612 0.949 6.145 32.938

    i.O/i.O 279.816 99. M5 0.943 5.347 53.220

    Fipire 9.S ihoiri tliít i( 1500 rpm, witk / ( „ *> /iu =*

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    58/110

    100  CompaUr SlaalíUoB et Cl Eat¡»*

    TibU 9.3 iUiulrtU* Ihe tfftct ofen jint »p t«d on ihe powtr Mtpo t. Il e»ab« ob«

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    59/110

    720

    Flg.9.7  A iypkii   *a/ct-íímítij ¿ía;rotn/or a CI  «nji'ne

    T«ble 9A  Effect of nlve-linúsg on povrer »t ml oo i

    r : 16.5  Aft/Ain : S.0/2.5cm*  EVC : 554*  RA F   : 1.5

     ASc : 60* Start of injection :  153*  IVO : 527“

    EVO/IVC Spted (rpm)

    (deg) 1200 ISOO 1800 2100 2300

    Power (kW)

    360/720 3.326 S.926 Í.120 4.149 3,963SÍO/735 3.632 4.288 -«.622 4.727 4.77ÍS

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    60/110

    10< Compou/ 5I»iil*lí»» oí Cl Enjliit FtOiMut

    TibU •.» Eftcl of nhr*-Ual>( oa p o w « d roluDiUk «aScUncy(.p««l - tSOOip s]

    r t UJ Á..lÁi^  : 9.0/J.6 cm» i: i'C ; SS4* ; 1J A f, : SO* Sti rt oí ia jtcltoB : >U*  ÍVO   : S27* Sp« «a : ISOO tpta

    BriJc* power (kW) t ad Volmacuic cScka cy (^ }

    EVO (def)

    (* Ifurr» U bcMkcu

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    61/110

    100 Compul í f Slnioi«lfon ofCI Enfim Procatet

    T» ble 9 .5 V»ri»tion oí ip»cillc powet wUh €i¡jin« tlj«

    (|com«trlc»U)r tlmlUr tritw««)

    Coniv- •'Ion r*tio

    CRLStrolcefor exhitut vjve

    16.52.875 borí1.375 bore¿2 /W = 3.5/M.O

     Rá F Sptíd

    132200 rpm

    m - ^0.05S

    for blet vibre ; a. 02 = 2.5/64.0 = 0.039

    Bore

    (mm)

     AnIMa

    (cm’ )

    Bnke

    Power (kW)

     A#c

    (CA)

    ^tol

    ( « )

    r ,

    (K) A'^ + Wx

    40 1.00/0.7S 0,862 25.00 95.559 0.948 288.950

    60 2.00/1.50 2.645 37.50 89.724 0.953 312.377

    80 J.EO/2.50 5.241 50,00' 78.316 0.984 359.4Í6

    100 5.50/4.00 8.775 62.50 70.850 0.980 388.245

    120 8,00/6.75 11.683 75.00 60.006 0.982 397.879

    UO 11.00/7.7S 11.171 87.50 60.683 0.983 401 j0«3

    Sltrt of injíction - (tic = 153*)

    T«bl« ».fl M «t oí »]r-fael ntio od  p6«wr[fot Ihe «Bglnn ducribod by «q.(9.19), O 1500 rpm)

    ComprcMÍoa ratio

    Stirt of bjeclion

    5 16.6 Speed : 1500 rpm

     RAF  Y  Bnke

    Power (kW)

    Illh  L h

    1.06 16.5 4.118 28.265 61.57

    1.13 17.5 6,001 31.344 65.17

    1.19 18.5 5.714 31.133 58.69

    1.26 19.5 5.312 30.623 63,07

    1.32 20.5 4.996 30.177 66.96

    1.50 23.6 4.121 28.277 78.67

    9.3 Kea t transfer process

    H »t truufer ú t muit m !C « oginn to miúitún cylinder wtlli, cxlináer heidiand píitoa fice> tt •Je optniting Umperttn m. HeU ii trutrerred from orto the worklng finid during evíry p»rt of í»ch cyde, ind th« ntt work done

    C¡ Ea¡ln» Slwaltlloa wilh Cu Emhutfe Procat   107

    by tbe worlÍD| flaid in one complete cycle It (ivcn by

    wbcre Ap ú the prcn on chtnge tniüle tbc cytiadcr u t rc fotl of pUton motion,combutioa , lo v b to or oat of tbe cylúider lod bt»( truiifer.

    The preusrt cbutge áp  dae to heat trájufcr it fiven by

     P  MC,T.

    where A, 8 heit trinifer coefScicot, A B bterior mrf»e» trtt of eogise volume,T. “ bterior intfue lemperttiire,U  m m uí of workmg fluid,c.  X2 workbg Buid ipeclEc beU,T   XI workiag fluid temperature.

    The Duls problem with c kncnni aboat the |u motloD íoiidej itb common to s u lome empirical fomo lie for CAkalatinf K,. Tbe fortnalic oí( i )  Alhle y-Cun pbell, (ü) Sitkei ud RuiuntUb, (üi) Haheobeiti (ir) Pflkamu d (v) AnAud irt widely aied.

    (I) Aihley-Campbcll cquatlon

    kJ/i K. (9.24)

    where  B

     PT  

     Z

    cytiiider bore ia m,

    cyliader pre»jure in ttm,worktnj Suid temperituie in K,worklng íuid velocity tn m/f.

    (II) Sltkel tnd Rjunaoal&b e^uatloD

    0.0< (1 + i) Kc»J/m»h*C. (9.24)

    where b O- 0.03 fpr He»»elin»n-lypt direetion combuilion chunbeO.OS - 0.10 for piiton chunbe x,0.1$ - 0.25 for iwirl chunber,0.25 - 0.35 for precoinbuilioa chunber,gu prtuure b tlm,

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    62/110

    ....t....

    103 Compuiw SlmaUtlat « lC ¡ Etf lu* F/aMM»

    Cm  * m

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    63/110

    l i o Compvttr  SimB/ífJbt ’í’dj/ii í  Pe oc

    wbcre np, - -i-mber oCrinji.

    (¡ii) MEP »b »o rM ü>frictioQ dae lo pUton and riagi

    whtre  P,i  » p’utoD lUrt-leaftli (mm).

    (ív) BJow-by lo9» fatp* ~  V'P» ~ Pliaí

    0.121r‘' ‘ - (0.03« + 0.00105Sr) x j

    whert // = «peíd ia rpm.

    (v) MEP loít in ovucoming inlet « d itroUling I o « «Pr

    2.7S+ Pioif 

    ♦ rhew p, =

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    64/110

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    65/110

    n i Conjpu(«/SímufitioB ofCJ Eoí/ü* Proce»»*»

    Í3 x>

    a

     X»

    CR0 I6-5Spoedo iSOOrpraníniS

    * EKpenmáu]

    - ~ Tworonc---- , Single ytfie

    130 140 ¡50 160 170 ISO

    Inj’cclion tíming (dcg CA)

    Flg.9.9 Ef f tc t of {n j cct io tí tíming on   iroAí mean c^íclí*e ffíMiirt

    9.1 0 Brake thermat effidency

    Fijure 9.10 ih ow» the effect of injíCtloB timiag on brike ihermil elEcieney. Itu ttta  Ihil mudnwm br i^ ihe m il efBcitncy occan ilm dv d injectiontirain*, vu. 153*. On «iOjer ikie of tb« tt uia ira injettion timinj (i.t., ±20*)the thtTroU «ffick ncy fiUj. Al c» a b« « etn, th« two-Jone tnodct prtdicta ihew u ti on bttte r cotnpwred to the lero- dime uioa al modcL Pnrther refinemtnt*

    io ttie combtutioa model b a moit for bcíter predktioiu.

    ^ 3 4

    ^ 3 205 30’ü£ 2 8

    1 2 6

    I 24O

    m 20

    CK-16ÍSpccr(ncnul—   -----------Twoione----- , Single ywt

    130 140 150 160 170 180

    Injection üming (dcg C A)

    Plg.9.10  ESc

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    66/110

    9.13 EtTect oí ipeed on paío íma nce

    Figur» 9.U lh« viiUtion oí p«*k príMure wUh ra pe ct to iajectioatimini. It b «Mil tliil the two-»one model prédieti the det»fl» belU r th u thíxcTO-

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    67/110

    l i s Coo)p»(«rSliaEUt»a OÍCÍ £«xla* FrocíM*»

    Tbc m ole it t&c unosat af  a «obituice of i $yitem tbit conlaiiu u mu ytUm«cíSed and tEey roty be atoms, moUcolu, tkcCroa*, otbtf {>articlet, or ipecíEed |Toup« o( incb parikies.

    In th« SI sait lytUm,  tbe mole repUeti the pa n mole ((m ol).

    The nQmVer of estitie* in a mote ii 6.022 x 10 ^, whkh k alio known u

     A vo fu bo ’l co oi tu t.

    1 Biol of 0 } hti a mau of 32 g,

    1 mol of H} hu a muí of 2 g,

    1 mol of K} hii a mau of 28 (,

    1 mol of O hai a mau of ISg, etc.

    The £ n ( three are known aa moleco lir wei{hU and the laat U known u

    atórale weight.

    The íntcrnal enerty, u, and enthalpy, h, are rtlated by

    For ideal (aaei, we can alio wríte

    ti + pV.

    u + JtT.

    lA.l)

    (X.2)

    Inlernal eoerf y u d enthalpy are deGned by

    du =• C,tlT,

    dh  «

    C , -C . =  R.

    The ratio of the «pecific heata t« deiipiated by  k, given by

    ‘ =I-

    (/l.S)

    (^4 )

    The heat capacitita Cp and C,  ar« weak fonctloni of pretisre but itrongfuoctioni of temperatore. The valuea of C,   are tabnlated tn Table C.2. Theinperacript * m ein i that the valuea are for 1 atra pre uiu t. l^b le C.S gWeicoeScienta to calcúlale C,, for gaao normally eneoontered in internal cora-boilioD engine calculitlobj. The expreuíon ii of (he fonn

    C,   « a + i r ( k J / k m o l K )

    and b vaüd for the temperature rangc 298 < 7 < 900 K.

     AppiadlxA  110

    Internal energy and enthalpy are itroag fonctiont of temperatore:

    u ( r) - r c . j T + u i T o ) , ( A.e) Jr ,

    M r ) - r C,dT + x>{To) + RTo.  (X.7) J t ,

    The temperatore Ti and u{7o) or /i(7o) may b* aaiigned arbitraríly.

    Entropy ú a more compUeated function and ii derived from the Ent law,

    T ‘ 

    which c*B tikc aajr ene of tke íoUowídj Ihrte forma (for pV m /JT);

    it  

    dt

    C .- 5T + A - ,

    ' T p ’

     V p

    (>1.*)

    Inlrodocbi a function ^(T) deGned by

    (/1.9)

    the entropy diferente between two itatea 1 and 2 can be writteB u

    •2-> i  “ ^ ( r , ) - ^ ( r , ) - / í b > {A.10)

    The Ubalated valaca o( ^(T) are Uited in Table C.S (lee Appendlx C).Since  k |e

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    68/110

    130 Cowfattr SlmaUth» elC l Saglet Pn rmtm

    la k mixtar« of fWM, «Ub »,• 4uoUa| Ü>« mole aambcr ot  gu Uie

    loUl moU B«mb«r íf  i* fiv » by

     N   -

    laUrnU w«riy U,  tsUiUpy JET, isd tslio py ^ of » mUtni* w«obtuatd bf  uldiof tkt cOBtdbatioiu bom  «ick coulUacst |u:

     Ápptadlx A  131

    y ( r ) -

     B[T)   -

    SÍPiT) * X^N ííÍWiT),

    nhttt tbi partía! pm m «  ft  b

    (A.12)

     fi

    P

    ’ ÜLe

    E « -

    (>(.«)

    Tk* iBUraal «Bwor, «atbalpy »m í  «oUopjr o í  • mtxtwrt p(.J5)

    * (p i31 « . 53» . »

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    69/110

    1J3 CcapiiUr SímiUtha otC í E at lf Peocoff*

    The »ppnudm»tí chuicltr oí tq.(A.22) c»a bo obMTved by notinf tbitur hu k lirger i vilse tbui botb O] tuá N j.

     Aii- coaiit U ot  BÍtrogeD, oxyf en tad tmtU unoiuiU of tcverkl other |u«t .Fot CDtmecnni cücnUlioa», the lilUr m«y b« ¡2nort

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    70/110

    l l l ComptUt SimtUth» tf ct E a^ t Pto cttf 

    Newtoft-fiaphion kertüon lechnique

    tr u cf y o f tbit Ucratioa tcud« »t Tj , t a i  bjf  dcfialiúa lh« «lopc U 7i U

    wWdi cm b« íoWed íor T»  lo gívt

    Ta =

    ( T i - r , ) *( f l j )

    T , -  [BA )

    wbicli U kntwn u tbc rtcontoa tqaition for Tj; & IxlUr «ppradnution t»tk* Miatioo i h u T| MB bt compn(«d firom Ti.   By itp«at«d tppUeUion of

    toh lloa UA b« »ppñneli«d u cloMly u we dtiire.

    PCD

    OT2 TI

     ff tv to n- It a fl u o» íU nH on

    ^ a («aerU rale, Vke Newtoa-lUphioa iUnlio a eoavtrga more npidfyIbui tbc otber ac lb c^ . But w« ne«d to know more tboat the cbiracUr ol 

    U ordcr to um tbe Newioo-IUphwo hcrstioa sñtb utnrad incctf i. Forooe tbiai, f lT } mw t U difiiutAtUbl*. Tbii b Mldom 4 probkm.

    Figtitt B^ illiulnXt* lb« lott of probtemi wbkh may wím; bowiver,*^

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    71/110

    136 CompBUJ-S/aufitfoii oíCl EsíÍdi Ptocattt

    lurb in Fi*.B.2(»), where llit cnrrUurt ii toncive downw*nü. Ü we rt»rt UB, hr  eu ap k, (ie t iopc U th*t poiot miy be tadt m lo  c*hk the tuiftat lo íc(cnccl (omrwbert oa tbe scgUrrt T-ax». U   i (̂T] conu lu k>{(7 ,̂ uü tbe CMC oí tí, h u d ^ foiictiou, the pro{run »kodd ibort. Tbli c u bt«voided by atartúf «t A , u d (be «ohtioD «hostd be «pproaclied from bttow.Sincc the tbcnnodynuníc ronctio&i are compvted wUb cxprtuiooi IbU uenot viltd betow 400 K or ibove 8000 K, T  viluei osUide theM túniu mutbe kvoided. (ActuaU)’, tbe U|lf te»p erUQ re limít ti »eldom » re tí probWm.)Figure B.3 Acmt í   fiow cbu t for the NewloD- Ripkto a iteration. The ñcnrcbirt is immjed to ctrrf  tbe ctkuUtbni to a »olatioa for «ny Ta,  providedit ú gnate r tb u 400 K, by fyitem»tic»Uy rtdada| T by DELT sutil (bertcnnion exprtuíon prodacet ui tcceptkble vtlae.

    But tbere ire circimutuice* nodcr wkicb the flow chvt ia Fi^-BJ wíHnot coaverje. Thii m»y otenr ¡f tbe derivitive  f (T ]   dt>«* nol bcreue oc dem tM oni/onniy wd coBtmnouily with 7. When (hli condition ii not met, F[T), irhiJe inono(oajc, cu y be S-ihaped. la thu ctte, lome cualpsiitiooiux rtíjaired to di»cover »a isitii l T   vilue thit wlU faariatee coaverjence.

     Appendix C

    Aígebfalc expresslons for thefmodynamlc functlons

    For huid caicüUtioiif, the labsUted valae* of Cf,   tbe conitut-preunr* htiitcapaclty, h,  the eothalpy, the tem pen tore portion of entropy aod  K ,,   thereaction coMta st, are adeqvtte. Por compaler pro{rami, a ljcb nk expre*-lioiit are re

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    72/110

    ' D i b i * C . 1 Co«ffieS*aU f o t c t k s U t l o n a « í t l i « m e t l o B e o s a U a b K ,   t l M • q m k t l e a

     X , - «* p [ i + ( * + j ; ) la (r ) + á ] f»n

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    73/110

    ST ^ 55 £ S S S 2^ SZ. SZ.  ^ ÍE

    TkU« C.S E»pr««*km» for tb» *p*clSc he»t cf k'm* »b

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    74/110

    IeE

    I8-

    TkbU C.S «i e j ^ K alMolau «atra^ tí  1 tím   (kj kmol“ * K~*) fcr fSMi-

    • c o . CO, H ü> H ,0 N N» NO   0 0 , OH208.10 187^10 213.840 114X11 13a590 188.720 153.195 191.490 210.820 180.954 205ÍM0 183.830500.00 213 j0«O 234.780 126.357 145.840 208.480 183.941 208.830 220.140 172.091 220.810 198.980

    lOOOXK) 2S4.7W 289.181 139.784 188.122 232.708 178.348 228J)8e 248.404 188.883 243J0S 219.822I SOOJOO 24 ». v n   292.098 148.192 178.752 250.491 188.778 241.778 282.579 195.147 257.997 232.494 .2000.00 m . 9 6 7 S09.2S8 154.172 188.327 284.433 192.758 251.978 273.018 201.140 288.68S 242.2353C00.00 2«7.125

    322.*48 168.810 198.151 275.907 197.399 280.083 281.28$ 205.789 277J38 250.1373000.00 2TS.«74 334.334 182.800 202.797 285.825 201.208 288.805 288.084 209.597 284.427 S58.794asoo.00 2T9.«3« 344.098 185.804 208.591 294.032 204.459 272.545 293.898 212.835 290.855 282.5524000.00 2M.MÍ 362.ftM 188.580 213.748 30L 424 2 07 .Í M 277j a i 298.970 215,885 298.158 287.8304S00J» 289.115 S80.23S 171.028 218.401 508.011 209.944 281.993 303.471 218.188 301X184 272.1775000.00 293.110 387.081 m . 3 l8 222.855 818.950 212.388 285.98S 30T.C19 220.471 305.541 278.298SSOO.OO 298.781 S7S.318 175.199 228.579 319.381 214.853 289.811 311.200 222.581 309.808 280.069eooo.00 300JOSO  379.052 177 JXM 230.225 324.333 218.831 292.438 314.578 224.490 313J39 283.548

    — i i

    í >*0► C

    na Ch

    5

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    75/110

    1 J 6   C o n p a l * / 5 / i n c I it f e a o í C l   E a í ío o P t o c a t a

    ........................................................................................................................

    C SDí UUnOK OP 4-BTBOKE CCJffHtSSIOS ICKinON EKQIKE................................. .......................

    8L0CI OKU ......................................................................................................................................... ..

    C IH THIS f fUBROUTIKE VALUES VHICH AfiE KOI UKEL T TO CHAKCE ASE

    C or VEH AS DATA  REAL U,n>.Kli,KC.KHP.KH.l(O.WJLin?.W,K.X.HH.HAOHAX.KKO.

    # KP.KPO.KX.KBRUÍTEGE» EVD.EVCLoaicAL n>ma.iPRi (r r.i 6UPca,is wET,HT_iKDEX

    CHA8ACTEH.10 XV.YZCOHMOH/OEOV/B,CT,C8I..8,VBDC.VDIB?.VI1VBI>C(T20) .VOLÜHE(eoO),

    f VTOCC0KN0H/THEW

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    76/110

     X38 C o m p a U r S lm a U Ü o a c í a E a f ia t P n o ú M*

    C MOT E: p a z s s u i z I S I H A T K0 S PB Z S2 8 k I D l P E a A m Z M E L V I H

    itppudix D   180

    DATA 

    - C

    C

    TI

    3 0 0 . 0 0

    PA 

    1.00TA 

    9 0 0 . 0 0Pl

    1 1.00  ,DATA  W j l . t /

    KCEXG : NUKBER COMSTmJ UnS I N TBZ EXEAUffT SA8.

    DATA CI>A,IIZ.IICEXa/30.0.0.,e/ B U U Z 18 K A X I MW A 1 UV A BL 8 BUUlUO KATE ( L m e S / S )TB 18   18   m i e z j w )   r o í p u k k e s s i v b c o x B u m o H mo oe l .

    DATA BBKAX/WO.O/

    a c 18 THE CKAMK AMOLE AT VHIC8 F Ua 18 li I JECTEO

    U P M0 BE 8 S I V E C OJ f f l US HOK W) D E I . ( kOD a 1 ) 1 8 Ü8 E D T HE H I BC - I BO

    DATA IBC/1S3/

    DK 18 A COMBTAMT CBQ8EX BETVEZJi 3 0 i 60 IK P S OOm S I VE COMBUS

    TION KOOa. TO DETEUlIKE B UAU. IMCBZUUrt S DP CSAXK AHOLE.

    DATA DN/E6.0/

    IPTTIUl 18 7 «UE OMLY TOí   IDEAL CY CU ¥ ITB SUFEECHA&OES

    DA TA I P T T H K , I P l I l l T / . P A U E . , . n U E . /

    ISUPET U .nUB . rOJl EZBAUST DUVE K SUPEMHAj UKK.i s i ip ca u . n uE . p o j i c o u f b z s s o k    d r i y e i c   s u P E s c H A &aan o t o e a k    o a i m

    I ? A X y OXE 0 7 T HE A BOV S I S T BUE , T HE M I P T i m 8 E 0 UU) BE . T US .

    DA T A I 6 UP E T . I S UP C H /. P A L 8 E . . . T W1 E . /

    DA TA I S U P E T , I 8 U P c a / .T S Ü E . , . F A I Í B , /

    DA TA I S U P E T . f S ü P C H /. r A I S ? . . . P A l f i E . /

    EPOCOM AMD EPOTUl AAE EPTICI EMOIES OP C0KPBE8S0K k   T U E B Q S .

    DA T A E P Oe ON , E P 0 1 V I /0 . 9 , 0 . 9 /

     AEV 4 AI V Al E HAZ. A UA OP OP E NUO QP GCEAUST i INTA CE

     V A L V U U Sq UAI E CM.

    DA TA A E V . A I V / a . O . a . í /

     VALV C 1011 1108 I

    DA TA E V 0 . E V C , 1 V 0 , I V C / M 0 . 5 S 4 . I 2 T , 7 M /

    CP t CV A U TES 8PEC1P1C BEAT AT COmA XT VOUlXB

     AND COUSTAVT P U 8 8 U U l ES PE CTI YE LY (CJ /KXOL )

    DA TA U , C V / 1 . 4 , 2 Ó . a 9 « /

    PiKP t   PENP m   ULET  k m u jsT   KAvzpou) n E s s o m .P8L 18 TUS PI8T0M BKUT LEVOTa k KPS 18 THE VOHBEX OP

    P I ST OK u n o s .

    DA TA P D t P . P Z X P . P S L . K P i / l . O . l . O . f l . O . S /

    KODPBT I B THE EEAT TUMSPEB MODEL V8ES U THE 8UBU3UTIKE

    EZAT TSANSPEE (STKANS)

    DATA KOOPHT/Í /

    KOOrVA 18 KOCEL POl VALVS AEEA l »E D IN THE SUBaOUTXXE

     VA LVA E. SF ECI PY E m DI k   BETA IP KODPYA 2 IS U8ED.

    DATA HOOPV A/l /

    CAIMT 18 TES CRAKK AMOLE IKTESVAL - I AX IS AKOTSUPACTOI. T V m AlE V m   IN SWROUmB OÁSa  JUOTHEU VALUE8 6B0UU) BB BETVEEJI 3 t 1 0 .'

    DATA CA INT, AM/6., 4./

    C ‘U* 18 TEE C0Ü8TANT USED Dt VI EEE'8 BEAT KELEASE EQUATIOH;C n 18 CENEEALLY DETEBXIll EO PROM P- THETA DIACUX 05TAINEDC PIDM TEE ACTUAL ESfl IKE

    DATA K/3.00/C COKDUK Z8 DUIATION OP CONBOSTIOH IH KCBEE8 CUA)nC AKQLEC n KAY BE ASSUXED B S n m 40 n 80 DEOKSES.

    DATA Caa xi K/SO.O/

    C VT 18 THE MOLECUUE VEIQHT 0? TSE PUEL AKD.CONQT 18 COK-

    C BUSTIOl f EPFICIEMCr( HOJUALLY BETVEEH 0. 8 k 0. 9)DATA l f T,COKEFP/142.0.0 .a6/

    CPSIUX 18 KAXI WM ALLOVABLE PtES SUKE E18E BATE 01 ATX/DEC.CA DATA PBXAX/IO.O/

    C NODCOK IS THE COMBUSTION XOOa USEO.

    C POS ZE£ 0 DIKEJISI ONAL COMBUSTION MOOa UQOCOH - 2 k C PO» PaOOBESBIVE COXBÜ8TI01I MODEL KOOCOH - 1C DATA MOOCOM/3/

    C MODBE 18  TEE BEAT RELEAS E HOOEL USHODATA K i a W i /

    C KOlVS P 18 TEE XOISL POS ENOOIE PKICTI OK 

    DATA KOOPSP/1/

    C SPEED. OP TEE ENQIKE

    D A T A E P K /1 6 0 0 . 0 /

    EKO

    NAIK FKOaUX 

    COMMaM/GEOK/B. CE,CU. ,(.VBDC, VDI8P. VDVBOC(T30).VOLUXElBOO),« VTDO

    C0MK0H/OEN/CB(4O,4).A(tO,16) .0 (5 ).D(6),E ETAH.KAP.P(E).I . . PFM,PVN,a(6),M£P,PID4.P0y£B,RFM

    C0M}

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    77/110

    1^0 Compattf SlotUtha oí C! EniiaoPratatt*

    cccccccc

    c

    c

    cccc

    c

    ccc

    c

    c

    cccc

    c

    c

    c

    c

    ccc

    c

    ccc

    ccc

    c

    c

    ccc

    IT CALCinUl TCS P, V, T VALUES AT STATE P0IKT8 í TO 4 IX

    THE CYCLE.mSKIKO KE MW IS AE8UHB0 It) BE AIR ¥ 1TH COHSTAKT C?

     AMD CV VALUES.THEXH 18 KO PÍ ESSUHE XISB DUSDÍO.COMBUSTION AXD DHLYCUT m   8ATI0 IS TO BE QIVEK.COKBUSTIOK IB ASSUKED TO BE ADIA BAHC AHD AT COKETAÍIT

    PEESSURE.

    CAIi. FC8

    IN THI8 6UBR0ÜTIKE FUEL- AIR CYCU (FC8) 18 SI HUUTEO.

    IT CALCUUTES P .V .T VALUES AT STATE POIHTS O TO « IH THETHE CYCLETHE IfCRKIKO KEDIUK IS ASSWED TO BE FUEL AKD AIS WII B

     VASIABLE CP AND CV VALUES.P82SSURE CUAUQE DUE TO COKBUSTIOK I S CALCUUTEO USIHQ

    THE  AOIABAnC H.AHE TEXPESATUBE CALCUUnOKS.THE CDKBUSri OH I S ASSUKED TO BE I KSTAJÍ TAJÍ EOUS AKD AT

    CONSIAKT PHESBURE.

    CAa PCSTHIS SUBRQUTIHE SIKULATES l OEAi DIESEL CY CU If ITH PROCRESSIVE

    COKBl/STIOH (PCS)IT CALCUUTES P.V.T VALUES AT VARKWS POIHTS O? IHTEREST

     AKD ALSO VALUES OF PRESSURE k   VOLÜXE POR EVESY DECEEE

    CRAMK AKCLE.THE lí OBJflHC KEOrUH 18  AKSÜXEO 10 BE FUEI. m   AIÍ VITH

     VA8IABLE CP m CV    VALUESCOMBUSTION I S A SSWED TQ TAKE PUCE OVER PERIOD 07 CBANK 

     AKCLE ROTATIOH ANO THE PRESSURE SIBE DUE TU COKBUSTIOH

    18 CALCUUTEO USIKQ PBEORESSI VE COKBUSTIOK.K E A T T I U N S F E K E F T E C T I S I U C L W K D .

    CALI ACS

    THIS SUBROUTir a SI HUUTES  AM ACTUAL DIES EL CYCLK (ACS) .IT CALCUUTES P .V .t VALUES AT THE VARIOUS POIHT OF I KIEBES T

     AHD ALSO VALUES OP PRESSURE t VDLÜKE AT VARIOUS CRAKK AKCLES.

    THE VOaXIHQ KEOIUH 18 ASSUKED TO BE FUEL AHD AIR VITH

     VARIABLE CP AKD CV VALUES.PROGRESSIVE COKBUSTIOK 18 ASSUXEO AHD HEAT TRAHSFER

    EFTECT IS IHCLUDED.PROVISI OMS ARE KADE Tt) I NCORPORATE VARIOUS HODELS FOR

    COKBUSTIOH. KEAT TRAKSFER ANO VALVE AREA CALCUUTIONS.

    CAS EXCHAJÍ CE PROCESES IB INCLUDED AND THE E mCT OF

     VALVE OVERLAP CAN BE STUDIED.

     Ápp tad bsD   141

    CccC

    CALL P R i mT8I 8 SOBROUriKE P8IKTS OUT RESVLTS

     ALTEBATI0N8 KAY BE KADE TO OET THE PEIKT OUT I«THE IBJUIRED Srf LE

    CLOSB(UHIT - 11)STOPEXD

    SUBROUnKB í es

    REAL U.KP.Kt.KC.KEP. KH. «O, WJLVTP.IIA, K.MADKAX.ÍIKQ.HP.KPO.HX

    CHAKACm*10 XV,YZ

    UX5ICAL IPTTHR.IPRI HI.I BUPCB.lBUPET.PVPRJ fT

    COKK0X/0E0K/B,C«.CRL. S.VBDC,VDIS P.VDVBDC(72O),V0LÜXE(8 OO), VT K 

    COKMOH/TKERM/HRP,MOLYTP(6 ), P1 .PJ ,PJ . P4, TI . r a. TJ ,T4 . TS.T6. TA, Vl .V2 .V3 .V4

    COKMOX/CKEH/EA, KP. KR, K (S ), HA, KAIDIAX. m . NP, KPO. NX. m , m .

    HC,KH,KO.R,RUTAI.MIX,T,YCC,YNIN.PMOLlf TCOKMO«/C? CCEF/CV.ACPF.f iCPF.ACPA.BCPA,AL(6), Af l (6).

    BL(5) ,BB(E),a(S) ,CB(S)

    CO»IOK/ARRAY/DELV(r 60) .DV(T60). PCBOO) ,DEU((8 00) ,DELP( 800 ).THETA(800),V(800)

    COHKOX/OEH/CB(4 0 ,4 ) ,A (1 0, 1 6 ) , 0 ( 5 ),D(5) .E ETAH.RAF,F (6 ) .FPH ,m,0(6) .KEP.Pm.POm.RPK

    COKMOX/IOnS/FA. VR. STUKE

    COKXOS/PSS A/CPR. DT, DTHDDT,IBC,IECPC.IEC,QAB)(AS,WCOKP. nJCP. HCEIO, VKET.IfUWP.PSPS.KL

    CO«KOX/PRIKT8/JV(16). YZ (M )COKKOH/ABC/WT. COKEFP, CPA. HK

    ••••• STATEKEHT FUHCTION CEPUtl TIOH FOR THE CALCUUTIO* OF'•••• VOLUKE AT VARIOUS CRAHÍ AKQLE8.

     VOL(THETAS)- VDISP*( CR/(CR- 1.) - (t . - C08(THETAK)>/2. ♦

    (CRL/S) - . 6.5(JRT( (3. «CRL/Í ) ♦«J- (AB8 (SIH(rtí ETAI))) •♦? )) WIT E dt .S SS )

    65S F0 R) aT( 20X .'8DWUTI 0H OF AIR STANDARD DIESEL CYCLE ',//J OI.1 3 8( Í B- ) )

    IPRI- 0

    PVPRKT- .TRUE.PSPS- RPN/120.

    C I F( BTÍ OKE. EQ.2 .) PS P8 - R PH/6 0. VDISP - PI M»B*B* 8* l .0E - O9

     VBDC •CÍ /{CR- 1.) *VDI8P VTTC - YBDC- VBISP

  • 8/9/2019 Computer Simulation of Compression-Ignition Engine Processes V Ganesan BN.pdf

    78/110

    3 CoaptUr S imuhOf el Cl  £ « < b « f r e c e i w  

    va - VIDC V« - VB6C Vi - V3« Vt

    n - T i » a » «( a - i . )r a - p t « c x * * u n   - v i * t a « - paT 4 - n * ( V 3 / V B 0 C) * * ( U - l . )P 4 - P 9 / ( (V 4 / V 9 ) * * u )KA - (P l «n'K)«CV MC*m)*l OOO.O/C»»Tl )

    o •••••• VU u m KUKBa c p  k x o u   ik   t be   c y c u .« coxp - c v*( n - Ti) * iu 

     VC0K8 - K * (n - n) * i uvaof   - C V« (T3- T4)» IU .m r • m p *  vcoxn - «coxpB T M - ( l. O - ( T 4 - r i ) / ( U * ( n - T 3 ) } } * l (» . 0

    p o m - ra T*P8Pi* . ooi 

    KEP - mT/(VDISP* Pr M)iF(iFU.Bq.o) n x n i i i . x )  

    as pouu T(y /a,7a (iH- )m. 'cb* .ex, - t i ío •.bx. ' l a u) •,6X, ' l a m •.n .l *1 4(0 ',ax , •METaJ /KOL) * ,*X. ‘OmH' ./6X,73{Ut- ))

    n m d i . u } c K .n ,n .n .T 4.r a T ,i K r i a